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Motivated by recent experimental realizations of polar metals with broken inversion symmetry, we
explore the emergence of strong correlations driven by criticality when the polar transition temperature is
tuned to zero. Overcoming previously discussed challenges, we demonstrate a robust mechanism for
coupling between the critical mode and electrons in multiband metals. We identify and characterize several
novel interacting phases, including non-Fermi liquids, when band crossings are close to the Fermi level and
present their experimental signatures for three generic types of band crossings.
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Metals close to quantum critical points (QCPs) are
strongly correlated systems that often exhibit non-Fermi
liquid behavior [1] and novel orderings including uncon-
ventional superconductivity [2]. Studies of metals near spin
density wave [3,4], ferromagnetic [5] and nematic QCPs
[6] indicate that the behaviors of quantum critical metals
depend crucially on the nature of the QCPs involved.
Recent discoveries [7–13] and predictions [14–16] of a
number of polar metals [17] that undergo an inversion
symmetry breaking transition, structurally similar to a
ferroelectric one [18] (whose QCP properties are also
actively studied [19–24]) suggest a novel avenue of
metallic quantum criticality to be explored.
Here we perform a systematic study of quantum critical

polar metals and possible strong correlations therein. We
show the critical polar mode to be strongly coupled to
interband particle-hole excitations (Fig. 1). Since uncon-
ventional metallic quantum criticality occurs when critical
bosons are coupled to gapless excitations, we study
quantum critical polar metals with Fermi energies pinned
to electronic band crossings; we present evidence of strong
renormalization of the polar phonon spectra and non-Fermi
liquid behavior of the charge carriers (Fig. 1).
Experimentally, intrinsic [8,25,26] and engineered

[7,9,12,27,28] polar metals exist; the former include several
layered transition metal dichalchogenides [10,13,29] with
more predicted [14–16]. Furthermore the search for Weyl
semimetals has led to more polar (semi-)metals [30].
Chemical tuning of polar transition temperatures has been
demonstrated [9,31–33]. Here we make predictions for
experimental signatures of the novel phases that we identify
in quantum critical polar metals.
An important challenge for the realization of correlated

polar metals is that the critical boson (a polar optical
phonon [34]) of a polar metallic QCP does not couple
easily to the electronic degrees of freedom; proposed
couplings that involve order parameter gradients [35–39]

and/or nonlinearities [40] are usually irrelevant in the
scaling sense at a QCP [1]. Additionally, Coulomb inter-
actions play a special role here, leading to a splitting
between longitudinal and transverse modes when the
screening is weak [34,41,42], although this effect may
be smaller for certain ferroelectric systems [43,44].
Here we show that a Yukawa coupling of the order

parameter (φ) to carriers, HY ¼ λ
R
drφðrÞc†ðrÞcðrÞ,

known to induce strong correlations for other types of
QCPs [3–6], can be generically realized in multiband
systems even without spin-orbit coupling (SOC) (that
has been previously considered [45–48]), leading to the
most pronounced interaction effects at band crossings.
Using symmetry-based classification of such crossings,
we analyze possible strongly coupled metallic behaviors
near polar QCPs, including long-range Coulomb effects.
Yukawa coupling to the polar critical mode.— We look

for fermionic bilinears ÔiðkÞ such that φi
R
dkÔiðkÞ
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FIG. 1. (a) Schematic phase diagram of a polar metal with a
critical region around the QCP. Inset illustrates that the critical
fluctuations couple to an interband excitation. (b) Summary of the
QCP behaviors near typical band crossing: (i) a 3D nodal line,
(ii) a 2D nodal point, and (iii) 3D Weyl points. (N)FL stands for
(Non-)Fermi liquid; in all cases the polar mode is strongly
renormalized. Coulomb interactions introduce anisotropy for (i)
and (ii), and gap the longitudinal mode for (iii).
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respects inversion symmetry, first assuming time-reversal
symmetry T . Since the order parameter breaks inversion
symmetry, P−1φiP ¼ −φi, we thus seek a fermionic
bilinear ÔiðkÞ that breaks inversion but not time-reversal
symmetry.
For a single conduction band without SOC, the only

possible form of ÔðkÞ is ĉ†kf0ðkÞĉk. Since both P and T
require f0 to be even, it is not possible for ÔðkÞ to break
only inversion symmetry. However with SOC present,
bilinears of the form ĉ†kfiðkÞsiĉk, where si are the Pauli
matrices in spin space, are allowed: an odd in k choice for
fiðkÞ results in a bilinear that is odd under P only. We thus
conclude that SOC is necessary for a Yukawa polar
coupling in a single-band model.
By contrast, in a multiband system a Yukawa coupling

can exist without SOC. In a two-band model ignoring spin,
T is complex conjugation and P acts in band space: P ∼ σ0
for bands with the same parity or P ∼ σ3 (up to a unitary
transformation) in the opposite case. Writing a generic
fermionic bilinear as ĉ†k½f0ðkÞ þ

P
3
i¼1 fiðkÞσi�ĉk, we find

that the terms breaking inversion, but not time reversal,
symmetries are even in k f1ðkÞ for P ∼ σ3 or odd in k
f2ðkÞ for P ∼ σ0. We can thus have the following Yukawa
couplings to the polar mode at q ≈ 0

HðaÞ
coupl ¼

X
i;q;k

fiaðkÞφi
qc

†
kþq=2σ1ck−q=2; P ∼ σ3

HðbÞ
coupl ¼

X
i;q;k

fibðkÞφi
qc

†
kþq=2σ2ck−q=2; P ∼ σ0; ð1Þ

where fiaðbÞðkÞ is even(odd) in k, and the order parameter

couples to an interband bilinear [Fig. 1(a), inset].
If we assume the bands originate from two distinct

orbitals, the physical mechanism of this Yukawa polar
coupling can be illustrated (Fig. 2). If the orbitals have
different parity (e.g., s and p) [Fig. 2(a)], they are mixed
linearly by an inversion-breaking perturbation (similar to
the Stark effect). This mixing is reflected in a nonzero

constant hybridization between the resulting bands, for-
bidden in the symmetric phase [Fig. 2(a)]. Because of the
necessity of k dependence, the same-parity case [Fig. 2(b)]
cannot be viewed as local. We exemplify it by a nearest-
neighbor hopping between the orbitals [Fig. 2(b)]; absence
of inversion symmetry yields distinct left and right inter-
orbital hoppings from a given site, similar to the dimeriza-
tion occurring in the SSH model [49]. Similar effects have
been considered in studies of SrTiO3 interfaces [50,51].
Band crossings and low-energy theory.—To drive

unconventional metallic behavior already at weak coupling,
the interband particle-hole excitations coupled to the
critical mode with Eq. (1) need to be gapless. This is
possible close to momenta where the two bands cross; a
low-energy theory can then be constructed around these
band crossings if they occur close to the Fermi energy. This
situation can be realized due to filling considerations (as,
e.g., in graphene) or by carrier doping. Here we study the
polar QCP when the Fermi energy is at the band crossing.
Neglecting SOC, PT symmetry leads to protected line
crossings in 3D systems [52–54] and point nodes in two
dimensions [54]. For completeness, we also study a polar
QCP in a T -breaking driven Weyl semimetal [55–57].
Having identified the three generic types of band cross-

ings, we next turn to their emergent metallic behaviors at
the polar QCPs. We study the limit T ¼ 0þ at the QCP
itself, analyzing each case both with and without long-
range Coulomb interactions. The latter situation is relevant
when (i) inversion symmetry breaking in the insulating
system does not produce a macroscopic dipole moment
(e.g., when the transition is to a structure with a nonpolar
point group that does not allow for a macroscopic dipole
moment [58] or in the case of elemental materials) or if
(ii) there exist additional Fermi pockets that lead to strong
screening. In the absence of (ii), screening of the Coulomb
interaction will depend on the type of the band crossing.
3D nodal lines.—We consider a minimal Hamiltonian

with a circular nodal line in the kx, ky plane,

Hline ¼
X
k

c†k

�
k2x þ k2y − k2F

2m
σ3 þ γkzσ2

�
ck;

Hcoupl ¼ λ
X
q;k

φqc
†
kþq=2σ1ck−q=2; ð2Þ

which corresponds to taking fi ¼ const in Eq. (1) (as is
discussed below, this does not affect the qualitative results).
Only a single order parameter component can couple to
fermions near a single nodal line. In principle, isotropy is
restored when two additional nodal lines that couple to the
other order parameter components are present—e.g., three
px;y;z-like bands crossing an s-like one; then there are three
nodal lines, each coupled to the corresponding component
of the order parameter φx;y;z. However, as we will show
now, it is sufficient to consider Eq. (2) with straightforward
generalizations.

t*=0

t*≠0 t*+δ t*-δ

t* t*

(b)
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FIG. 2. Illustration of the coupling to the polar order parameter
for two orbitals having (a),(c) opposite and (b),(d) same parity
under inversion. (a) and (b) The symmetric phase φi ¼ 0, (c) and
(d) the state for φi ≠ 0. In both cases, interorbital hopping
changes, as reflected in Eq. (1).
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We begin by considering the lowest-order bosonic self-
energy, following the Hertz approach [59]. Our calculations
[60] yield

Πðiω;qÞ − Πð0; 0Þ ¼ −
λ2mρðω; qr; qzÞ

4πγ
E

� ðvFqrÞ2
ρðω; qr; qzÞ2

�
;

ð3Þ

where ρðω; qr; qzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ ðvFqrÞ2 þ ðγqzÞ2

p
and EðxÞ is

an elliptic integral of the second kind. Gapless fermions
lead to the damping of the critical mode: Πðiω;qÞ ∼ jωj at
low q (vFq; γq ≪ ω) similar to the situation at spin-density
wave QCPs [3]. However, unlike that case, Eq. (3) is
strongly momentum dependent, leading to an unchanged
dynamical critical exponent, i.e., z ¼ 1. Once the bosonic
self-energy is taken into account, a scaling analysis with the
scheme of Ref. [66] yields the scaling dimensions of
Yukawa and quartic interboson couplings to be ð2 −
dÞ=2 and 1 − d, respectively, making both irrelevant in
the d ¼ 3 nodal line case. An explicit calculation [60] of
the fermionic self-energy and vertex corrections with a
screened bosonic propagator also indicates the absence of
infrared divergences, showing that the scaling limit of
Eq. (2) is captured by Hertz-Millis theory. We note,
however, that a recent RG analysis using a different
momentum shell scheme [67] suggests nontrivial correc-
tions to the Hertz-Millis fixed point away from the large-Nf

limit (Nf being the number of fermionic flavors; for
additional discussion see Ref. [60]).
We now address the role of a momentum-dependent

fermion-boson coupling within Hertz-Millis theory: since
at the QCP the only relevant term is the bosonic self-energy,
a momentum-dependent coupling would just result in
replacing λ2 in Eq. (3) with its Fermi surface average.
Next we address the role of Coulomb interaction.
Assuming that the Fermi liquid state is robust at the
QCP, we know from previous work [66,68] that screening
by nodal line electrons results in a renormalized Coulomb
interaction ∝ q−1, while further effects of the Coulomb
interaction are irrelevant in the RG sense and can be
considered perturbatively. The coupling between renormal-
ized Coulomb interaction and the polar phonon affects the
critical propagator

D−1
Coulðiω;qÞ ¼ −Πðiω;qÞ þ VNL

CoulðqÞQ2
0q

2cos2η;

where η is the angle between q and the polarization
direction of φ and Q0—the effective charge of the polar
mode. Since VNL

CoulðqÞ ∼ q−1 [66,68], the Coulomb inter-
action does not change the scaling properties of the critical
mode but rather introduces an anisotropy.
2D Dirac point.—We consider a Hamiltonian

Hpoint ¼
P

k c
†
kvFðkxσx þ kyσyÞck and coupling Hcoupl ¼

λ
P

q;k φqc
†
kþq=2σ3ck−q=2 (we take P ∼ σ1 here). Again we

find the order parameter to be scalar, similar to what occurs
at a CDW transition in graphene [69,70], which breaks the
inversion (but not translational) symmetry and is associated
with charge imbalance between two sublattices.
In the absence of Coulomb interactions, this model is

equivalent to the Gross-Neveu-Yukawa (GNY) model
[71,72] whose critical properties have been studied exten-
sively [73,74]. Its critical point is known to have emergent
Lorentz invariance and z ¼ 1; it follows then that the
critical phonon velocity (cs) is renormalized such that
cs=vF → 1. The anomalous dimensions for both the bosons
and the fermions further demonstrates the non-Fermi liquid
behavior at the QCP.
We now include Coulomb interactions, first considering

their effect on the critical boson, whose propagator is now

Dðiω;qÞ ¼ 1

ðω2 þ c2q2Þ þ 2πQ2
0q

2
x=q

; ð4Þ

while the Coulomb interaction takes the form

VCoulðiω;qÞ ¼
2πðω2 þ c2q2Þ

qðω2 þ c2q2Þ þ 2πQ2
0q

2
x
: ð5Þ

This renormalization changes the bare scaling dimension of
qx: ½qx� ¼ ½ω; qy�3=2. Consequently, the renormalized
Coulomb interaction becomes irrelevant for the fermions
(½e� ¼ −1=4), while the Yukawa coupling remains relevant
(½λ� ¼ 1=4). In order to determine the critical properties at
this fixed point we perform one-loop momentum-shell RG
calculations in two dimensions; details are provided in
Ref. [60], where we introduce an additional parameter,
the number of nodal points Nf. We note that the fermionic
and bosonic renormalizations are determined by different
dimensionless couplings, βφ ¼ ðλ2Z2

φaψÞ=ð2π2v3FyZψΛÞ
and βψ ¼ ðλ2ZφÞ=ð2π2v2Fy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πQ2

0Λ
p Þ, respectively, where

Zψ ;φ are the quasiparticle residues and Λ ¼ Λ0e−l is the
running RG scale. We find the resulting solution of the RG
equations to exhibit a runaway flow for βφ ∼ e2l=5, while
βψ ∼ 2=l goes to zero. Most importantly, we find that the
Fermi velocities along the two directions are renormalized
differently: dvFy=dl < 0; dvFx=dl > 0, with vFy eventually
flowing to zero as el=5 [60]. Enhanced anisotropy is also
present in the bosonic behavior, with c2x ∼ el; c2y ∼ const.
Taking l ∼ log½k−1;ω−1Þ�, we use the asymptotic solutions
to obtain the following forms of critical propagators (where
α, β, δ, γ, ρ are constants):

Dðiω;qÞ ∼ 1

αωþ c2yq2y þ 2πQ2
0q

2
x=qþ βqx

;

Gðiε;kÞ ∼ 1

δiε0.8 þ γσxk0.8x þ ρσyk1.2y
: ð6Þ

Weyl points in 3D QC polar metals.—Neglecting possi-
ble anisotropies, we find the Weyl Hamiltonian and the
Yukawa coupling to take the form
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HW ¼
X
k

c†kvFðk⃗ · σ⃗Þck;

Hcoupl ¼ λ
X
q;k

φ⃗qc
†
kþq=2σ⃗ck−q=2: ð7Þ

Since the interaction is marginal, we use the perturbative
RG to probe the system’s behavior. Importantly, the
bosonic self-energy evaluated on the momentum shell is

δΠαβ ¼ −
λ2

π2v3F

ω2 þ v2Fðq2δαβ − qαqβÞ
12

dl ð8Þ

and we see that the longitudinal mode is unrenormalized
while the transverse one hardens. The full RG equations
are presented in the Supplemental Material [60]; the RG
flows to weak coupling with the large-l asymptotic
α → 2=ðNfl log lÞ, where α≡ ðλ2Z2

φÞ=ð12π2Zψv3FÞ and
Nf is the number of Weyl points in the system (cf. we
neglect interpoint coupling since it requires finite momen-
tum transfer). We find cL=cT → 0 due to the hardening
of the transverse phononvelocity. The quasiparticle residues
for bosons and fermions both vanish (Zψ∝const=l; Zφ∼
const= log l) which, in conjunction with l¼logðk−1;ω−1Þ,
suggests logarithmic non-Fermi liquid corrections.However
the bosonic quasiparticle residue vanishes only as 1= log l,
so the bosons receive only log-log corrections and are
relatively well defined at the QCP.
The Coulomb interaction screened by the polar phonon

becomes itself irrelevant, but results in the renormalized
propagator for the longitudinal mode acquiring a gap.
The RG equations are then obtained by disregarding
the longitudinal mode’s contribution to the fermionic
self-energy and vertex renormalization. We note that the
longitudinal mode nonetheless receives corrections due to
Yukawa coupling; this reflects itself in the behavior of
the dielectric constant (see below). The solutions of the
RG equations [60] are qualitatively similar to those without
Coulomb interactions.
Finally we note that for a 3D Dirac point [75] (that

requires additional symmetries to be realized), the RG
equations are found to flow to strong coupling, and the
critical mode to soften. Since a 3D Dirac point can be
thought of as a stable merger of two Weyl points, we
attribute this result to inter-Weyl cone scattering that we
have not considered due to finite momentum separation
between cones Qw. We thus expect that in the polar phase,
where the Dirac point splits into two Weyl ones, the flow to
strong coupling will be cut off at a scale set by vFQW.
Experimental signatures.—We next discuss simple

experimental signatures of the quantum critical polar
metallic phases we have identified. The QC (bosonic)
specific heat Cbos can be estimated with Hertz-Millis theory
[60,76] leading to Cbos ∼ Td=z. In the cases we study, we
observe that z ¼ 1 except for the nodal point cases with

Coulomb interactions: in two dimensions one momenta
scales as

ffiffiffiffi
ω

p
at the QCP which suggests, using Eq. (6), that

Cbos ∼ T1.5; in three dimensions a logarithmic correction is
present. We also obtain T-dependent resistivity estimates
with a scattering rate calculation using a RPA-screened
bosonic propagator [60,77]. These estimates are summa-
rized in Table I.
In all three cases we have studied, the critical polar mode

is strongly affected by interactions close to the QCP. For the
nodal points the characteristic boson velocity renormalizes
to a value of order vF, suggesting stiffening of the trans-
verse mode. A more complete picture can be given for
the Hertz-Millis theory of the nodal line case using
Eq. (3) continued to real frequencies. For qr ¼ 0, the

transverse has an unusual dispersion ω2 ¼ ðcqzÞ2 þ
ωλ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðγ2 − c2Þq2z þ ω2

λ

q
− ωλ�=2 while for the qz ¼ 0 case

one has

ω ≈

8>><
>>:

−iωλ ðq ≪ ωλ=vFÞ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωλvq=π − iω2

λ
π

q
½ωλ=vF ≪ q ≪ ðvF=cÞ2ωλ=vF�

cq ½ðvF=cÞ2ωλ=vF ≪ q�;
ð9Þ

where ωλ ¼ λ2m=8γ. Observation of such dispersion
renormalization and smearing of the spectral weight may
be accessible by inelastic neutron scattering measurements.
Additionally, for the case of 3D nodal semimetals, the

bulk ω- and q-dependent contribution of the polar mode to
the dielectric constant εðq;ωÞmay be obtained from optical
conductivity [57] or EELS experiments [78]:

lim
vFq;γq≪ω

εPolNLðq;ωÞ ¼
4iπQ2

0cos
2η

ωλω
;

lim
q→0

εPolWPðq;ωÞ ¼ −
4πQ2

0

ω2ðlogω−1ÞNf=κ0ðNfÞ ; ð10Þ

where Nf=κ0ðNfÞ depends on the number Nf of Weyl
points but is of order 1 [60]. We also note that the presence

TABLE I. Summary of Hertz-Millis estimates for the temper-
ature dependencies of resistivity ρðTÞ and the bosonic contribu-
tion to the specific heat CbosðTÞ close to a Polar QCP; here NL
and NP are nodal lines and points, respectively, ρ0 is a constant
and Δ ¼ 0.5 when Coulomb interactions are included and 0
otherwise.

Band crossing type limT→0þ ρðTÞ limT→0þ CbosðTÞ
3D NL T3 T3

3D NP T−1 T3

2D NP ρ0 T2−Δ
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of a Yukawa-coupled band crossing actually promotes
polar ordering, since the static part Πð0; 0Þ of the bosonic
self-energy is positive. This effect is maximal when the
Fermi level is at the band crossing and diminishes as it
moves away. Of particular interest is the case when
symmetries allow nodal surfaces; here the relevant bosonic
self-energies would be logarithmically divergent [79]
leading to possible realizations of an electronically driven
polar order that was proposed some time ago [80] already at
weak coupling.
Conclusion.—In this Letter we have shown that nodal

multiband metals provide promising platforms for strongly
correlated metallic behaviors near polar QCPs. We have
demonstrated a generic mechanism for Yukawa-like cou-
pling to the critical mode without spin-orbit coupling.
Identifying band crossings to be most affected by the polar
QCP, we have studied critical behavior for three distinct
cases (2D Dirac and 3D Weyl points, and 3D nodal lines)
with and without Coulomb interactions. In our study we
find the critical polar mode to be strongly renormalized for
all band crossing types, and we have demonstrated the
emergence of non-Fermi liquid behavior for the two nodal
point cases. Finally we have analyzed thermodynamic,
transport, and dielectric properties and the critical mode
dispersion for the quantum critical polar metallic phases we
have identified. In view of the recent discovery of a number
of polar metals with a multiband electronic structure such
as LiOsO3 [8,11], MoTe2 [10], and WTe2 [13] and
predictions of many more [14–16,33], we hope that our
study will provide guidance for the search of exotic
metallicity in future experiments on polar metals.
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