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We introduce a two-dimensional frustrated Heisenberg antiferromagnet on interpenetrating honeycomb

and triangular lattices. Classically the two sublattices decouple, and ‘‘order from disorder’’ drives them

into a coplanar state. Applying Friedan’s geometric approach to nonlinear sigma models, we obtain the

scaling of the spin stiffnesses governed by the Ricci flow of a four-dimensional metric tensor. At low

temperatures, the relative phase between the spins on the two sublattices is described by a six-state clock

model with an emergent critical phase.
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A remarkable discovery of recent years is that frust-
rated two-dimensional Heisenberg models can evade the
Hohenberg-Mermin-Wagner theorem [1,2] via the devel-
opment of long-range discrete order driven by short-range
thermal spin fluctuations: such discrete long-range order
develops despite the persistence of a finite spin correlation
length, leading to a finite temperature Ising (Z2) orZ3 Potts
phase transition [3–9]. This phenomenon is well established
in the J1-J2 Heisenberg model on the square lattice and has
recently been realized in iron-based superconductors [10].
An interesting question motivated by this discovery is
whether it can be generalized to higher Zp (p � 5) order.

If one can show, in addition, that these emergent discrete
degrees of freedom are described by a p-state clock model
[11,12], the unique situation arises that a Heisenberg spin
system exhibits two Berezinskii-Kosterlitz-Thouless (BKT)
transitions which bracket a critical phase. In a system of
discrete Ising spins, such a scenario was reported to occur
on the triangular lattice [13,14].

In this Letter, we introduce such a Heisenberg model
defined on interpenetrating honeycomb and triangular lat-
tices [Fig. 1(a)] with nearest-neighbor antiferromagnetic
coupling. This model may be realized with cold spinful
atoms in optical lattices, where it arises naturally in the
limit of large on-site interactions [15–18]. Another prom-
ising experimental route is to employ STM techniques
for nanofabrication and spin-resolved read-out of stacked
triangular and honeycomb monolayers of magnetic atoms
like Cr or Co [19–22]. For classical spins the two sublat-
tices are decoupled giving rise to a SOð3Þ � Oð3Þ=Oð2Þ
order parameter. ‘‘Order from disorder’’ [23,24] drives the
two sublattices into a coplanar spin configuration [25] with
a SOð3Þ � Uð1Þ order parameter and a sixfold in-plane
potential. In the coplanar state we explicitly show that
the U(1) degrees of freedom decouple to form an emergent
Z6 clock model with an intermediate power-law phase.

This nontrivial decoupling of the U(1) phase is essential
for the critical phase to occur.
A novel aspect of our work is that we apply Friedan’s

coordinate-independent approach to nonlinear sigma mod-
els [26] to the scaling of the spin stiffness. In this approach
the configurations of the two-dimensional (2D) spin sys-
tem correspond to a worldsheet of a string evolving in four
dimensions, where the metric is determined by the compo-
nents of the antiferromagnetic stiffness and its renormal-
ization corresponds to a Ricci flow of the metric tensor.
We also note that the decoupling of our U(1) phase can be
viewed as a toy model for the compactification of a four-
dimensional (4D) string theory.

FIG. 1 (color online). (a) Heisenberg model on the ‘‘windmill’’
lattice. (b) Definition of angles � and � describing the relative
orientation of magnetic order on triangular and honeycomb
lattice. (c) and (d) Angle dependent free energy correction �F
from thermal and quantum spin fluctuations for parameters
Jhh ¼ Jtt ¼ 1, Jth ¼ 0:4, T ¼ 1. Panel (d) is for fixed � ¼ �=2.
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Specifically we study the antiferromagnetic Heisenberg
model on a decorated 2D triangular lattice [cf. Fig. 1(a)];
the associated Bravais lattice has three basis sites per unit

cell at positions bt ¼ a0ð0; 2=
ffiffiffi
3

p Þ, bA ¼ ð0; 0Þ, and bB ¼
a0ð0; 1=

ffiffiffi
3

p Þ, where indices A, B label the two honeycomb
sites. We set the lattice constant a0 ¼ 1. The Hamiltonian
is H ¼ Htt þHAB þHtA þHtB with

Hab ¼ Jab
XNL

j¼1

X
f�abg

SaðrjÞ � Sbðrj þ �abÞ; (1)

where SaðrjÞ denote spin operators at Bravais lattice site

j and basis site a 2 ft; A; Bg. The vectors f�abg point
between nearest neighbors of sublattices a, b. We assume
in the following that the spin exchange couplings within
the same sublattice are larger than the intersublattice cou-
pling Jth < Jtt, Jhh, where Jth � JtA ¼ JtB and Jhh � JAB.
For decoupled lattices Jth ¼ 0, the classical ground state
on the bipartite honeycomb lattice is the usual Néel state,
while spins on the triangular lattice arrange in a 120�
configuration [27]. Although the exchange fields between
the two sublattices exactly cancel for this configuration
even for Jth > 0, quantum and thermal fluctuations depend
on the relative orientation of the magnetization on the two
sublattices. The uniaxial magnetic order on the honeycomb
lattice is described by a normal vector nðxÞ, which points
along the magnetization on sublattice A. The biaxial order
on the triangular lattice is characterized by a triad of ortho-
normal vectors ftjðxÞg with j ¼ 1, 2, 3. Equivalently, it may

be expressed by an orthogonal matrix t ¼ ðt1; t2; t3Þ 2
SOð3Þ. We take the vectors t1;2 to span the plane of the

magnetization on the triangular lattice. The relative order
between the two sublattices is thus determined by two
angles � and �, which are defined in Fig. 1(b).

Symmetry considerations dictate the form of the long-
wavelength action which takes the form of a nonlinear
sigma model (NLSM)

S ¼
Z

d2x

�
K

2
ð@�nÞ2 þ

X3
j¼1

Kj

2
ð@�tjÞ2

�
þ Sc: (2)

The action contains the usual gradient terms of the
Oð3Þ=Oð2Þ and the SOð3Þ NLSM for the order parameter
on the honeycomb and triangular lattice. The bare spin
stiffnesses K, Kj can be derived in a 1=S-expansion and

read K ¼ 2JhhS
2=T, K1 ¼ K2 ¼

ffiffiffi
3

p
JttS

2=4T, and K3 ¼ 0
[28–30]. In addition, the action in Eq. (2) contains two
potential terms, generated by short-wavelength spin fluc-
tuations (‘‘order from disorder’’) [23,24]

Sc ¼ 1

2

Z
d2x½�cos2�þ �sin6�sin2ð3�Þ�: (3)

A positive � > 0 favors coplanarity, whereas � < 0 indu-
ces n to be perpendicular to the plane of the triangular
magnetization. The sixfold anisotropy term � is relevant
only for � > 0.

Heuristically, we expect � > 0, favoring coplanarity:
spins on the honeycomb lattice can minimize their energy
by aligning themselves perpendicular to the fluctuation
Weiss field from the triangular lattice [24]. To confirm
this reasoning, we have performed a Holstein-Primakov
spin wave analysis of Eq. (1). Our results for the fluctuation
correction to the free energy for arbitrary angles � and �
between the two sublattices are given in Figs. 1(c) and 1(d)
and show that � > 0. For small Jth we find that � ¼
ðJth= �JÞ2A�ðJtt=Jhh; �J=TÞ is the dominant term in the

potential, while � ¼ ðJth= �JÞ6A�ðJtt=Jhh; �J=TÞ, where �J ¼ffiffiffiffiffiffiffiffiffiffiffiffi
JttJhh

p
and the A�;� are functions that depend weakly

on Jtt=Jhh.
As temperature is reduced, the two sublattices enter a

coplanar regime. The temperature scale for this crossover
is easily determined from standard scaling arguments and
yields the coplanar crossover temperature [see Fig. 2(a)]

Tcp ’ JhhS
2

1þ lnð1=�Þ=4� (4)

in the case where Jhh < Jtt. In the opposite regime
Jtt < Jhh we obtain an implicit expression for Tcp that

also approaches zero only logarithmically for � ! 0. The
crossover temperature in Eq. (4) follows from the known
flow equation d

dl K ¼ �1=2� for the stiffness K with

running cutoff �ðlÞ ¼ a�1
0 e�l and the flow of the coplanar

potential amplitude �ðlÞ ¼ � expð2lÞ that is determined by
its engineering dimension. While the spin stiffnesses are

FIG. 2 (color online). (a) Schematic phase diagram.
(b) Coplanar RG flow of the variables I0� (blue, increasing), �I ¼
ðI1I2I3Þ1=3 (green dashed), ðI2 � I1Þ= �I (red), and r (pink dotted).
Curves are normalized to initial values at l�. Upper panel is for

Jtt � Jhh with Jhh ¼ 1, Jtt ¼ 5, Jth ¼ 0:4, T ¼ 0:6, and initial
values �I¼ 5:3, ðI2� I1Þ= �I¼ 0:27, r¼ 0:82, I0� ¼ 1:2. Decoupling
is due to ðI1 � I2Þ= �I ! 0. Lower panel is for Jhh � Jtt with
Jhh ¼ 5, Jtt ¼ 1, Jth ¼ 0:4, T ¼ 0:5, and initial values �I ¼ 4:5,
ðI2� I1Þ= �I¼ 2:1, r ¼ 0:11, I0� ¼ 1:1. Decoupling is due to r ! 0.
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reduced at longer length scales, the potential term grows,
and scaling stops when �ðl�Þ ¼ 1, which defines a length

scale a� ¼ a0e
l� ’ a0ðJhh=JthÞ2. The coplanar crossover

takes place when this length scale is comparable to the
shorter of the magnetic correlation lengths on the two
sublattices. From the known flow equation of the
Oð3Þ=Oð2Þ and the SOð3Þ NLSM it further follows that
the stiffnesses of the triangular lattice approach an iso-
tropic fixed point [31]. The sixfold symmetric potential /
� flows to larger values, yet due to � 	 � it holds that
�ðl�Þ ’ OðJ4thÞ 	 1.

Once the two sublattices are coplanar, their dynamics
are intimately connected. To describe this regime we
impose a hard-core constraint: n ? t3, i.e., � ¼ �=2.
It is now convenient to introduce a second triad h1;2;3,

defining a SO(3) matrix h¼ ðh1;h2;h3Þ that describes the
magnetic order on the honeycomb lattice with h1¼n.
The coplanar constraint is expressed as t ¼ hU where
U ¼ expði��3Þ determines the relative in-plane orientation

of the two sublattices, defined by the angle �. We describe
h in terms of three Euler angles, h ¼ e�i	�3e�i
�1e�ic �3 .
Here, the �a satisfy the SU(2) algebra ½�a; �b� ¼ i�abc�c
and take the adjoint form ð�aÞbc ¼ i�bac. The coplanar
system is thus determined by a SOð3Þ � Uð1Þ order pa-
rameter, defined by three Euler angles and a single relative
phase �.
To analyze this coupled problem we write the action in

the form S ¼ SX þ Sc, where

SX ¼ 1

2

Z
d2xgij½XðxÞ�@�XiðxÞ@�XjðxÞ (5)

with coordinates X ¼ ð	; 
; c ; �Þ and stiffness tensor

g ¼ gSOð3Þ KT

K I�

 !
; (6)

where

gSOð3Þij ¼
ðI1s2c þ I2c

2
c Þs2
 þ I3c

2

 ðI1 � I2Þcc s
sc I3c


ðI1 � I2Þcc s
sc I1c
2
c þ I2s

2
c 0

I3c
 0 I3

0
BB@

1
CCA

with sXj ¼ sinXj and cXj ¼ cosXj. In our system we find
I1 ¼ K1 þ K3, I2 ¼ K1 þ K3 þ K, I3 ¼ 2K1 þ K, which
are set by the stiffnesses of the two sublattices at l ¼ l�.
The U(1) degree of freedom � has an initial stiffness I� ¼
2K1ðl�Þ and is coupled to the non-Abelian SO(3) sector by
the term K ¼ �

2 ðc
; 0; 1Þ in the four-dimensional metric,
where � ¼ 4K1ðl�Þ. The sixfold potential Scð� ¼ �

2Þ ¼
1
2�

R
d2xsin2ð3�Þ is a small but relevant perturbation to

SX. At length scales where � is small, the anisotropy Sc and
the gradient term SX [Eq. (5)] is the action of a classical
string in a four-dimensional space with coordinates XðxÞ at
the two-dimensional worldsheet point x, with metric tensor
gij½X�. Under coordinate transformations Xi ! X0

i, SX in
Eq. (5) is invariant, with transformed metric g0lm ¼
gij

@Xi

@X0l
@Xj

@X0m . Like Einstein’s theory of gravity, this covari-
ance tells us that the long-wavelength action SX is coordinate
independent and only depends on the geometric aspects of
the mapping XðxÞ of the worldsheet to the compact four-
dimensional space of the coordinate X. The renormali-
zation group (RG) flow of the metric tensor must also be
covariant under coordinate transformations, and following
the geometric formulation of the NLSM by Friedan [26], to
two loop order takes the form

dgij
dl

¼ 1

2�
Rij � 1

8�2
Ri

klmRjklm; (7)

where Riklm is the Riemann curvature tensor and Rij ¼
Rk

ikj is the Ricci tensor [32]. This expression defines a

generalized Ricci flow [33]. The Riemann tensor is

determined by the Christoffel symbols �i
jk ¼ 1

2g
ilðgjl;k þ

gkl;j � gjk;lÞ as Rk
lij ¼ �k

lj;i � �k
li;j þ �k

ni�
n
lj � �k

nj�
n
li. The

flow equations of our five coupling constants Ij, I�, and �

follow from Eq. (7).
A key insight into the low energy phase diagram is

obtained by noting that the coupling term K can be
eliminated via a coordinate transformation c ! c 0 ¼
c þ r� with r ¼ �=2I3. This yields a metric g in Eq. (6)

with K ¼ 0, I� ! I0� ¼ I� � �2=4I3 yet with gSOð3Þ that
depends on the U(1) phase � via the above shift of the
Euler angle c . This gauge transformation to the appropriate
center of mass coordinates allows for clear criteria when the
U(1) sector of the theory decouples from the SO(3) sector:

if either jI1 � I2j 	
ffiffiffiffiffiffiffiffi
I1I2

p
or r 	 1 it follows that gSOð3Þ

becomes independent of � and the U(1) phase decouples
from the dynamics of the noncollinear magnetic degrees of

freedom. The first criterion follows from the fact that gSOð3Þ
is independent of c if I1 ¼ I2, while the second criterion
implies that the shift in c is negligible. From Eq. (7) it
follows after a lengthy but straightforward calculation that
I1;2;3 flow to an isotropic fixed point, while the dimension-

less variable r follows the flow equation (for simplicity we
only list the one loop result; the two loop correction does not
change our conclusions):

dr

dl
¼ �r

ðI1 � I2Þ2
4�I1I2I3

: (8)

Thus, if the initial anisotropy jI1 � I2j ¼ K is weak, which
happens for Jhh 	 Jtt, the coupling r does not change
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much. The SO(3) sector, however, quickly becomes isotropic
in the 1–2 plane leading to a decoupling of the U(1) phase.
On the other hand, in the limit of strong anisotropy for Jhh �
Jtt, where jI1�I2j is not small, we find that r vanishes
rapidly. In both cases it follows that the phase angle� emer-
ges as an independent degree of freedom. The �-function
for the reduced phase stiffness I0� ¼ I� � �2=4I3 follows
from Eq. (7) as

dI0�
dl

¼ �� ¼ ðI1 � I2Þ2r2
4�I1I2

; (9)

and does, as expected, approach zero once either of the two
decoupling conditions are fulfilled. Thus, perturbatively no
renormalization of the stiffness I0� takes place. In Fig. 2(b)
we present the coplanar RG flow for two different sets of
parameters corresponding to weak and strong initial anisot-
ropy. An interesting aspect of the decoupling follows from
the Ricci scalar R ¼ gijRji:

R ¼ RSOð3Þ � 1

2�I0�
��; (10)

where RSOð3Þ ¼ P
3
j¼1ðI�1

j � 1
2I1I2I3

I2j Þ is the Ricci scalar of
the SO(3) sector. Once the decoupling takes place, �� ! 0

and the U(1) sector becomes flat. On the other hand R !
RSOð3Þ grows under renormalization since the stiffnesses Ij
decrease. Thus, we arrive at a flat one-dimensional sector
weakly coupled to a three-dimensional manifold with large
curvature. This ‘‘curling-up’’ and asymptotic decoupling of
a subspace may serve as a toy model for compactification.

Since the decoupling emerges rapidly in both limits
Jhh 	 Jtt and Jhh � Jtt, we find that �, whose flow is
governed by d

dl � ¼ ð2� 9=�I0�Þ�, is still small at the

decoupling lengthscale. The resulting low-energy theory
corresponds to S ¼ SSOð3Þ þ SZ6

with

SZ6
¼ 1

2

Z
d2x½ðI0�ð@��Þ2 þ �sin2ð3�Þ�: (11)

This is the well-known six-state clock model that exhibits
two consecutive BKT transitions [11]: one at T>

BKT that
separates a high temperature disordered phase from a low
temperature critical phase, where correlations hexpfi½�ðxÞ �
�ðx0Þ�gi decay with a power law in jx� x0j, and a second at
T<
BKT where the Z6 symmetry is spontaneously broken,

leading to true long-range order with � ¼ n�=3 (n 2
f1; . . . ; 6g). It is crucial that the decoupling of the U(1) phase
occurs first, otherwise the SO(3) sector would screen the
long-range interactions between topological defects—
vortices at T>

BKT or domain walls at T<
BKT that are responsible

for the BKT transitions and the intermediate critical phase.
Following the RG program of the BKT problem for

Eq. (11) we need to take into account that the size of the
vortex is now given by the coplanar length scale a� � a0
[34,35]. We determine the vortex unbinding transition
temperature T>

BKT implicitly via

I0�ðT>
BKTÞ�1 ¼ �

2þ 4�yðT>
BKTÞ

(12)

with fugacity y ¼ e�Sca2�=a
2
0 and core action Sc ’ �f1þ

minðK;KtÞg. From Eq. (12) we predict that T>
BKT & Tcp,

i.e., the BKT transition is only numerically smaller than
the coplanar crossover temperature. The system enters the
critical phase soon after it becomes coplanar. Similarly, it
follows from Ref. [11] that T<

BKT and T>
BKT are of the same

order of magnitude. The resulting phase diagram is shown
in Fig. 2(a).
In summary we have presented a 2D Heisenberg model

on a decorated triangular lattice where short wavelength
thermal fluctuations select long-range Z6 order. This is
preceded in temperature by an emergent critical phase
that is framed by two BKT transitions. We have written
the action of this model as a classical 4D string theory
where the spin stiffness is determined by the metric tensor
of the manifold; the scaling equations are then extracted as
components of the resulting Ricci flow. We note that the
decoupling of the U(1) degree of freedom corresponds to a
dimensional reduction of the analogous string theory and
thus to a toy model of compactification. Finally we note
that the emergence of massless modes in collective mode
massive theories could have interesting implications for
two-dimensional field theories.
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Note added.—After obtaining these results we learned of

two recent studies: one on a Kitaev-Heisenberg model,
where an emergent Z6-symmetry results from a concep-
tually different mechanism [36], a second on itinerant
systems where an emergent Z4 Potts model appears [37].
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