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Abstract

The confluence of quantum mechanics and complexity leads to the emergence of rich,

exotic states of quantum matter which demand that we expand our ideas of quantum

order. The twin concepts of spontaneously broken symmetry and o↵-diagonal long-

range order (ODLRO) are fundamental to our understanding of phase transitions. In

electronic matter it has long been assumed that Landau order parameters involve an

even number of electron fields, with integer spin and even charge, that are bosons.

On the other hand, in low-dimensional magnetism, operators are known to fraction-

alize so that the ground-state excitations carry spin-1/2. Motivated by experiment,

mean-field theory and computational results, we extend the concept of ODLRO into

the time domain, proposing that in a broken symmetry state the order parameter can

fractionalize into half-integer objects. Using numerical renormalization group studies

we show how such fractionalized order can be induced in quantum impurity mod-

els. We then conjecture that such order develops spontaneously in lattice quantum

systems, due to positive feedback, with predictions for experiment.
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A major theme in current condensed matter physics is the quest for new types of quantum

matter such as high-temperature superconductors, topological insulators and spin liquids

[1–8]. An important aspect of this research is the characterization of novel forms of order

that emerge in these quantum materials; another concerns the new classes of excitation

that accompany these orderings. Landau’s theory of phase transitions [9] attributes the

transformation in macroscopic properties to the development of an order parameter that

breaks the microscopic symmetries of the system. Later, Yang observed [10] that such long-

range order is manifested as an asymptotic factorization of spatial correlation functions at

long distances into a product of order parameters h (x) †
(y)i |x�y|!1�����! h (x)ih (y)i⇤. The

quantum operators  are bosonic and condense into a state of “O↵-Diagonal Long Range

Order” (ODLRO).

In relativistic physics half-integer spin order parameters are prohibited by the spin-

statistics theorem [11, 12], but in electronic condensed matter the absence of Lorentz in-

variance removes this restriction. Though half-integer order can be envisioned in Landau’s

theory of phase transitions, it is microscopically incompatible with ODRLO where the lo-

cal operators that condense are bosons, formed from an even number of half-integer spin

fermions. Conventional order parameters such as magnetization or pair density involve pairs

of fermions and form part of the general paradigm of BCS/Hartree-Fock order parameters;

more complicated “composite order parameters” involving four or more elementary fermion

fields have also been envisioned [13, 14], but all have integer spin. This has led to the im-

plicit assumption that in electronic quantum matter, order parameters satisfy an e↵ective

spin-statistics theorem, carrying integer spin and even charge.

Another important development in condensed matter physics is the discovery of “frac-

tionalization”, where the emergent excitations carry fractional quantum numbers [15–18]. A

classic example is the one dimensional spin-1/2 Heisenberg antiferromagnet where a spin-flip,

that changes the magnetic quantum number by an integer unit, creates a pair of spin-1/2 ex-

citations called spinons [19, 20]. Higher dimensional examples include the fractional quantum

Hall e↵ect [17], and spin liquids like the Kitaev honeycomb model where the spin operators

fractionalize into Majorana fermions [21]. Fractionalization has also been proposed to occur

at continuous quantum phase transitions [22, 23] leading to “deconfined quantum critical-

ity” where a fluctuating order parameter breaks up into new degrees of freedom. Whereas

ODLRO is a ground-state property, fractionalization is associated with excitations, mani-
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fested in dynamical response functions and as correlations that are nonlocal in time. In this

paper we explore the possible unification of ODLRO and fractionalization, proposing that

quantum operators can fractionalize into half-integer order parameters. This order fraction-

alization conjecture (OFC) requires an extension of ODLRO into space-time, and suggests

a new symmetry class of quantum order [24].

A key setting for our discussion is the Kondo lattice, a model describing an array of

magnetic moments interacting via an antiferromagnetic exchange with a sea of conduction

electrons. This model is widely used to describe the behavior of heavy fermion materials,

where the screening of the magnetic moments by conduction electrons at low temperatures

liberates their spins into the Fermi sea as delocalized heavy electrons (Fig. 1A, B), a process

that enlarges the Fermi surface. Since a spin flip of a local moment creates a particle-hole

pair of heavy fermions, we are led to interpret the expansion of the Fermi surface as a

fractionalization of local moments into negatively charged fermions [25]. The origin of the

moments is immaterial and their fractionalization into heavy fermions would even occur if

they were of nuclear origin [26]. (Fig. 1 C).

There is considerable indirect experimental and theoretical support for spin fractional-

ization in the Kondo lattice. Using topology, Oshikawa has shown that in a Fermi liquid

ground-state, the screened spins of a Kondo lattice contribute to an expansion of its Fermi

surface volume [27]. Hall e↵ect and de Haas van Alphen measurements subsequently detected

jumps in the Fermi surface volumes at quantum phase transitions between antiferromagnetic

and paramagnetic heavy fermion ground-states [28, 29]. The enlargement of the Fermi sur-

face in the Kondo lattice indicates the formation of half-integer excitations from the lattice

of local moments, a process that is most naturally interpreted as spin fractionalization.

Experimentally, there are important examples where Kondo spin screening appears coinci-

dent with the development of long range order. For instance, in both NpPd5Al2 and CeCoIn5,

singlet superconductivity develops directly from a Curie-Weiss paramagnet [30, 31] with a

substantial loss of spin entropy. Similar phenomenon involving quadrupole degrees of free-

dom has been proposed for UBe13, URu2Si2 and Pr X2Al20 (X=Ti, Va) [32–34]. Theoretical

evidence for spin fractionalization and broken symmetry is found from path-integral based,

large-N treatments of Kondo lattices [35–38]. However, while these methods demonstrate

the feasibility of order fractionalization in models with very large numbers of spin compo-

nents, they are unable to demonstrate that this phenomenon extends to physical, spin-1/2
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FIG. 1: Schematic illustrating the Kondo e↵ect showing (A) the fractionalization of a single

spin into a delocalized f-electron in a Kondo impurity model, (B) the fractionalization of local

moments in a Kondo lattice, to form a fluid of heavy fermions; (C) the enlargement of the Fermi

surface from small (blue) to large (hatched) due to the formation of heavy fermions, as predicted

by Oshikawa’s theorem [27].

Kondo lattices. Our motivation to seek new classes of broken symmetry derives from these

experimental and theoretical considerations.

Developing this idea, we recall that the dynamics of an interacting fermion is determined

by the Dyson self-energy, ⌃
↵�

(2, 1), an amplitude for the scattering of a single-particle state

at space time 1 = (x1, t1) to a single-particle state at the space-time 2 ⌘ (x2, t2) via interme-

diate many-body states. Here � and ↵ are the internal quantum numbers of the incoming and

outgoing fermions. The Hamiltonian that determines the time evolution is invariant under

various global symmetry transformations such as spin rotation or global gauge invariance;

at high temperatures the self-energy is also invariant under these symmetries. However if a

phase transition occurs, the self-energy develops a symmetry-breaking component resulting

from scattering o↵ the order parameter. For example a ferromagnet develops a sponta-

neous Zeeman splitting driven by the internal Weiss field; a BCS superconductor develops

a pairing field due to Andreev scattering o↵ the condensate. In all these classical exam-

ples, the order parameter has an associated coherence length; for space/times larger than
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this coherence length, the (coarse-grained) self-energy can be regarded as a local, instanta-

neous symmetry-breaking potential, ⌃
↵�

(2, 1) = M
↵�

(1)�(2�1), where the order parameter

M
↵�

(1) transforms under an irreducible representation of the Hamiltonian symmetry group

(Fig. 2A).

Fractionalization implies a factorization of quantum operators into two or more indepen-

dent components. Similarly, we take order fractionalization to imply that at large space-time

separations between 1 and 2, the self-energy factorizes into a product of fractional order pa-

rameters, ⌃
↵�

(2, 1) ⇠ ¯V
↵

(2)V
�

(1), where V
�

(1) and

¯V
↵

(2) describe a fractional, spinorial

order parameter and its conjugate at locations 1 and 2, respectively. The independence of

these two quantities requires that the intermediate fermionic state develops a bound-state

that propagates without decay between 1 and 2, as shown schematically in Fig. 2B. Since V
�

carries the quantum number of the incoming fermion, the intermediate bound-state fermion

is neutral with respect to this quantum number. This establishes a link between order

fractionalization and the the formation of neutral fermion bound-states.

Following the example of the Curie-Weiss theory of magnetism, here we develop support

for the order fractionalization conjecture. There, the first step is to induce Curie magnetism

with an external magnetic field acting on a single spin; next, one argues that in the bulk

the interaction of one site on another provides a Weiss field that maintains a spontaneous

magnetization [39]. Similarly here we seek to induce order fractionalization in Kondo im-

purity models by identifying an appropriate symmetry breaking field. This is a necessary

pre-condition for us to argue that “fractionalizing Weiss fields” can spontaneously stabilize

order fractionalization in lattices.

Induced Order Fractionalization. We first identify spin fractionalization in the sin-

gle impurity Kondo model. Then we show we can induce order fractionalization in the

two-channel Kondo impurity model where the local moment is screened by two separate

conduction channels. The impurity Kondo model involves an antiferromagnetic spin ex-

change interaction between a local moment and the spin density of the conduction sea

H
I

= J( †~� ) · ~S, where  †
is a spinor that creates an electron at the site of the impurity.

At low energies this model is a resonant level Fermi liquid where the interaction matrix ele-

ments behave as an e↵ective (renormalized) Anderson model, J †
(~� · ~S) ! (

¯V  †f+V f † ).

The equivalence of the e↵ective Hamiltonian with its microscopic form implies that the op-
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erator combination of a spin and a conduction electron acts as a single, bound-state fermion

J(~�
↵�

· ~S) 
�

=

¯V ˆf
↵

. (1)

Here the horizontal line contracting the spin and the fermion implies that at long times,

this combination acts as a single composite fermion. Although this process has been amply

demonstrated in large-N calculations [35, 40] and is implicitly guaranteed by the low en-

ergy equivalence of the Anderson and Kondo impurities models, we now present an explicit

demonstration of its occurance in the spin-1/2 Kondo model using numerical renormalization

group (NRG) methods [41].

In NRG the conduction bath is discretized logarithmically, mapping the model to an im-

purity spin coupled to a tight-binding (Wilson) chain with exponentially decaying tunneling

amplitude. This produces the imaginary part of the Green’s function at a set of discrete fre-

quencies, which are then interpolated to produce a continuous, analytic function satisfying

the necessary sum rules. We then transform the T-matrix of the conduction electrons T (z)

so obtained, to the irreducible self-energy ⌃(z) using the relation

⌃(z) =
T (z)

1 + g(z)T (z)
, (2)

where g(z) is the bare local Green’s function of the conduction electrons at the position of

the impurity. The unitary single-particle scattering generated by a Kondo singlet at low

energies implies that g(0)T (0) = �1 at the Fermi energy and hence a singular structure

in ⌃(z ⇠ 0), making the extraction of ⌃(z) sensitive to interpolation errors in the NRG.

We employ a limiting procedure in which g(z) ! (1 � ✏)g(z) , keeping ✏ larger than the

interpolation errors induced in T (z) (c.f. Supplementary Materials).

Figure Fig. 2C shows the result of a NRG calculation of the one-particle irreducible elec-

tron self-energy in the spin-1/2 Kondo model, indicating that it contains a sharp, resolution-

limited pole at zero energy, with the asymptotic form ⌃
↵�

⇠ �
↵�

¯V V/!. The pole demon-

strates the development of a many-body fermionic bound-state at the Fermi energy carrying

S = 1/2 and charge e; the sharpness of the pole confirms that the spectral decomposition of

the emergent f-electron field has no overlap with one-particle excitations of the conduction

sea, i.e it is an emergent fermion, described by the Lagrangian L
f

= f †
�

(�i@
t

)f
�

. The back-

ground to the peak can be fit with !2
at low energies and is due to Fermi-liquid interactions

(c.f. Supplementary Materials).
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FIG. 2: (A) In a conventional broken symmetry state, the coarse-grained electronic self-energy

(top) is instantaneous and local. (B) Order fractionalization leads to a factorization of the

self-energy into two spinorial components, linked by a low energy fermionic bound-state

(bottom). (C) The irreducible self-energy in the single-channel single-impurity Kondo model,

computed using NRG, displaying a sharp fermionic pole, on top of a Fermi liquid background (see

supplementary material).

To confirm that the local moment fractionalizes into a pair of fermions, we apply a small

external magnetic field, under which the Lagrangian acquires a term proportional to the

magnetization

~M =

1
2 

†~� +

~S, i.e. L ! L � ~B. ~M . Equivalently, we can employ a

Gallilean transformation into a reference frame rotating with angular velocity ~! = (gµ
B

)

~B.

In the rotating reference frame,  ! U and f ! Uf where U = e�it~!·~�/2
, and under this

transformation,

L
f

! f †
(�i@

t

� ~! · ~�/2) f = L
f

� (gµ
B

)

~B · ~S
f

(3)

where

~S
f

⌘ f †
↵

�
~�

2

�
↵�

f
�

. Comparing this to the original

~M , we can identify

~S
f

as the spin,

fractionalized into a product of Dirac (i.e. complex) fermions. We note that, unlike in a path

integral approach that assumes stable fractionalized excitations, here we have demonstrated

their stability without approximation from the sharp pole structure of the self-energy.

An important aspect of fractionalization is the emergence of an internal gauge symme-

try. Typically, fractionalized excitations carry an internal gauge charge [22, 42–46]. The

fractionalized spin is invariant under gauge transformations of the emergent f-excitations,

f
↵

! ei✓(t)f
↵

. Moreover the composite fermion (~� · ~S) involves a product of the hybridiza-
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tion and the f-electron,

¯V f
�

that is is invariant under U(1) transformations of both fields

f
�

! ei✓(t)f
�

, V ! ei✓(t)V . When these transformed fields are substituted into the action,

it becomes L
f

! f †
(i@

t

+ A0)f , where A0 =

˙✓ is an emergent gauge field coupled to the

number operator of the f-electrons. The path-integral approaches suggest that the right ac-

tion for the f-electrons contains an additional topological term that controls the irreducible

representation of the spin of the form L
f

= f †i@
t

f + A0(nf

� Q) where Q = 1 for the

SU(2) Kondo model. With this formulation we can always choose a gauge where V (t) is

real and the phase fluctuations are entirely absorbed into A0(t). The NRG results suggest

that the mean-field saddle point describing a fractionalized ground-state in which A0 = 0

captures the essential physics of the excitations of the S = 1/2 SU(2) Kondo model. Fourier

transforming the conduction electron self-energy into the time-domain, we see it exhibits

long-range temporal correlations

⌃(t1 � t2)
|t1�t2|!1������! |V |2sgn(t1 � t2)/2. (4)

In the single-channel Kondo model these correlations do not break any physical symmetry

but they will be important for our subsequent discussion.

To address our original question regarding order fractionalization, we next turn to the

two-channel Kondo (2CK) model where the channels of screening electrons are indexed by

� = 1, 2. The channel-symmetric two channel Kondo model has a quantum critical ground-

state [47–49] , which can be loosely interpreted as a resonant-valence-bond (RVB) state of

singlet between the spin and each of the two conduction channels (Fig. 3A). As we now

show, breaking this channel symmetry induces order fractionalization. The 2CK exchange

interaction is

H
I

= J †
�

(~� · ~S) 
�

+ �J ˆ , (5)

where the channel asymmetry �J couples to the composite operator  =

⇥
 †
1(~� · ~S) 1� †

2(~� ·
~S) 2

⇤
, inducing an asymmetric Kondo coupling J ± �J in the two channels. �J plays the

role of an external field that induces composite order h i. Renormalization group studies

tell us that a finite channel asymmetry �J > 0 destabilizes the quantum critical point,

stabilizing a Kondo singlet in the strongest channel [50], here associated with the � = 1,

loosely interpreted as a valence bond solid (VBS) state (Fig. 3B). As in the one-channel

Kondo model, this implies the formation of a fermionic bound-state

J(~�
↵�

· ~S) 
��

=

¯V
�

ˆf
↵

, (� = 1, 2), (6)
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but with a channel-dependent amplitude

¯V
�

= (

¯V , 0) that projects into the strongest channel.

The quantum numbers of the composite fermion divide into two: a c-number spinor

¯V
�

that

carries the channel quantum number and a residual fermion with spin and charge but no

channel index.

FIG. 3: (A) The symmetric two-channel Kondo model forms a quantum critical state where the

Kondo singlets are delocalized between channels. (B) Application of channel asymmetry

stabilizes a Kondo singlet on one channel, defined by a spinor order parameter. (C) A fermionic

pole is induced in the strongest channel, indicating the presence of a selective hybridization

V̄
�

= (V, 0) between the fractionalized moment and the two screening channels. The red curve is

shifted by 0.5 unit vertically upward for clarity. (Insets) left: The Fermi temperature T⇤ vs ⇢�J .

right: the low-frequency regime of self-energy in channel 2 vs. ! showing Fermi liquid behavior

(dashed black line is an !2 fit). (D) Adiabatic rotation of the channel asymmetry along a path

subtending a solid angle ⌦ leads between channels leads to an e�i⌦/2 Berry phase, reflecting the

half-integer nature of the induced order.

Fig. 3C displays the self-energy of a channel-asymmetric spin-1/2 2CK model, calculated
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using NRG. For �J > 0, a sharp, resolution-limited quasiparticle pole forms in the strongest

� = 1 channel, leading to a pole in the self-energy, ⌃
��

0 ⇠ ¯V
�

V
�

0/!. The product form of the

self-energy follows from the projection into the strongest channel. By Fourier transforming

this result, we confirm that at long times, the self-energy factorizes

⌃
��

0
(t2 � t1)

|t2�t1|!1������! ¯V
�

(t2)V�

0
(t1)sgn(t2 � t1)/2. (7)

This factorization into two spinors means that the singular part of the self-energy does not

transform under an irreducible representation, but instead as a reducible sum of a vector and

scalar representation, i.e 1/2⌦1/2 = 0+1. If we are to preserve Landau’s notion that order

parameters transform under irreducible representations, then we are forced to acknowledge

that the spinor V
�

is the relevant order parameter and we have order fractionalization.

A way of exposing the spinorial character of the order is to adiabatically rotate the

spinor V
�

by slowly rotating the channel asymmetry, which we may write �J(n̂(t) · ~ ),

where

~ =  †
�

~↵
��

0
(~� · ~S) 

�

0
is the composite “channel magnetization”, defined in terms of

three Pauli matrices ~↵ = (↵1,↵2,↵3), and n̂(t) is the asymmetry field. In this adiabatic

evolution of the Kondo singlet, the channel selective hybridization is then determined by

(~↵
��

0 · n̂)V
�

0
= +V

�

. By slowly varying n̂(t) along a closed path, we can characterize the

topology of the order parameter by examining the corresponding Berry phase factor e�i�

=

e�i⌦S

where ⌦ is the solid angle enclosed by the path and S determines the spin of the order

parameter (Fig. 3D). To calculate � we go to the extreme strong coupling limit, where

�J � ⇤, the electron band-width. In this limit the channel Kondo singlet becomes entirely

local, taking the form |zi =

P
�=1,2 z�|�si, where z = (z1, z2) ⌘ V

�

/|V | is a unit spinor

and |�
s

i =

1p
2
(|� ",+i � |� #,*i) denotes a singlet formed between the local moment (*)

and electron (|� "i) in channel �. When n̂(t) is rotated through a solid angle ⌦, the spinor

z
�

(t) evolves adiabatically, and the ground-state wavefunction acquires a Berry phase given

by � = �i
H
dt(z†@

t

z) = 1
2⌦ (cf. Supplementary Material). The factor of 1/2 confirms the

half-integer channel spin of the state.

We also note the application of the symmetry-breaking field �J induces an expectation

value of the composite order parameter h~ i / V ⇤
�

~↵
��

0V
�

0
, indicating that the induced com-

posite order has fractionalized into a product of channel hybridization spinors. From this

exercise, we see that order fractionalization (OF) is manifested in three separate ways: (i) a

splitting of the composite fermion into a spinor boson and a fermion; (ii) a fractionalization
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of the local moment into a product of fermion excitations and (iii) fractionalization of the

composite order parameter into a product of spinorial order parameters.

FIG. 4: (A) In a 2CK lattice model at d = 2, 3 dimensions we expect order fractionalization to

lead to spontaneous channel symmetry breaking, forming Kondo singlets in one channel, with a

channel-spinor defining the selective hybridization of the fractionalized local moments. (B) The

channel spinor leads to a Kondo insulator in the hybridized channel (1) with a hybridization gap.

The dashed line indicates the dispersion !k of the emergent f-electron. Channel 2 remains a

gapless insulator.

Discussion: Spontaneous Order Fractionalization. Induced order fractionaliza-

tion in the two-channel Kondo impurity model enables us to conjecture spontaneous order

fractionalization in lattice models. The key idea is that order fractionalization at one site

produces a channel-symmetry breaking Weiss field at its neighbors. This then provides pos-

itive feedback that allows a fractionalized ordered state to develop spontaneously due to

the fragile nature of the critical system. The NRG results confirm that the path integral

gauge theory approach provides a qualitatively correct description of the fractionalization

at a mean-field level, which can then be used to describe spontaneous order fractionalization

in a Kondo lattice. As in conventional mean-field theories, the Gaussian order parameter

fluctuations about such a mean-field theory are finite in dimensions d � 2, allowing a stable

spontaneous order fractionalization [51, 52]. Thus in the two-channel Kondo lattice at half

filling, spontaneous OF means that the system behaves as a Kondo insulator in one channel,
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remaining metallic in the other. With this reasoning, symmetry-breaking phases of this type

characterized in dynamical mean-field theory calculations [32, 53–55] can be interpreted as

order-fractionalized phases.

Kondo Model 3 body state Composite Fermion Induced Order Asymmetry  OF

One Channel (~� · ~S)
↵�

 
�

V f
�

(Fermi Liquid) — —

(~� · ~⌘)
↵�

V
�

Odd ! pairing
 " #S

+ +H.c V"V# +H.c
[36, 56]

Two channel

Spin
V
�

f
↵

Channel FM
 †
�

(~� · ~S) 
�

0 V̄
�

V
�

0

(~� · ~S)
↵�

 
��

[34, 55]

V
�

f
↵

+�
�

↵̃f †
�↵

Composite pairing
 1(~� · ~S)�2 2 V1�2 � V2�1

[13, 37]

Quadrupolar

(~� · ~S)
��

0 
�

0
↵

V
↵

f
�

Hastatic Order  †
↵

~�(~� · ~S) 
�

V̄
↵

V
�

[33]

TABLE I: Showing the di↵erent patterns of fractionalization in single-channel and two-channel

Kondo systems, derived from both mean-field decouplings, as referenced, and the strong-coupling

limit of the corresponding impurity Kondo model H = H
I

+ �J . In the table on the third line,

~⌘ = (⌘1, ⌘2, ⌘3) denotes a vector of three emergent Majorana fermions that fractionalize the local

moment spin, ~S ⌘ � i

2~⌘ ⇥ ~⌘ [36]. On the fifth line ↵̃ denotes ↵̃ ⌘ sign↵.

In our NRG studies we have highlighted just one example of how broken channel symmetry

induces order fractionalization. By varying the asymmetry field  we can induce a variety

of di↵erent kinds of fractionalized order (Table I). In principle one could repeat an NRG

calculation for each of these cases; however we can determine the pattern of fractionalization

by using a fractionalized mean-field theory or by analyzing the structure of the extreme

strong-coupling asymmetry limit. A simple generalization is to the quadrupolar Kondo

model, where the roles of channel and spin are reversed. Here the fractionalized excitations

carry the channel index

⇥
(

~S · ~�) 
⇤
�↵

! V
↵

f
�

while the order parameter V
↵

is a spinor that

breaks time reversal symmetry, an example of the “hastatic” hidden order proposed for
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phases of URu2Si2 [33] and PrTi2Al20 [34]. The rich symmetry structure of the 2CK [57],

allows one to explore a wide class of symmetry breaking operators  , with many possible

fractionalization patterns. If one employs a Nambu formalism, writing

˜ 
��+ =  

�

and

˜ 
��� = sgn� †

���

, the conduction electron

˜ 
��⌧

now carries three indices, channel, spin and

isospin (�, �, ⌧). Adding a composite pair asymmetry term to the Kondo model induces

Andreev reflection o↵ the Kondo impurity, and the composite fermion is now a mixture

of particle and hole; this results in composite two-channel pairing [37], a form of order

hypothesized for the heavy fermion superconductor NpPd2Al5 [38]. We also note that by

adding a composite triplet pairing term to the Hamiltonian  =  " #S+
+ H.c or more

generally, by replacing the spin density operator  †~� of the conduction sea (at the origin)

by a combination of conduction spin and isospin operators

˜ †~� ˜ ! ˜ †
(~�+�~⌧) ˜ [58], we can

induce an odd-frequency paired state in which the local moment fractionalizes into Majorana

fermions [36, 59]. Such a state has been recently proposed as a candidate for the strange

insulating state in SmB6 [60].

We can also envisage spontaneous order fractionalization in broader contexts beyond

Kondo lattices; for example in the Hubbard model where the combination of spin and

fermion is now replaced by a three fermion bound-state. In this more general situation, the

OF will involve the fractionalization of a three-fermion bound-state into two components: a

bosonic “corona ” surrounding a “dark fermion” located at the center-of-mass. This process

has the e↵ect of partitioning the quantum numbers ⇤ = ({�}, {↵}) of three-body composite,

into two parts, the � variables reside exclusively in the bosonic corona, while the ↵ variables

reside in the dark fermion. The order fractionalization conjecture for this general case takes

the form � | | |

   
�
⇤
(x) = V �

↵↵

0(x)f
↵

0
(x). (8)

Here (   )⇤(x) corresponds to a combination of creation or annihilation operators with

center of mass x, that transform under fundamental representations of the ⇤. V �

↵↵

0(x) and

f
↵

(x) are the order parameter corona and the dark fermion respectively. In the simplest

cases, V �

↵�

= V ��
↵�

is diagonal, and the corona and dark fermion share a common U(1)

gauge symmetry. The general matrix structure of the order fractionalization allows for a

non-abelian partition of the quantum numbers, with an internal SU(N) gauge symmetry

associated with the quantum numbers ↵. This more general form is required to understand

the example of composite pairing shown in Table. I.
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The OFC also implies that the corresponding self-energy factorizes as follows

⌃⇤⇤0
(2, 1)

|2�1|!1�����! ¯V
�

(2)g(2� 1)V
�

0
(1). (9)

where g(2 � 1) is the one-particle propagator of the dark fermion. In a lattice, the dark

fermions will generically delocalize with dispersion !k, forming a Fermi surface k 2 {k⇤
F

}

where !k⇤
F

= 0 vanishes. In space time, the asymptotic Green’s function of the dark

Fermions,

g(~x, t) ⇠ �
↵↵

0
ei
~

k

⇤
F ·~x

x� v
F

(x̂)t
, (10)

where

~k⇤
F

(x̂) = k⇤
F

is the Fermi wavevector at the extremal point on the Fermi surface

where the group velocity ~v
F

= v
F

x̂ is parallel to ~x. This defines a kind of “light cone” on

which g is arbitrarily large. The factorization of the self-energy into a product of spinors

is the conjectured outcome of order fractionalization in a fermionic system, and constitutes

a generalization of the concept of o↵-diagonal long range order into the time domain. We

also note that the singularity ⌃
�,�

0
(!,k⇤

F

) ⇠ ¯V
�

V
�

0/(! � !k) in the self-energy at the dark

Fermi surface leading to zeroes in the electronic Green’s function G(!,k⇤
F

) = 0 [61, 62].

There is an interesting possible link with singularities in the electron self-energy observed

in cluster dynamical mean-field studies of the Hubbard model [63] and also proposed as a

phenomenological explanation of Fermi arcs in under-doped cuprate superconductors [64,

65].

Conventional and fractionalized order can be delineated in various ways. There are

a number of quantum materials, including NpPd5Al2, CeCoIn5, UBe13, PrV2Al20 and

PrTi2Al20 where spin or quadrupolar Kondo e↵ects coincide with phase transitions into

broken symmetry states. An important “fingerprint” of fractionalization is the appearance

of dark fermionic bound-states, that may be detected using spectroscopies such as angle

resolved photoemission (ARPES) or scanning tunneling microscopy (STM). For example

if in CeCoIn5 the Kondo e↵ect coincides with the development of superconductivity, then

STM should detect an expansion of the Fermi surface at the superconducting transition;

in neutral cases the thermal conductivity would be an ideal probe for this Fermi surface

change.

An intriguing question is whether the di↵erent topologies of fractionalized order can be

detected experimentally. For example in UBe13 and Pr (V,Ti)2Al20 where the channel index

14



is spin, it may be possible to externally manipulate the channel-symmetry breaking Kondo-

e↵ect: rotating the order spatially through 360

�
to create a ⇡ phase shift may be detected

in a channel interferometer; rotating the order in time using optical methods may lead to a

breathing Fermi surface which might be measured using a channel-selective conductivity.

We end by noting that despite the spin-statistics theorem, relativistic versions of order

fractionalization are possible since Lorentz invariance does not prohibit bosons that carry

half-integer isospin. A classic example is the Higgs boson, a spinor which carries half-integer

weak isospin and could conceivably emerge as a fractionalized order parameter of more

fundamental Fermi fields.

In conclusion we have presented a mechanism for the fractionalization of order param-

eters through the formation of fermionic poles in the self-energy; this enables long-time

factorization of the self-energy into products of order parameters transforming under the

fundamental representation of the symmetry group. We have provided crucial substantiat-

ing examples in the single and two-channel impurity Kondo models. These results have led

us to conjecture that such phenomena may appear spontaneously in a lattice as suggested

by several experimental, mean-field and computational results.
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I. SUPPLEMENTARY MATERIAL

This section contains additional details and proofs for key statements in the paper. Sec-

tion A contains details of the Numerical Renormalization Group (NRG) calculation. Section

B contains a derivation of the fermionic pole in the self-energy of the Kondo problem using

Fermi-liquid theory, in the single-channel and channel-asymmetric two-channel Kondo mod-

els. Section C contains a proof of the Berry phase accumulated by the ground state under
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an adiabatic time-evolution, establishing the spinorial character of the order parameter.

A. Details of the NRG calculations

NRG calculations were performed using the density-matrix NRG code [66] with a flat

density of states, which produces the imaginary part of the local Green’s functions (e.g.

G(z) = hh 
�

; †
�

ii
z

) at discrete frequencies determined by the Wilson discretization as follows

�G00
(! + i⌘) =

1

Z

X
n,m

|
⌦
m| †

�

|n
↵
|2⇡�(! + E

n

� E
m

)(e��Em
+ e��En

), (11)

where |mi and |ni are many-body eigenstates with energies E
m

and E
n

, respectively,

and Z =

P
n

e��En
is the partition function. Our methodology takes account of the

SU

charge

(2)⇥SU

spin

(2) and SU

spin

(2)⇥SU

charge1(2)⇥SU

charge2(2) symmetries of the one and

the two-channel models, respectively to simplify calculation of the matrix elements. The

calculations employed 750 multiplets and a Wilson parameter ⇤ = 1.8, with a Wilson chain

length L = 120. The full-density matrix calculation ensures that the discrete results (11)

satisfy the sum-rules enforced by the commutation relations. The code uses an interpolative

log-Gaussian broadening, with the Kernel defined as follows [66, 67]

K
int

(!,!
i

) =

1

b
p
⇡
e�[x(!)�x(!i)]2/b2

dx

d!
i

,

x(!) =
1

2

tanh(!/T
Q

) log[(!/T
Q

)

2
+ e�] (12)

where the ‘quantum temperature’ T
Q

is chosen to be 10

�15
and � ⇡ T

Q

for our zero tem-

perature calculations. We have taken the logarithmic broadening parameter b to be b = 0.6.

This leads to

�G00
(! + i⌘) =

1

Z

X
n,m

|
⌦
m| †

�

|n
↵
|2⇡K(!, E

m

� E
n

)(e��Em
+ e��En

). (13)

The normalization Z
d!K

int

(!,!
i

) = 1 (14)

ensures that the sum-rules are satisfied. Following the standard approach, the Hilbert trans-

form is applied to the broadened data to obtain both real and imaginary parts of the Green’s

function.

16



We compute the irreducible self-energy for the Kondo problem from the conduction elec-

tron Green’s function G(z). In principle, the self-energy can be calculated directly from the

relation

⌃(z) = g�1
(z)�G�1

(z) (15)

where g(z) is the bare conduction electron propagator in the absence of the impurity (J = 0).

However, at the Fermi energy G�1
(z) is singular and so this expression requires careful

regularization.

In practice, we found it easier to divide the calculation into two parts. First we calculated

the electron T-matrix T (z), defined by the relation

G(z) = g(z) + g(z)T (z)g(z) (16)

from which we obtain

T (z) =
G(z)� g(z)

g(z)2
. (17)

The regularized self- energy was then calculated from the T-matrix, using the relationship

⌃(z) = lim

✏!0

T (z)

1 + (1� ✏)g(z)T (z)
, g(z) = hh 

�

; †
�

ii
z

���
J=0

. (18)

This limiting procedure was used to ensure that the ⌃(z) has the correct analytical proper-

ties. A finite ✏ leads to some residual broadening of the peak. In our calculations, we used

✏ = 10

�8
.

B. Fermionic pole in the Kondo self energy: relationship to Fermi-liquid theory

We can gain analytic insight into our results using Fermi-liquid theory. From Fermi-

liquid theory [49, 68] we know that the phase shifted quasi-particles have a Fermi-liquid

interaction with a single scale: the Kondo temperature. This gives rise to a low energy

scattering T-matrix of the form

� ⇡⇢T (! + i⌘) = i� !

T 0
K

� i�
!2

T 02
K

+O(!3
), (19)

where T 0
K

is proportional to the weak-coupling Kondo temperature T
K

⇠ D
p
J⇢e�1/⇢J

.

Inserting this expression, together with a flat density of states g(! + i⌘) = �i⇡⇢ into (18),

the corresponding irreducible self-energy is then

⇡⇢⌃(! + i⌘) =
h

1

⇡⇢T (! + i⌘)
� i

i�1

=

T 0
K

! + i(� � 1)!2/T 0
K

+ i⌘
. (20)
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This result is plotted in Fig. 5. The background beneath the delta-function pole is thus

understood as a result of the !2
Fermi liquid scattering rate. The parameter � determines

FIG. 5: The irreducible self-energy extracted from Fermi-liquid theory. The background is a

result of the inelastic scattering of the composite quasiparticle at finite energy as shown in Eq.

(20).

the value of background o↵set �⇡⌃00
(! ! 0) = � � 1, and does not a↵ect any qualitative

features of the discussion. In order to recover our numerical results �⇡⌃00
(! ! 0) = 2, one

must set � = 3 here. This is a factor of two larger than the value of � derived in [49]. The

origin of this discrepancy is unclear to us at this point.

For the two-channel Kondo impurity model with channel symmetry, the T-matrix at

T = 0 is given by [49]

� ⇡⇢T (! + i⌘) = i/2 +O(

p
!) (21)

which is responsible for the �⇡⇢⌃00
(0 + i⌘) = 1 at the 2CK fixed point. In the presence

of channel asymmetry, the system flows to a local Fermi liquid fixed point with resonant

scattering in the strongest channel. The Fermi liquid temperature is given by [69]

T⇤ = T
K

2, 2 = 4

(⇢J1 � ⇢J2)2

(⇢J1 + ⇢J2)4
, (22)

in the scaling limit D ! 1 and ⇢J
i

! 0. The latter limit has to be taken such that 2

remains finite, so that T⇤/TK

remains finite. Our extracted T⇤ vs. ⇢�J is shown in the left
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inset of Fig. 3B and it agrees with this formula (shown as a broken line). At T = 0 and

|!| ⌧ T⇤ the self-energy in the two-channels are distinctively di↵erent. The self-energy of

the stronger channel contains a sharp pole on top of the Fermi liquid background, whereas

the weaker channel only contains a Fermi-liquid !2
contribution. The result can be fit with

the following formula:

� ⇡⇢⌃(! + i⌘) =

0@ �[(! + i⌘)/T ⇤
+ 2i!2/T 2

⇤ ]
�1

0

0 2i!2/T 2
⇤

1A , (23)

C. Berry phase calculation

In this section, we calculate the Berry phase associated with a slow time-dependent

change in the channel asymmetry of the two channel Kondo model. Since the Berry phase

is a topological quantity, it is independent of coupling strength, and we can carry out this

calculation in the strong-coupling limit of the model, given by

H[n̂] = H
I

+�Jn̂ · ~ 

where H
I

= J
P

�

 †
�

~� 
�

· ~S is the symmetric Kondo interaction and

~ =  †
�

~↵
��

0
(~� · ~S) 

�

0 (24)

is the “channel magnetization”, where ~↵ are a set of Pauli matrices in channel space and

~n(t) = (sin ✓
t

cos�
t

, sin ✓
t

sin�
t

, cos ✓
t

). (25)

is the time-dependent asymmetry field. We have replaced �J ! �J to denote a large finite

value of the channel asymmetry. Provided �J and J are much larger than the electron

band-width, we can ignore everything except the one-site Hamiltonian. At �J = 0, the

ground-state is an over-screened local moment with ground-state energy E = �2J . Beyond a

critical asymmetry, a channel asymmetric singlet state with energy �3
2(J+�J) is stabilized.

This requires that �J > J/3.

We can parameterize the asymmetry field using a CP

1
representation n̂ = z̄~↵z, where

z[n̂] =

0@ z1

z2

1A
=

0@ cos ✓/2

sin ✓/2ei�

1A . (26)
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Then the ground-state for a particular fixed value of n̂ can be written as

|zi =
X
�=1,2

|�
s

i z
�

,

|�
s

i = 1p
2

(|� ",+i � |� #,*i) (27)

Here the *,+ refer to the spin state of the local moment and |� "i, |� #i refer to the spin state

of the electron in channel �. At the site of the moment, the weaker channel is either empty

or doubly occupied, so that its spin is shut down. This charge state in the weaker channel

↵ |0
�̄

i+ � |2
�̄

i forms an isospin variable in the charge sector which, since it commutes with

the Hamiltonian, is not relevant for this discussion and we do not include it in |�
s

i.

When evolved adiabatically, the spin singlet follows the direction of the channel asym-

metry. If the applied field n̂(t = T ) = n̂(t = 0) returns to its original direction, the state

returns to its original ground-state, up to a finite phase. The state at time t can be written

as

| (t)i = e�i↵(t) |z(t)i (28)

where

↵(t) =

Z
t

0

dt0E(t0) + �(t). (29)

Here the first term is the Schrödinger phase accumulation associated with the energy, which

in our case is constant E(t0) = E. The second term �(t) is the Berry phase. Inserting this

into the time-dependent Schroedinger equation

i~@
t

| (t)i = H[~n(t)] | (t)i (30)

we find

@
t

|z(t)i � i�̇ |z(t)i = 0 (31)

Multiplying from left by hz̄| we find

�̇ = �i hz̄|@
t

|zi (32)

From Eq. (26)

� i hz̄|@
t

|zi = �iz̄(t)@
t

z(t) = ˙�
1� cos ✓

2

=

1

2

˙⌦ (33)

where

˙⌦ is the rate at which the vector n̂ sweeps out solid angle in channel space. The total

accumulated Berry phase associated with a closed path in channel space is then

� =

1

2

Z
dt ˙⌦ =

1

2

⌦ (34)
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where ⌦ is the total solid angle subtended by the path. This has the general form of � = ⌦S.

The fact that we find the pre-factor S = 1/2 shows the spinorial character of the ground

state and the underlying order parameter.
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