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The observation of Ising quasiparticles is a signatory feature of the hidden order
phase of URu2Si2. In this paper, we discuss its nature and the strong con-
straints it places on current theories of the hidden order. In the hastatic theory,
such anisotropic quasiparticles are naturally described by resonant scattering
between half-integer spin conduction electrons and integer-spin Ising moments.
The hybridization that mixes states of different Kramers parity is spinorial; its role
as a symmetry-breaking order parameter is consistent with optical and tunnelling
probes that indicate its sudden development at the hidden order transition. We
discuss the microscopic origin of hastatic order, identifying it as a fractionalization
of three body bound-states into integer spin fermions and half-integer spin bosons.
After reviewing key features of hastatic order and their broader implications, we
discuss our predictions for experiment and recent measurements. We end with
challenges both for hastatic order and more generally for any theory of the hidden
order state in URu2Si2.

Keywords: Ising models; heavy-fermion metals; order; intermetallic compounds;
Kondo effect

1. Introduction

We begin by noting that two key developments in heavy fermion physics that relate to the
hidden order problem in URu2Si2 were both published in Philosophical Magazine. Forty
years ago, Neville Mott [1] pointed out that the development of coherence in heavy electron
systems should be understood as a hybridization of f-electrons connected with the Kondo
effect. Twenty-five years later, Okhuni et al. [2] discovered that in the hidden order phase, the
mobile carriers are Ising quasiparticles. This paper discusses how these two phenomena –
the development of an emergent hybridization and the formation of pure Ising quasiparticles
– are inextricably linked with the hidden order in URu2Si2.

There is still no consensus on the nature of the “hidden order” phase in URu2Si2
despite several decades of active theoretical and experimental research [3–5]. At TH O =
17.5 K, there are sharp features in thermodynamic quantities and a sizable ordering entropy
(S > 1

3 R ln 2); however, there is no observed charge order, and spin ordering in the
form of antiferromagnetism occurs only at finite pressures [3–8]. At first sight, it seems
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3804 P. Chandra et al.

straightforward to link hidden order to the formation of a “heavy density wave” within a
pre-formed heavy electron fluid. Since there is no observed magnetic moment or charge
density observed in the hidden order (HO) phase, such a density wave must necessarily
involve a higher order multipole of the charge or spin degrees of freedom and various
theories of this sort have indeed been advanced [9–31]. In each of these scenarios, the
heavy electrons develop coherence via a crossover at higher temperatures, and the essential
hidden order is then a multipolar charge or spin density wave. However, such multipolar
order cannot naturally account for the emergence of heavy Ising quasiparticles, a signature
feature of URu2Si2 that has been probed by two distinct experiments [2,32–34].The essential
point here is that conventional quasiparticles have half-integer spin and are magnetically
isotropic; they thus lack the essential Ising protection required by observation. In addition,
optical and tunnelling probes [35–39] indicate that the hybridization in URu2Si2 develops
abruptly at TH O and is thus associated with a global broken symmetry [22,26,40,41]; this
is to be contrasted with the usual situation in heavy fermion materials where it is simply a
crossover.

Here, we argue that the elusive nature of the “hidden order” in URu2Si2 is not due to
its intrinsic complexity but rather that it results from a fundamentally new type of order
parameter. In the “hastatic” proposal, [40,41] the observation of heavy Ising quasiparticles
[2,32–34] suggests resonant scattering between half-integer spin electrons and integer spin
local moments, and the development of an spinorial order parameter. It is perhaps useful
to contrast the various staggered multipolar scenarios for the hidden order with the hastatic
one proposed here. In the former, mobile f-electrons Bragg diffract off a multipolar density
wave (see Figure 1(a)), whereas in the latter, the multipole contains an internal structure,
associated with the resonant scattering into an integer spin f-state (Figure 1(b)). Hastatic
order can thus be loosely regarded as the “square root” of a multipole order parameter; in
other words, we argue that the origin of hidden order is not a complex multipole but instead
is an elementary “half-tu-pole” that mediates hybridization between an Ising non-Kramers
doublet and the mobile conduction electrons.

Figure 1. (colour online) Schematic contrasting the multipolar and spinorial theories of Hidden order.
(a) in a multipolar scenario, the heavy electrons Bragg diffract off a staggered spin or charge multipole
(b) in the hastatic scenario, the development of a spinor hybridization opens up resonant scattering
with an integer spin state of the ion. The multipole is generated as a consequence of two spinorial
scattering events. In this way, the Hastatic spinor order parameter can be loosely regarded as the
square root of a multipole.
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Because the observed magnetic anisotropy of the heavy quasiparticles is central to our
approach, we will begin by discussing these experiments [2,32–34] in detail. Next we will
review “highlights” of the hastatic proposals, [40,41] and the broader implications of an
order parameter that transforms under double-group (S = 1

2 ) representations. Experimental
predictions and recent measurements will be discussed next. We will end with challenges
both for hastatic order and more generally for any theory of hidden order in URu2Si2.

2. Ising quasiparticles

Remarkably Fermi surface magnetization experiments in the HO state of URu2Si2 indicate
near-perfect Ising anisotropy in the g-factor (g(θ)) of the quasiparticles [2,33]. Measure-
ments of the bulk susceptibility of URu2Si2 do show a strong Ising anisotropy along the
c-axis (see Figure 2) [3–5,10]; this feature persists in dilute samples (UxTh1−x Ru2Si2 with
x ∼ 0.07) suggesting that it is a single-ion effect [42]. However, the Ising anisotropy of the
bulk susceptibility is about a factor of five, whereas the anisotropy in the Pauli susceptibility
of the heavy Fermi surface in the hidden order phase is in excess of 900.

According to Onsager’s treatment of a Fermi surface, the Bohr-Sommerfeld quantization
of quasiparticle orbits leads to a quantization of the area in k-space according to

∮
dkx dky =

A(εn) = (n + γ )
(
(2π)2eB

h

)
where γ is a constant Berry phase term and εn is the Kinetic

energy of the Bloch waves (i.e. energy without Zeeman splitting) [43]. This condition leads
to quantized kinetic energy εn = �ωc(n + γ ). When the Zeeman spin splitting is included,
one finds that the quantized energies are given by [44,45]

En± =
εn︷ ︸︸ ︷

(n + γ )�ωc ∓1

2
gμB B, (1)

where ωc = eB
m∗ is the cyclotron frequency,

m∗ = �
2

2π

∂A

∂ε
, (2)

Figure 2. (colour online) (a) Body-centred tetragonal structure of URu2Si2 (b) Measured anisotropic
temperature-dependent bulk magnetic susceptibility [3] of URu2Si2.
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3806 P. Chandra et al.

is the effective mass and

g =
∮ dk⊥

vF
g(k)∮ dk⊥
vF

(3)

is the average of the g-factor over the orbit. Notice that the Onsager quantization condition
means that the kinetic energies of the up and down Fermi surfaces are identical with the
Zeeman splitting superimposed.

The discrete summation over these quantized energy levels gives rise to an oscillatory
component in the magnetization given by [43]

M ∝
∑
±

sin

(
2πμ±
�ωc

)
=
∑
σ

sin

[
2πμ

�ωc
± 2π

(
g
2μB B

�ωc

)]
, (4)

where μσ = μ+ σ
2 gμB B is the Zeeman-split chemical potential. Summing the two terms

together

M ∝ 2 sin

(
2πμ

�ωc

)
cos δ (5)

where

δ = 2π

(
gμB B

�ωc

)
= πg

(
m∗

m

)
(6)

is the phase shift induced by the Zeeman splitting. Notice that δ is field independent, so
it affects the overall amplitude without changing the dHvA frequencies. In particular in
systems where the g-factor is a strong function of angle, namely in orbits where the Zeeman
splitting is a half-integer multiple of the cyclotron energy, the up and down Fermi surfaces
destructively interfere to produce a “spin zero”; here the dHvA signal identically vanishes
when

δ = 2π
Zeeman splitting

cyclotron energy
= πg(θn)

m∗

me
= π

(
n + 1

2

)
(7)

where n is a positive integer and θn is the (indexed) angle with respect to the c-axis. The
observation of spin zeroes in dHvA thus provides a way of detecting the presence of a
spin-degenerate Fermi surface and, provided the indexing can be done reliably, enables a
direct measurement of the dependence of the g-factor g(θ) on the orientation of the orbit.

Sixteen such spin zeroes are observed (cf. Figure 3) in the HO state of URS, [2,33]
in contrast to the one per band seen in the cuprates [46]. At the most elementary level,
these results tell us that the heavy α pocket of the HO state involves quasiparticles that
carry spin, with a two-fold degeneracy at each point in k-space. It is well known that such
degeneracies survive strong spin-orbit coupling if there is inversion symmetry combined
with time-reversal invariance or a combination of time-reversal and translational invariance
as in a commensurate spin density wave. Moreover, we can place stringent bounds on the
level of perfection of both the degeneracy and the Ising anisotropy.

The Zeeman splitting scales from more than 15 times the cyclotron frequency along the
c-axis to less than half a cyclotron frequency along the basal plane. This puts a rigorous
bound on the g-factor anisotropy

g⊥
gc

<
1

30
(8)
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Philosophical Magazine 3807

Figure 3. (colour online) Anisotropy of the g-factor of quasiparticles in URu2Si2 (a) plotted in polar
coordinates derived from spin zeroes in quantum oscillation measurements and the anisotropy of the
upper critical field (b) versus sine of the angle out of the basal plane, showing that the data requires
a Pauli susceptibility anisotropy in excess of 900 [2,32–34].

where g⊥ = g(θn ∼ π
2 ) and gc = (θn = 0), indicating that the splitting energy between

the orbits depends only on the c-axis component of the applied magnetic field (Bc), namely
that

g(θn) = g∗ cos θn (9)

where g∗ = 2.6 in contrast to the isotropic g = 2 for free electrons [2,33]. We note that these
dHvA oscillations were generated by the heavy α pockets of URu2Si2, and thus could be
argued to come from a select region of its Fermi surface. However, this magnetic anisotropy
is also observed in the angular dependence of the upper critical field Hc2(θ) that is sensitive
to the entire heavy fermion pair condensate [32,34]. The g(θ) derived from Hc2(θ)matches
that from the dHvA measurements very well for angles near the c-axis where Hc2 is Pauli-
limited [34]. However, the anisotropic bound on the g-factor is less stringent than that found
from the quantum oscillation experiments, since the in-plane Hc2 is smaller than expected,
probably due to orbital contributions. Returning to the bounds placed by the spin-zeroes
measurements, we note that since the Pauli susceptibility χ P scales with the square of the
g-factor, these resolution-limited measurements of gc

g⊥ suggest that

χ P(θ) = χ P∗ cos2 θ
χ P

c

χ P⊥
> 900. (10)

Such a large anisotropy should be directly observable in electron spin resonance mea-
surements that probe the Pauli susceptibility directly in contrast to bulk susceptibility
measurements where Van Vleck contributions are also present.

To our knowledge, this is the largest number of spin zeroes that have ever been observed
in any material; furthermore, the Ising nature of the quasiparticles in the hidden order state is
a dramatic departure from the usual magnetic isotropy of free conduction electrons.Anatural
explanation for the quasiparticle Ising anisotropy is that the Ising character of the uranium
ions has been transferred to the quasiparticles via hybridization, and this is a key element
of the hastatic proposal [40,41]. The giant anisotropy in g⊥

gc
, places a strong constraint on

the energy-splitting� between the two Ising states. This quantity must be smaller than half
a cyclotron frequency, or

� <
1

2
�ωc. (11)

D
ow

nl
oa

de
d 

by
 [

R
ut

ge
rs

 U
ni

ve
rs

ity
] 

at
 0

8:
11

 2
4 

D
ec

em
be

r 
20

14
 



3808 P. Chandra et al.

In the dHvA measurements, the effective mass on the α orbits is m∗ = 13me, and the
measurements were made at B = 13T , giving

�

kB

<˜
(

�eB

2(m ∗ /me)me

)
= 0.67K. (12)

Additional support for a very small � comes from the dilute limit, [42] UxTh1−x Ru2Si2
(x = .07), where the Curie-like single-ion behaviour crosses over to a critical logarithmic
temperature dependence below 10 K, log T/TK , where TK ≈ 10 K. This physics has been
attributed to two-channel Kondo criticality, again requiring a splitting � � 10 K.

Constrained by the anisotropic bulk spin susceptibility and the quantum spin zeroes, we
therefore require the U ion to be an Ising doublet with the form

|
±〉 =
∑

n

an| ± (Jz − 4n)〉, (13)

where the addition and subtraction of angular momentum in units of 4� is a consequence
of the four-fold symmetry of the URu2Si2 tetragonal crystal. However, the presence of a
perfect Ising anisotropy requires an Ising selection rule

〈
±|J±|
∓〉 = 0 (14)

that, in the absence of fine-tuning of the coefficients an , leads to the condition that −(Jz +
4n′) �= (Jz + 4n) ± 1, or Jz �= 2(n − n′) ± 1

2 , requiring Jz ∈ Z must be an integer. For
any generic half-integer Jz , corresponding to a Kramers doublet, the selection rule is absent
so that crystal fields mix the Jz states leading to isotropic magnetic properties. Within the
five-parameter crystal-field Hamiltonian of URu2Si2, a simulated annealing search yielded
just one finely tuned 5 f 3 (Kramers) state with nearly zero transverse moment, but the fit
to single-ion bulk properties was poor [47]. In the tetragonal crystalline environment of
URu2Si2, such Ising anisotropy is most natural in a 5 f 2 (J = 4) configuration of the
uranium ion, but doublets with integer J in general do not enjoy the symmetry protection of
their half-integer (Kramers) counterparts. However in URu2Si2, a combination of tetragonal
and time-reversal symmetries protects a non-Kramers doublet

|
5± >= α|Jz = ±3 > +β|Jz = ∓1 > (15)

that is quadrupolar in the basal plane and magnetic along the c-axis, and it has been proposed
as the origin of the magnetic anisotropy in both the dilute and the dense URu2Si2 [40–42];
this can be checked with a direct benchtop test [47]. In the hastatic proposal, the Ising
anisotropy of the U 5 f 2 ions is transferred to the quasiparticles via hybridization between
integer J local moments and half-integer J conduction electrons, and this mixing of Kramers
parity (K = (−1)2J ) has important symmetry implications [40,41].

Conventionally in heavy fermion materials, hybridization involves valence fluctuations
between a ground-state Kramers doublet and an excited singlet (cf. Figure 4); in this case,
hybridization is a scalar that develops via a crossover leading to mobile heavy quasiparticles.
However, if the ground-state is a non-Kramers doublet, the Kondo effect will involve an
excited Kramers doublet (cf. Figure 4). The quasiparticle hybridization now carries a global
spin quantum number and has two distinct amplitudes that form a spinor defining the hastatic
order parameter

� =
(
ψ↑
ψ↓

)
. (16)
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Philosophical Magazine 3809

Figure 4. (colour online) Schematic of (a) conventional (scalar) vs. (b) spinorial hybridization where
the hybridization is (a) a crossover and (b) breaks spin-rotational and time-reversal symmetries and
thus develops discontinuously as a phase transition.

The onset of hybridization must break spin rotational invariance in addition to single- and
double time-reversal invariances via a phase transition; we note that optical, spectroscopic
and tunnelling probes [35–39] in URu2Si2 indicate the hybridization occurs abruptly at
the hidden order transition in contrast to the crossover behaviour observed in other heavy
fermion systems (cf. Figure 4).

3. Hastatic order “Highlights”

We next summarize the main points of the hastatic proposal, [40,41] noting that the interested
reader can find further discussion with more details elsewhere. Hastatic order captures
the key features of the observed pressure-induced first-order phase transition in URu2Si2
between the hidden order and the Ising antiferromagnetic (AFM) phases [7,48–51]. The most
general Landau functional for the free energy density of a hastatic state with a spinorial
order parameter � as a function of pressure and temperature is

f [�] = α(Tc − T )|�|2 + β|�|4 − γ (�†σz�)
2 (17)

and γ = δ(P − Pc) where P is pressure and the term γ (�†σz�)
2 determines whether the

direction of the spinor, either along the c-axis or in the basal plane (cf. Figure 5(a)).
Experimentally the TAF M (P) line is almost vertical, indicating by the Clausius–

Clapeyron relation that there is negligible change in entropy between the HO and the
AFM states. Indeed these two phases share a number of key features, including common
Fermi surface pockets; this has prompted the proposal that they are linked by “adiabatic
continuity”, associated by a notational rotation in the space of internal parameters [20,48].
This is easily accommodated with a spinor order parameter; for the AFM phase (P > Pc),
there is a large staggered Ising f-moment with

�A ∝
(

1
0

)
, �B ∝

(
0
1

)
(18)
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3810 P. Chandra et al.

Figure 5. (colour online) (a) The hastatic (hybridization) spinor disordered (at high temperatures) and
ordered along the c-axis (Antiferromagnet) and in the basal plane (hidden order) (b) Temperature-
Pressure Phase Diagram and the pressure-dependence of the gap to longitudinal predicted by the
hastatic theory.

corresponding to time-reversed spin configurations on alternating layers A and B. For the
HO state (P < Pc), the spinor points in the basal plane

�A ∝ 1√
2

(
e−iφ/2

eiφ/2

)
, �B ∝ 1√

2

(−e−iφ/2

eiφ/2

)
(19)

and there is no Ising f-moment, consistent with experiment, but Ising fluctuations do exist.
From this perspective, the transition from HO to AFM corresponds to a spin-flop of the
two-component hybridization order parameter from the basal plane to the c-axis, and the
resulting temperature–pressure phase diagram is displayed in Figure 5. Generalizing this
Landau theory to study soft modes of the hastatic order, we find that even though the
transition at P = Pc is first order, the gap for longitudinal spin fluctuations decreases
continuously as

� ∝ |�0|
√

Pc − P.

Since d Pc/dTc is finite, close to the transition,
√

Pc − P ≈ √
d Pc/dTc(T − Tc), and

� ∝ √
T − Tc. Inelastic neutron scattering experiments can measure this gap (at the

commensurate Q) as function of temperature at a fixed pressure where there is a finite-
temperature first-order transition, but to our knowledge a detailed study of this gap behaviour
has not yet been performed. The iron-doped compound, URu2−x Fex Si2 can provide an
attractive alternative to hydrostatic pressure, as iron doping acts as uniform chemical
pressure and tunes the hidden order state into the antiferromagnet [51]. The Landau theory
can also be generalized to include coupling to an applied magnetic field B, predominantly
to Bz = B cos θ due to the Ising nature of the non-Kramers doublet; this then leads to an
explanation of the observed large c-axis non-linear susceptibility [10,52] anomaly (�χ3)
in URu2Si2, and a prediction of a large �χ3 anisotropy, �χ3 ∝ cos4 θ where θ is the
angle from the c-axis and the coupling coefficient must be determined from a microscopic
approach [40,53].

We use a two-channel Anderson lattice model to link hastatic order to the valence
fluctuation physics of non-Kramers doublets in URu2Si2. The 5 f 2 Ising 
5 ground-state
configuration [42] fluctuates to an excited 5 f 3 or 5 f 1 state via valence fluctuations. The
lowest lying excited state is most likely the 5 f 3 (J = 9/2) state, but for simplicity we
take it to be the 5 f 1 state, as the Kramers doublets have the same symmetry, and assume
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Philosophical Magazine 3811

that fluctuations to the 5 f 3 are suppressed; in this sense, we take an infinite-U two-channel
Anderson model. 
+

7 is taken to be the lowest energy doublet of the 5 f 1 state, and then the
form of the valence fluctuation Hamiltonian is determined by the orbital structure of the

5 doublet. Valence fluctuations occur in two orthogonal conduction electron channels, 
−

7
and 
6, and we find

HV F ( j) = V6c†

6±( j)|
+

7 ±〉〈
5 ± |
+ V7c†


7∓( j)|
+
7 ∓〉〈
5 ± | + H.c.. (20)

where ± denotes the “up” and “down” states of the coupled Kramers and non-Kramers
doublets. The field c†


σ ( j) = ∑
k

[
�

†

(k)

]
στ

c†
kτ e−ik · R j creates a conduction electron at

uranium site j with spin σ , in a Wannier orbital with symmetry 
 ∈ {6, 7}, while V6 and
V7 are the corresponding hybridization strengths. The full model is then written

H =
∑
kσ

εkc†
kσ ckσ +

∑
j

[HV F ( j)+ Ha( j)] (21)

where Ha( j) = �E
∑

± |
7±, j〉〈
7±, j | is the atomic Hamiltonian.
Hastatic order is revealed by factorizing the Hubbard operators

Xσα = |
+
7 σ 〉〈
5α| = �̂†

σ χα. (22)

Here |
5α〉 = χ
†
α |�〉 is the non-Kramers doublet, represented by the pseudo-fermions χ†

α ,
while �̂†

σ are slave bosons [54] representing the excited f 1 doublet |
+
7 σ 〉 = �̂

†
σ |�〉.

Hastatic order is the condensation of this bosonic spinor (cf. Figure 6)

�†
σ χα → 〈�̂†

σ 〉χα. (23)

This may be viewed as a symmetry-breaking Gutzwiller projection. The resulting quadratic
Hamiltonian involves a symmetry-breaking hybridization between the conduction electrons
and the pseudofermions. Because experimentally the HO and the AFM share a single com-
mensurate wavevector [49,50] Q = (0, 0, 2π

c ), we use this wavevector in the description

of the HO state where 〈�±〉 = |�| exp

[
± i( �Q· �R j +φ)

2

]
, where the internal angle φ rotates

the hastatic spinor in the basal plane. Exploiting the gauge symmetries of the problem, we

Figure 6. (colour online) The conduction electron self-energy �c. Hybridization with spinorial
order parameter 〈�σ 〉 permits the development of a 
5 Ising resonance inside the conduction sea,
represented by the above Feynman diagram.
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3812 P. Chandra et al.

Figure 7. (colour online) Consistency calculations from the hastatic theory indicating good agreement
with experiment for (a) the anisotropic g-factor of the quasiparticles (b) the anisotropic susceptibility
χxy and the (c) entropy associated with the hidden order transition.

can simplify the valence-fluctuation Hamiltonian to read

HV F =
∑

k

c†
kV6(k)χk + c†

kV7(k)χk+Q + h.c. (24)

where the hybridization form factors are V7(k) = V7�7
†(k)σ1 and V6(k) = V6�6

†(k) and
there is uniform (
6) and staggered (
−

7 ) hybridization in the two channels.
This mean-field hastatic model can be used to calculate observable quantities, both

to check consistency with known measurements and also to make predictions for future
experiment. The full anisotropic g-factor is a combination of f -electron and conduction
electron contributions and the result for the Fermi-surface averaged g-factor as a function of
field-angle to the c-axis is displayed in Figure 3, demonstrating good consistency with pre-
vious experiment. Magnetometry measurements indicate the development of an anisotropic
basal-plane spin susceptibility, χxy at the HO transition, [55] and this result is interpreted
as resonant scattering off the Ising U moments and calculated χxy within our model; the
result compares well with experiment as displayed in Figure 7. The development of hastatic
order in the lattice at the HO transition liberates a large entropy [56] of condensation,
S
N ∼ 1

2 kB ln 2 a natural consequence of a Majorana zero-mode in two-channel Anderson
impurity physics.

Having established consistency, we now discuss the resulting predictions. The gap to
longitudinal spin fluctuations in the hastatic state, and the highly anisotropic non-linear
susceptibility anomaly has been discussed earlier (Figure 8a). The detailed microscopic
model can be used to determine the magnitude of this quantity. Within the hastatic theory,
there is time-reversal breaking in both the HO and the AFM phases and there must be
some physical manifestation of this phenomenon in the HO state. Below TH O , this theory
predicts a small conduction electron and f-electron moment in the basal plane; this moment
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Figure 8. (colour online) Predictions from the hastatic theory for the (a) anisotropy of the χ3 anomaly
and the (b) energy-dependent resonant nematicity.

is distinct from the extrinsic, inhomogeneous c-axis moment found in all samples, and the
smallness of the transverse moment, O(TH O/D) is guaranteed by its Kondo origin. This
prediction will be discussed further when we review recent experiment. The hastatic theory
also predicts a hybridization gap that breaks tetragonal symmetry below TH O . The resonant
scattering via this hybridization leads to a resonant nematicity in the local density of states
that is predicted to be a maximum at energies corresponding to the Kondo resonance: this
signal should be observable in STM and ARPES measurements (Figure 8b).

4. Can Landau order parameters fractionalize?

A broader implication of hastatic order is the possibility of a new type of Landau order
parameter, one that transforms under double-group (half-integer spin) group representations.
Conventionally Landau theory in electronic systems is based on the formation and conden-
sation of two-body bound-states, described by a Wick contraction of two electron field
operators. The resulting order parameter carries an integer spin. For example in magnetism,
the development of a magnetic order parameter �M(x) is given by the contraction

| |
ψ†
α(x)ψβ(x)= �σαβ · �M(x) (25)

By contrast, s-wave superconductivity is based on the formation of spinless bosons given
by the contraction

| |
ψ↑(1)ψ↓(2)= −F(1 − 2), (26)

where F(1 − 2) = −〈Tψ↑(1)ψ↓(2)〉 is the anomalous Gor’kov Greens function which
breaks the gauge system of the underlying system (Figure 9a). The take-home message from
conventional two-body condensation is that when the two-body bound-state wavefunction
carries a quantum number (e.g. charge or spin), a symmetry is broken. However under this
scheme, all order parameters are bosons that carry integer spin.

Hastatic order carries half-integer spin and cannot develop via this mechanism. We are
then led to the question of whether it is possible for Landau order parameters to transform
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under half-integer representations of the spin rotation group. At first sight, this is impossible
as all order parameters are necessarily bosonic, and bosons carry integer spin. However,
the connection between spin and statistics is strictly a relativistic idea that depends on the
full Poincare invariance of the vacuum. This invariance is lost in non-relativistic condensed
matter systems suggesting the possibility of order parameters with half-integer spin that
transform under double-group representations of the rotation group. Spinor order parameters
involving “internal” quantum numbers are well known in the context of two-component
Bose-Einstein condensates. The Higgs field of electroweak theory is also a two-component
spinor. However in neither case does the spinor transform under the physical rotation group.
Moreover it is not immediately obvious how such bound-states emerge within fermionic
systems.

In the mean-field formulation of hastatic order, [40] a spin-1/2 order parameter develops
as a consequence of a factorization of a Hubbard operator that connect the Kramers and
non-Kramers states; it is a tensor operator that corresponds to the three-body combination

Xασ (R) ≡ | f 2α〉〈 f 1σ | = �abc
ασ (R; 1, 2, 3)ψ†

a (1)ψ
†
b (2)ψc(3), (27)

where we have used the short-hand notation 1 ≡ R1 etc. and

�abc
ασ (R; 1, 2, 3) = 〈R1, a; R2, b|X̂ασ (R)|R3, c〉 (28)

defines the overlap between the Hubbard operators and the bare electron states. In a simple
model, this three-body wavefunction is local, �abc

ασ (R; 1, 2, 3) = �abc
ασ δ(R − 1)δ(R − 2)δ

(R − 3). The factorization of the Hubbard operator into a spin-1 fermion and a spin-1/2
boson

Xασ (R) → χ†
α(R) 〈�σ (R)〉 , (29)

then represents a “fractionalization” of the three-body operator. Written in terms of the
microscopic electron fields, this becomes

�abc
ασ (R; 1, 2, 3)

| | |
ψ

†
a (1)ψ

†
b (2)ψc(3) = χ†

α(R)
〈
�σ (R)

〉
.

(30)

This expression can be inverted to give the three-body contraction

| | |
ψ

†
a (1)ψ

†
b (2)ψc(3) =

∑
R

Gασ
abc(1, 2, 3; R)χ†

α(R)
〈
�σ (R)

〉
,

(31)

where Gσα
abc(1, 2, 3; R) = [�abc

σα (R; 1, 2, 3)]∗ (Figure 9b). The asymmetric decomposition
of a three-body Fermion state into a binary combination of boson and fermion is a fraction-
alization process. If the boson in binary carries a quantum number, when it condenses we
have the phenomenon of “order parameter fractionalization”.

Fractionalization is well established for excitations of low-dimensional systems, such
the one-dimensional Heisenberg spin chain and the fractional quantum Hall effect, [57–60]
however order parameter fractionalization is a new concept. The hastatic ordering process
involves the order parameter fractionalization into binary combination of a condensed half-
integer spin boson and an integer spin fermion. Unlike pair or exciton condensation, the
order parameters formed by this mechanism transform under double group representations
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Figure 9. (colour online) Schematic Feymann diagrams indicating (a) two-body (b) and three-body
electronic bound-states where in the latter case spin indices have been suppressed for pedagogical
simplicity.

of the underlying symmetry groups, and thus represent a fundamentally new class of broken
symmetries. We look forward to investigating this “order parameter fractionalization” well
beyond the realm of URu2Si2. The proposed three-body bound-state has a non-local order
parameter, and it may be possible to identify a dual theory with a local order parameter that
breaks a global symmetry.

5. Discussion of recent experiments ... with specific requests

Let us now return to the situation in URu2Si2. We mentioned earlier that hastatic order
leads to a prediction of a basal-plane moment of order TK /D, [40,41] where TK and D
are the Kondo temperature and band-width, respectively. The transverse moment in our
mean-field treatment includes both conduction and f-electron contributions which point in
perpendicular directions. The ratio TK /D is very sensitive to the degree of mixed valence
of the 5 f 2 state. Our original calculation assumed a 20% mixed valence, leading to a basal
plane moment of order 0.01μB .

Past experiments on URu2Si2 had exhaustively demonstrated that there is no longitu-
dinal moment along the c-axis in the hidden order phase. However, these earlier neutron
measurements had chosen a choice of momentum transfer Q in the basal plane, where
they are maximally sensitive to c-axes moments, but unable to filter out a small transverse
moment. Recent high-resolution neutron experiments [61–63] with momentum transfer
along the c-axis designed to detect the predicted transverse moment have however failed to
observe a transverse moment of this magnitude, and have placed a bound μ⊥ < 0.0011μB

on the ordered transverse moment of the uranium ions. Paradoxically various other probes
including X-rays, μ-spin resonance and NMR [64–67] have detected the presence of static
basal moments on the order of 0.005μB that would be consistent with a more integral valent
scenario for the U ions.

These remaining ambiguities suggest that we need to reconsider the calculation of the
transverse moment and understand why it is so small if not absent. There are a number of
interesting possibilities:
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3816 P. Chandra et al.

• Fluctuations. The hastatic theory, in its current version, ignores fluctuations of the
spinor order that will reduce the transverse moment. Gaussian fluctuations of the
corresponding Schwinger boson field are needed to describe the development of
the incoherent Fermi liquid observed to develop at T > TH O in optical, tunnelling
and thermodynamic measurements [36–38,68].

• Uranium Valence.As mentioned already, the predicted transverse moment is sensitive
to the 5f valence, and would be much reduced by a vicinity to integral valence.
Moreover, it should be proportional only to the change in valence between TH O

and the measurement temperature, which will be significantly smaller than the high-
temperature mixed valency. It would be very helpful to have low temperature probes
of the 5f-valence.

• Domain Size. The X-ray, [64] muon, [65] torque magnetometry [55] and NMR
measurements [66,67] that indicate either a static moment or broken tetragonal
symmetry are all carried out on small samples, whereas the neutron measurements
involve large ones [61–63]. The discrepancy between the two classes of measurement
may indicate the formation of small hidden order domains. Such domain structure
might be the result of random pinning [69] of the transverse moment by defects
of random strain fields. The situation in URu2Si2 is somewhat analogous to that in
Sr2RuO4, where there is evidence for broken time-reversal symmetry breaking with
a measured Kerr effect and μSR to support chiral p-wave superconductivity, but no
surface currents have yet been observed [70]. Domains are an issue in this system
too.

• Continuous versus discrete order. The current mean-field theory has the transverse
hastatic vector �† �σ� pointing in one of four possible directions at each site, corre-
sponding to a four-state clock model. The tunnelling barrier between these configu-
rations is very small, leaving open the possibility that at long distances the residual
physics is that of an xy order parameter. Such xy order would then give rise to a
kind of spin-superfluid, in which the persistent spin currents avoid the formation of
a well-defined static staggered moment.

There are a number of important measurements that would help to resolve some of the
current uncertainties and test some of the outstanding predictions:

(1) Giant Anisotropy in �χ3 ∝ cos4 θ . This measurement is important to confirm that
that the Ising quasiparticles are associated with the development of the hidden order.

(2) dHvA on all the heavy Fermi surface pockets. We expect that the heavy quasi-
particles on the α β and γ orbits will all exhibit the multiple spin zeros of Ising
quasiparticles. At present, only the α orbits have been measured as a function of
field orientation.

(3) Spin zeros in the AFM phase? (Finite pressure) If the AFM is also hastatic, then we
expect the spin zeros to persist into the finite pressure AFM phase.

6. The challenges ahead

The observation of Ising quasiparticles in the hidden order state [2,32–34] represents a
major challenge to our understanding of URu2Si2; to our knowledge this is only example
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of such anisotropic mobile electrons. It plays a central role in the hastatic proposal, and a
key question is whether this phenomenon can be accounted for in other HO theories:

(1) Can band theory account for the g(θ) observed in URu2Si2? Recent advances in
the understanding of orbital magnetization [71–73] suggest it may be possible to
compute the g-factor associated with conventional Bloch waves; in a strongly spin-
orbit coupled system, the orbital contributions to the total energy in a magnetic field
are significant. It would be particularly interesting to compare the g(θ) computed
in a density functional treatment of URu2Si2 with that observed experimentally.

(2) Can other 5 f 2 theories account for the multiple spin zeroes and the upper bound
� < 1K on the spin degeneracy of the heavy fermion bands? In particular, is it
possible to account for the observed spin zeros without invoking a non-Kramers
5 f 2 doublet?

In summary, any theory of hidden order has to be able to explain the giant Ising
quasiparticle anisotropy in URu2Si2. The smooth pressure-dependence of the Fermi surfaces
between the Hidden Order and the Antiferromagnetic states is also mysterious [50]; it is as if
the differences between the two order parameters are “invisible” to the two Fermi surfaces!
Finally, there is the key question of why superconductivity only emerges from the hidden
order state.
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