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Hastatic order in URu2Si2: Hybridization with a twist
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The broken symmetry that develops below 17.5 K in the heavy fermion compound URu2Si2 has long eluded
identification. Here we argue that the recent observation of Ising quasiparticles in URu2Si2 results from a
spinor hybridization order parameter that breaks double time-reversal symmetry by mixing states of integer and
half-integer spin. Such “hastatic order” (hasta: [Latin] spear) hybridizes Kramers conduction electrons with Ising,
non-Kramers 5f 2 states of the uranium atoms to produce Ising quasiparticles. The development of a spinorial
hybridization at 17.5 K accounts for both the large entropy of condensation and the magnetic anomaly observed
in torque magnetometry. This paper develops the theory of hastatic order in detail, providing the mathematical
development of its key concepts. Hastatic order predicts a tiny transverse moment in the conduction sea, a
colossal Ising anisotropy in the nonlinear susceptibility anomaly and a resonant energy-dependent nematicity in
the tunneling density of states.
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I. INTRODUCTION

The heavy fermion superconductor URu2Si2 exhibits a
large specific-heat anomaly at T0 = 17.5 K signaling the
development of long-range order with an associated entropy
of condensation,

∫ T0

0
CV

T
dT ≈ 1

2R ln 2 per mole formula unit
[1,2]. This sizable ordering entropy in conjunction with the
sharpness of the specific-heat anomaly suggests underlying
itinerant ordering, however the anisotropic bulk spin suscep-
tibility (cf. Fig. 1) of URu2Si2 displays Curie-Weiss behavior
down to T ∼ 70 K indicative of local moment behavior.
Initially, the hidden order was attributed to a spin-density
wave with a tiny c-axis moment [3,4], which was later shown
to be extrinsic [5]. However, spin ordering in the form of
antiferromagnetism is observed at pressures exceeding 0.8 GPa
[6–8]. The hidden order phase is surprisingly robust against
an applied magnetic field, persisting up to c-axis fields of
order 35 T, where it undergoes a series of quantum phase
transitions, ultimately forming a spin polarized Fermi liquid
above 40 T [9,10]. Despite thirty years of intense experimental
effort, no laboratory probe has yet coupled directly to the order
parameter in URu2Si2 at ambient pressure, though there have
been a wide variety of theoretical proposals for this “hidden
order” (HO) problem [11–26]. We point the interested reader
to a recent review on URu2Si2 for more details [19].

Expanding on our recent proposal [23–25] of “hastatic
order” in URu2Si2, here we argue that the failure to observe
the nature of its “hidden order” is not due to its intrinsic
complexity but instead results from a fundamentally new
kind of broken time-reversal symmetry associated with an
order parameter of spinorial, half-integer spin character. Key
evidence supporting this conjecture is the observation of
quasiparticles with an Ising anisotropy characteristic of integer
spin f moments [10,27–29]. Hastatic order accounts for this
unusual feature as a consequence of a spinor order parameter
that coherently hybridizes the integer spin, Ising f moments
with half-integer spin conduction electrons; the observed
quasiparticle and the magnetic anisotropies thus have the same
origin.

A. Experimental motivation for hastatic order

Above the hidden order transition, URu2Si2 is an incoherent
heavy fermion metal, with a large, anisotropic, linear resistivity
[30], and a linear specific heat with γ = CV

T
∼ 200 mJ mol−1

K−2. The development of hidden order results in a significant
reduction in the specific heat to γ0 = CV

T
∼ 60 mJ mol−1 K−2,

corresponding to the loss of about two-thirds of the heavy
Fermi surface [19]. At Tc = 1.5 K, the remaining heavy
quasiparticles become superconducting. Under a modest pres-
sure of 0.8 GPa, the hidden order ground state of URu2Si2
undergoes a first-order transition into an Ising antiferromagnet
with a staggered ordered moment of order 0.4μB aligned
along the c axis [7]. de Haas-van Alphen shows that the
quasiparticles in the hidden order phase form small, highly
coherent heavy electron pockets with an effective mass up to
8.5me [27]. Remarkably, these small heavy electron pockets
survive across the first-order transition into the high-pressure
antiferromagnetic phase, leading many groups to conclude that
the (commensurate) ordering wave vectors Q = (0,0,1) of the
antiferromagnetic and the HO phases are the same [12,31–35].

Perhaps the most dramatic feature of these heavy electron
pockets is the essentially perfect Ising magnetic anisotropy
in the magnetic g factors of the itinerant heavy f electrons
in the HO state of URu2Si2 [10]. This Ising quasiparticle
anisotropy has been determined by measuring the Fermi-
surface magnetization in an angle-dependent magnetic field
in the HO state; this magnetization is a periodic function of
the ratio of the Zeeman and the cyclotron energies, where the
former is defined through an angle-dependent g factor g(θ )

�E(θ ) = g(θ )μB |B|. (1)

Interference of Zeeman-split orbits in tilted fields leads to spin
zeros in the quantum oscillation measurements (cf. Fig. 2)
satisfying the condition

g(θn)
m∗

me

= 2n + 1, (2)
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FIG. 1. (Color online) (a) Tetragonal structure of URu2Si2.
(b) Temperature dependence of magnetic susceptibility in URu2Si2

after [30].

where n is a positive integer and θn is the (indexed) angle with
respect to the c axis. Sixteen such spin zeros were identified
in the HO state of URu2Si2 [10,27], and the experimentalists
found that

g⊥
gc

<
1

30
, (3)

where g⊥ = g(θn ∼ π
2 ) and gc = g(θn = 0), indicating that

�E(θn) depends solely on the c-axis component of the applied
magnetic field (Bc), namely that

g(θn) = g∗ cos θn, (4)

where g∗ = 2.6 in contrast to the isotropic g = 2 for free
electrons.

In these high-field measurements, the quasiparticle
anisotropy manifests itself through the appearance of a rapid
modulation in the amplitude of the dHvA oscillations gener-
ated by the heavy α pockets of URu2Si2 as the magnetic field is
tilted from the c axis into the basal plane. The same magnetic
anisotropy is also observed in the angular dependence of
the upper-critical field of the superconducting state which
develops at low temperatures (cf. Fig. 2) [28,29]. Whereas
the dHvA measurements could in principle belong to a select
region of the Fermi surface, the upper-critical field, Hc2(θ ) is
sensitive to the entire heavy fermion pair condensate, proving
crucially that the Ising quasiparticle anisotropy pervades the
entire Fermi surface of hidden order state. We note that while
Hc2(θ ) matches the anisotropy of the g factor for angles
near the c axis, where Hc2 is Pauli limited, when the field

FIG. 2. (Color online) (a) Anisotropy of the measured g factor
[10] plotted (a) in polar co-ordinates derived from spin zeros in
quantum oscillation measurements and the anisotropy of the upper
critical field (b) vs sine of the angle out of the basal plane, showing
that the data [10] require a Pauli susceptibility anisotropy in excess
of 1000.

is in-plane, Hc2(θ ) is larger than expected, likely due to orbital
contributions. We note that since the Pauli susceptibility χP

scales with the square of the g factor, these resolution-limited
measurements of gc

g⊥
suggest that

χP (θ ) = χP∗ cos2 θ,
χP

c

χP
⊥

> 900. (5)

Such a large anisotropy should be observable in electron-spin
resonance measurements that probe the Pauli susceptibility
directly in contrast to bulk susceptibility measurements where
Van Vleck contributions are also present.

B. Ground-state configuration of the uranium ion

Bulk susceptibility measurements (see Fig. 1) of URu2Si2
reveal that the magnetic U ions have an Ising anisotropy,
with a magnetic moment that is consistent either with a U3+
(5f 3) configuration or a non-Kramers U 4+ (5f 2) ion [1,36].
A natural explanation for the quasiparticle Ising anisotropy
is that the Ising character of the uranium (U) ions has been
transferred to the quasiparticles via hybridization, and this is
a key element of the hastatic proposal. The giant anisotropy in
g⊥
gc

places a strong constraint on the energy splitting � between
the two Ising states,

2�

(gcμBBdHvA)
<

1

30
, (6)

requiring that in a transverse field, BdHvA = 11 T the U ion
is doubly degenerate to within � ∼ 1 K. Further support for
a very small � comes from the dilute limit, UxTh1xRu2Si2
(x � .07), where the Curie-like single-ion behavior crosses
over to a critical logarithmic temperature dependence [11]
below 10 K, lnT/TK , where TK ≈ 10 K. This physics has been
attributed to two-channel Kondo criticality, again requiring a
splitting � � 10 K. Such a degeneracy is of course natural
for in a Kramers U (5f 3) ion, containing an odd-number of f

electrons. However it can also occur in a 5f 2 “non-Kramers
doublet” with a twofold orbital degeneracy protected by
tetragonal symmetry [11,37].

Motivated and constrained by the bulk spin susceptibility
and the quantum spin zeros, we therefore require the U ion
to be in an Ising doublet in the tetragonal environment of
URu2Si2 (cf. Fig. 1); such a magnetic doublet of URu2Si2 has
the form

|�±〉 =
∑

n

an| ± (Jz − 4n)〉, (7)

where the addition and subtraction of angular momentum in
units of 4� is a consequence of the fourfold symmetry of the
tetragonal crystal. However, the presence of a perfect Ising
anisotropy requires an Ising selection rule

〈�±|J±|�∓〉 = 0 (8)

that, in the absence of the fine-tuning of the coefficients an,
leads to the condition that −(Jz + 4n′) �= (Jz + 4n) ± 1, or
Jz �= 2(n − n′) ± 1

2 , requiring Jz ∈ Z must be an integer. For
any half integer Jz, corresponding to a Kramers doublet, the
selection rule is absent and the ion will develop a generic basal-
plane moment. As a side note, we mention that the fine-tuned
case will produce an Ising Kramers doublet, but corresponds
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to the complete absence of tetragonal mixing, highly unlikely
in a tetragonal environment.

Let us apply this argument specifically to the case of
URu2Si2. We first suppose that the U ion is in a 5f 3 (J = 9

2 )
configuration, predominantly in a | ± 7

2 〉 state. The presence
of tetragonal symmetry results in a crystal-field ground state

|±〉 = a
∣∣± 7

2

〉 + b
∣∣ ∓ 1

2

〉 + c
∣∣∓ 9

2

〉
(9)

so that |〈−|J+|+〉|2 = 5b2 + 6ac and perfect Ising anisotropy
is only achieved with the fine-tuning of the tetragonal mixing
coefficients such that the condition 5b2 + 6ac = 0 is satisfied.
By contrast, for a U ion in a 5f 2 (J = 4) configuration, its
ground state may be a non-Kramers �5 doublet,

|±〉 = a|±3〉 + b|∓1〉, (10)

where Ising anisotropy exists for arbitrary mixing between the
|±3〉 and |∓1〉 states since this tetragonally stabilized �5 state
is dipolar in the c direction and quadrupolar in the a-b plane.
Because the phase space associated with the non-Kramers
doublet is significantly larger than that for its finely tuned
Kramers counterpart, we take the �5 doublet to be the more
natural ground-state configuration of the U ion in URu2Si2.
However we have proposed a direct benchtop test to distinguish
between these two single-ion U ground-state configurations
in URu2Si2 using the basal-plane nonlinear susceptibility to
check this key assumption in the hastatic proposal [38].

The combination of the observed Ising anisotropy and
tetragonal symmetry are crucial towards pointing us to the
non-Kramers �5 doublet. By contrast in a hexagonal system,
like CeAl3 [39], the sixfold symmetry mixes terms that differ
by 6� units of angular momentum, so a pure doublet |±M〉
mixes with |±M ′〉 states only if M ′ = M − 6n (n ∈ Z). For
J < 7/2, the maximum M − M ′ is 5

2 − (− 5
2 ) = 5 meaning

there is no valid choice of M and M ′; thus there are two
Ising doublets for the Ce (J = 5/2) case: |±5/2〉 and |±3/2〉.
These Kramers doublets can undergo a single-channel Ising
Kondo effect [39,40] that will differ substantially from the
two-channel Kondo physics associated with a non-Kramers
doublet [41].

C. Hybridization, hastatic order and double-time reversal
symmetry

The formation of heavy f bands in heavy fermion systems
involves the formation of f resonances within the conduction
sea. Hybridization between these many-body resonances and
the conduction electrons produces charged heavy f electrons
that inherit the magnetic properties of the local moments.
When this process involves a Kramers doublet (the usual case),
the hybridization can develop without any broken symmetry
and thus is associated with a crossover. At first sight, the most
straightforward explanation of hidden order is to attribute
it to the formation of a “heavy density wave” within a
preformed heavy electron fluid. Since there is no observed
magnetic moment or charge density observed in the hidden
order phase, such a density wave must necessarily involve
a higher-order multipole of the charge or spin degrees of
freedom and various theories in this category have indeed
been advanced. In each of these scenarios, the heavy electrons
develop coherence via crossover at higher temperatures, and

FIG. 3. (Color online) Schematic of (a) conventional (scalar) vs
(b) spinorial hybridization where the hybridization is (a) a crossover
and (b) breaks spin-rotational and time-reversal symmetries and thus
develops discontinuously as a phase transition.

the essential hidden order is then a multipolar charge or
spin-density wave. However such multipolar order cannot
account for the emergence of heavy Ising quasiparticles.
The essential point here is that conventional quasiparticles
have half-integer spin, lacking the essential Ising protection
required by experiment.

Moreover, in URu2Si2 both optical [42] and tunneling
[43–45] probes suggest that hybridization develops abruptly
at the HO transition, leading to proposals [16,21] that the
hybridization is an order parameter. The associated global
broken symmetry and phase transition is naturally described
within the hastatic proposal. As we now describe, hybridiza-
tion with a non-Kramers doublet requires the development of
an order parameter that breaks double time-reversal symmetry,
a requirement that leads us to conclude that the order parameter
has a spinorial quality (see Fig. 3).

The observation of heavy quasiparticles with Ising
anisotropy in the tetragonal environment of URu2Si2 implies
an underlying hybridization of half-integer spin electrons with
integer-spin doublets that has important symmetry implica-
tions for the nature of the hidden order. More specifically
such hybridization requires quasiparticle mixing terms in the
low-energy fixed-point Hamiltonian of the form

H = |kσ 〉Vσα(k)〈α| + H.c., (11)

where |kσ 〉 and |α〉 refer to the half-integer spin conduction
and the integer-spin doublet states respectively and H.c. is
the Hermitian conjugate; here k and σ are the momentum
and the spin components respectively. Because time reversal,

̂, is an antiunitary quantum operator, it has no associated
eigenvalue. However double time reversal 
̂2, equivalent to a
2π rotation, is a unitary operator whose quantum number is
the Kramers index, K = (−1)2J where J refers to the total
angular momentum of the quantum state; K defines the phase
factor acquired by its wave function after two successive time
reversals:


̂2|ψ〉 = |ψ2π 〉 = K|ψ〉. (12)

For an integer-spin state |α〉, K = 1 since |α2π 〉 = +|α〉,
indicating that it is unchanged by a 2π rotation. By contrast,
for conduction electrons with half-integer spin states, |kσ 〉,
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|kσ 2π 〉 = −|kσ 〉, so that K = −1. Therefore, by mixing half-
integer and integer spin states, the quasiparticle hybridization
H does not conserve Kramers index. Indeed application of two
successive time reversals to H yields


̂2(V |kσ 〉〈α|) = V 2π |kσ 2π 〉〈α2π | = −V 2π |kσ 〉〈α|. (13)

Since the microscopic Hamiltonian must be time-reversal
invariant, it follows that

V = −V 2π (14)

so the hybridization transforms as a half-integer spin state
and is therefore a spinor. It then follows that this spinorial
hybridization breaks both single- and double-time reversal
symmetries distinct from conventional magnetism where
Kramers index is conserved; we call this new state of matter
“hastatic (Latin: spear) order.”

Before we proceed to discuss the theory of spinorial
hybridization and its consequences, let us pause briefly to
elaborate on the distinction between spinors and vectors,
expanding the previous discussion with emphasis on time-
reversal symmetry properties. Quantum mechanically, the
nonrelativistic evolution of a wave function ψ(x,t) is described
by the Schrödinger equation Hψ = i�

∂ψ

∂t
so that


ψ(x,t) = ψ∗(x, − t), (15)

where 
 is the time-reversal operator; this is an antiunitary
operation. For vector spins, 
S → −
S. The spin 1

2 wave
function is a spinor


 =
(

ψ↑
ψ↓

)
(16)

so that



(x,t) =
(

−ψ∗
↓(x, − t)

ψ∗
↑(x, − t)

)
(17)

and


2
(x,t) =
(

−ψ∗
↑(x,t)

−ψ∗
↓(x,t)

)
= −
(x,t). (18)

Bosons, with integer spins, are vectors with 
2 = +1, whereas
fermions with half-integer spins have K = −1. Because of
its spinorial character, we can think of hastatic order as
“hybridization with a twist” since this is a simple way of
visualizing its behavior under 2π (inverted) and 4π (restored)
rotations.

Hybridization in heavy fermion compounds is usually
driven by valence fluctuations mixing a ground-state Kramers
doublet and an excited singlet [cf. Fig. 3(a)]. In this case,
the hybridization amplitude is a scalar that develops via a
crossover, leading to mobile heavy fermions. However, valence
fluctuations from a 5f 2 ground state create excited states with
an odd number of electrons and hence a Kramers degeneracy
[cf. Fig. 3(b)]. Then the quasiparticle hybridization has two
components, 
σ , that determine the mixing of the excited
Kramers doublet into the ground state. These two amplitudes
form a spinor defining the “hastatic” order parameter


 =
(


↑

↓

)
. (19)

Loosely speaking, the hastatic spinor is the square root of a
multipole,


 ∼
√

multipole. (20)

Moreover, the presence of distinct up/down hybridization com-
ponents indicates that 
 carries a half-integer spin quantum
number; its development must now break double time-reversal
and spin rotational invariance via a phase transition.

Under pressure, URu2Si2 undergoes a first-order phase tran-
sition from the hidden order (HO) state to an antiferromagnet
(AFM) [7]. These two states are remarkably close in energy
and share many key features [31–33] including common
Fermi-surface pockets; this motivated the recent proposal that
despite the first-order transition separating the two phases, they
are linked by “adiabatic continuity,” [31] corresponding to a
notional rotation of the HO in internal parameter space [12,34].
In the magnetic phase, this spinor points along the c axis,


A ∼
(

1

0

)
, 
B ∼

(
0
1

)
, (21)

corresponding to time-reversed configurations on alternating
layers A and B, leading to a staggered Ising moment. For the
HO state, the spinor points in the basal plane


A ∼ 1√
2

(
e−iφ/2

eiφ/2

)
, 
B ∼ 1√

2

(
−e−iφ/2

eiφ/2

)
, (22)

where again, 
B = 

A. This state is protected from
developing large moments by the pure Ising character of the
5f 2 ground state.

D. Two-channel valence fluctuation model

We next present a model that relates hastatic order to the
particular valence fluctuations in URu2Si2, based on a two-
channel Anderson lattice model, where the uranium ground
state is a 5f 2 Ising �5 doublet [11], which then fluctuates
to an excited 5f 3 or 5f 1 state via valence fluctuations. The
lowest-lying excited state is most likely the 5f 3 (J = 9/2)
state, but for simplicity here we take it to be the symmetry
equivalent 5f 1 state, and assume that fluctuations to the
5f 3 are suppressed—in this sense, we take an infinite-U
two-channel Anderson model. We note that a number of
earlier theories have proposed that the dominant single-ion
configuration of URu2Si2 involves a 5f 2 U4+ ground state;
of these earlier theories a majority propose a nondegenerate
singlet ground state [3,12,13]. Our model shares in common
with the class of 5f 2 models involving valence fluctuations
within a 5f 2 non-Kramers doublet [11,20,46,47].

As we can write the f 2 �5 doublet, |±〉 = a|±3〉 + b|∓1〉
in terms of combinations of two J = 5/2 f electrons in the
three tetragonal orbitals, �7

± and �6,

|+〉 = (
pf

†
�7

−↓f
†
�7

+↓ + qf
†
�6↑f

†
�7

+↑ + sf
†
�6↑f

†
�7

−↑
)|�〉,

(23)
|−〉 = (

pf
†
�7

−↑f
†
�7

+↑ + qf
†
�6↓f

†
�7

+↓ + sf
†
�6↓f

†
�7

−↓
)|�〉,

if we assume a 5f 1 �7
+ excited state, we can now read

off the valence fluctuation matrix elements directly. Valence
fluctuations occur in two orthogonal conduction electron
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channels, �7
− and �6, and we find

HV F (j ) = V6c
†
�6±(j )|�7

+±〉〈�5±|
+V7c

†
�7∓(j )|�7

+∓〉〈�5±| + H.c., (24)

where ± denotes the “up” and “down” states of the coupled
Kramers and non-Kramers doublets. The field c

†
�σ (j ) =∑

k[�†
�(k)]στ c

†
kτ e

−ik·Rj creates a conduction electron at ura-
nium site j with spin σ , in a Wannier orbital with symmetry
� ∈ {6,7}, while V6 and V7 are the corresponding hybridization
strengths. The full model is then written

H =
∑
kσ

εkc
†
kσ ckσ +

∑
j

[HV F (j ) + Ha(j )] (25)

while Ha(j ) = �E
∑

± |�7 ± ,j 〉〈�7 ± ,j | is the atomic
Hamiltonian.

To encompass the Hubbard operators in a field-theory
description, we factorize them as follows:

Xσα = |�7
+σ 〉〈�5α| = 
̂†

σχα. (26)

Here |�5α〉 = χ †
α|�〉 is the non-Kramers doublet, represented

by the pseudofermions χ †
α , while 
̂†

σ are slave bosons [48]
representing the excited f 1 doublet |�7

+σ 〉 = 
̂†
σ |�〉. Hastatic

order is realized as then condensation of this bosonic spinor,


†
σχα → 〈
̂σ 〉χα, (27)

generating a hybridization between the conduction electrons
and the Ising 5f 2 state while also breaking double time
reversal (see Fig. 4). These slave bosons play a dual role in
capturing the hybridization while also acting as Schwinger
bosons describing a 5f 1 magnetic moment with a reduced
amplitude, 2 − nf . The tensor product Qαβ ≡ 
α


†
β describes

the development of composite order between the non-Kramers
doublet and the spin density of conduction electrons. Compos-
ite order has been considered by several earlier authors in the
context of two-channel Kondo lattices [46,49,50] in which the
valence fluctuations have been integrated out. However, by
factorizing the composite order in terms of the spinor 
α , we
are able to directly understand the development of coherent
Ising quasiparticles and the broken double time reversal.

There are two general aspects of this condensation that
deserve special comment. First, the two-channel Anderson
impurity model is known to possess a non-Fermi-liquid ground
state with an entanglement entropy of 1

2kB ln 2 [47]. The
development of hastatic order in the lattice liberates this zero-
point entropy, accounting naturally for the large entropy of
condensation. As a slave boson, 
 carries both the charge e of

FIG. 4. (Color online) Showing conduction electron self-energy
�c. Hybridization with spinorial order parameter 〈
σ 〉 permits the
development of a �5 Ising resonance inside the conduction sea,
represented by the above Feynman diagram.

the electrons and the local gauge charge Qj = 

†
j
j + χ

†
j χj

of constrained valence fluctuations; its condensation gives a
mass to their relative phase via the Higgs mechanism [51]. But
as 
 is a Schwinger boson, its condensation breaks the SU(2)
spin symmetry. In this way the hastatic boson can be regarded
as a magnetic analog of the Higgs boson.

E. Structure of the paper

To recap, here we are arguing that the observation of
an anisotropic conduction fluid in URu2Si2 indicates the
coherent admixture of spin- 1

2 electrons with integer spin
doublets, leading us to propose that the order parameter in
URu2Si2 is spinorial hybridization that breaks both single- and
double-time reversal. In conventional heavy fermion materials,
hybridization is driven by valence fluctuations between a
Kramers doublet and an excited singlet in a single channel. The
hybridization carries no quantum numbers and develops as a
crossover resulting in heavy mobile electrons. However if the
ground state is a non-Kramers doublet, the Kondo effect occurs
via an excited state with an odd number of electrons that is a
Kramers doublet. The quasiparticle hybridization then carries
a global spin quantum number and has two distinct amplitudes
that form a spinor defining the hastatic order parameter


 =
(

ψ↑
ψ↓

)
. (28)

The onset of hybridization must break spin rotational in-
variance in addition to double time-reversal invariance via
a phase transition; we note that optical, spectroscopic, and
tunneling probes in URu2Si2 indicate that the hybridization
occurs abruptly at the hidden order transition in contrast to the
crossover behavior observed in other heavy fermion systems.

We now describe the structure of this paper. The micro-
scopic basis of hastatic order is presented using a two-channel
Anderson lattice model in Sec. II, along with the mean-field
solution. In Sec. III, we develop the Landau-Ginzburg theory
of hastatic order, including the appearance of pressure induced
antiferromagnetism and the nonlinear susceptibility, while in
Sec. IV, we derive and discuss a number of experimental
consequences of hastatic order, showing the consistency
of hastatic order with a number of experiments, including
the large entropy of condensation and tetragonal symmetry
breaking observed in torque magnetometry, and then making a
number of key predictions, including a tiny staggered basal
plane moment in the conduction electrons. We end with
discussion and future implications in Sec. V.

II. LANDAU THEORY: PRESSURE-INDUCED
ANTIFERROMAGNETISM

A. Thermodynamics

Hastatic order captures the key features of the observed
pressure-induced first-order phase transition in URu2Si2 be-
tween the hidden order and an Ising antiferromagnetic (AFM)
phases. The most general Landau functional for the free-energy
density of a hastatic state with a spinorial order parameter 


as a function of pressure and temperature is

f [
] = α(Tc − T )|
|2 + β|
|4 − γ (
†σz
)2, (29)
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where γ = δ(P − Pc) is a pressure-tuned anisotropy term
and


 = r

(
cos(θ/2)eiφ/2

sin(θ/2)e−iφ/2

)
, (30)

where θ is the disclination of 
† 
σ
 from the c axis, and
|
|2 = r2. Experimentally the TAFM(P ) line is almost vertical,
indicating by the Clausius-Clapeyron relation that there will
be negligible change in entropy between the HO and the AFM
states. Indeed these two phases share a number of key features,
including common Fermi-surface pockets; this has prompted
the proposal that they are linked by “adiabatic continuity”
[31], associated by a notational rotation in the space of internal
parameters. This is easily accommodated with a spinor order
parameter; for the AFM phase (P > Pc), there is a large
staggered Ising f moment with


A ∝
(

1

0

)
, 
B ∝

(
0

1

)
(31)

corresponding to time-reversed spin configurations on alter-
nating layers A and B. For the HO state (P < Pc), the spinor
points in the basal plane


A ∝ 1√
2

(
e−iφ/2

eiφ/2

)
, 
B ∝ 1√

2

(−e−iφ/2

eiφ/2

)
, (32)

where 
B = 

A and there is no Ising f moment, consistent
with experiment, but Ising fluctuations do exist.

According to the above expression for 
, (
†σz
) =
r2 cos θ so that the Landau functional can be re-expressed
as

f = −α(T − Tc)r2 + (β − γ cos2 θ )r4. (33)

If P < Pc, then γ < 0 and the minimum of the free energy
occurs for θ = π/2, corresponding to the hidden order state.
By contrast, if P > Pc, then γ > 0 and the minimum of
the free energy occurs at θ = {0,π}, corresponding to the
antiferromagnet. The “spin flop” in θ at P = Pc corresponds
to a first-order phase transition between the hidden order and
antiferromagnet (see Fig. 5).

B. Soft modes and dynamics

The adiabatic continuity between the hastatic and antifer-
romagnetic phases allows for a simple interpretation of the
soft longitudinal spin fluctuations that have been observed to
develop in the HO state [3,52], and even to go soft, but not

FIG. 5. (Color online) Global phase diagram predicted by Lan-
dau theory.

critical upon approaching THO [53]. These longitudinal modes
can be thought of as incipient Goldstone excitations between
the two phases [34]. Specifically, in the HO state, rotations of
the hastatic spinor out of the basal plane will lead to a gapped
Ising collective mode like the one observed. Within our Landau
theory, we can study the evolution of this mode with pressure.

In order to study the soft modes of the hastatic order, we
need to generalize the Landau theory to a time-dependent
Landau-Ginzburg theory for the action, with action S =∫

Ldtd3x, where the Lagrangian

−L[
] = f [
] + ρ(|∇
|2 − c−2|
̇|2),

and ρ is the stiffness. Expanding 
 around its equilibrium
value 
0, we take φ = 0 for convenience and write


(x,t) = 
0e
iδθ(x)σy/2

=
(

1 + i/2
∑

q

δθ (q)ei(
q·
x−ωt)σy

)

0. (34)

This gives rise to a change in 
† 
σ
 = x̂|
0|2 + δθ (x)ẑ|
0|2
corresponding to a fluctuation in the longitudinal magnetiza-
tion. This rotation in 
 does not affect the first two isotropic
terms in f [
]. The variation in the action is then given by

δS = ρ|
0|2
∑

q

|θ (q)|2
(


q 2 − ω2

c2
+ 2δ

ρ
(Pc − P )|
0|2

)
.

(35)
The dispersion is therefore

ω2 = (cq)2 + �2, (36)

where

�2 = 2δ(Pc − P )

ρ
|
0|2, (37)

so that even though the phase transition at P = Pc is first order,
the gap for longitudinal spin fluctuations is

� ∝ |
0|
√

Pc − P .

Since dPc/dTc is finite, close to the transition,
√

Pc − P ≈√
dPc/dTc(T − Tc), and � ∝ √

T − Tc. Inelastic neutron-
scattering experiments can measure this gap a function of
temperature at a fixed pressure where there is a finite
temperature first-order transition. The iron-doped compound
URu2−xFexSi2 can provide an attractive alternative to hydro-
static pressure, as iron doping acts as uniform chemical pres-
sure and tunes the hidden order state into the antiferromagnet
[54].

However, higher-order terms like λ(
†σz
)2|
|2 are also
allowed by symmetry, and will introduce a weak discontinuity
of order |
0|4,

�2 = 2δ(Pc − P )

ρ
|
0|2 + 2λ

ρ
|
0|4 + O(|
0|6). (38)

So there will likely always be a discontinuity in the longitudinal
spin fluctuation mode at the first-order phase transition,
although it will be of a lower order (|
0|4) than a generic
first-order transition (|
2

0 |).
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III. MICROSCOPIC MODEL: TWO-CHANNEL
ANDERSON LATTICE

Hastatic order emerges as a spinorial hybridization between
a non-Kramers doublet ground state and a Kramers doublet
excited state. In our picture of URu2Si2, a lattice of 5f 2 (J =
4) U4+ ions provide the non-Kramers doublet (�5), which are
then surrounded by a sea of conduction electrons that facilitate
valence fluctuations between the 5f 2 non-Kramers doublet
and a 5f 1 or 5f 3 excited Kramers doublet. The two-channel
Anderson lattice model has three components:

H = Hc +
∑

j

[HV F (j ) + Ha(j )], (39)

a conduction electron term, Hc, a valence fluctuation term
capturing how the conduction electrons hop on and off the U
site, HV F , and an atomic Hamiltonian capturing the different
energy levels of the U ion, Ha .

A. Valence fluctuation Hamiltonian

1. 5 f 1 model

The 5f 2 �5 non-Kramers doublet is given by

|5f 2 : �5±〉 = a|±3〉 + b|∓1〉, (40)

and all energies are measured relative to the energy of this
isolated doublet. In principle, valence fluctuations may either
occur to 5f 1 (J = 5/2) or to 5f 3 (J = 9/2), and in fact
the lowest-lying excited state is likely to be the 5f 3 state.
However, for technical simplicity, we take the lowest-lying
valence fluctuation excitation to be the 5f 1 �7

+ excited state,

|5f 2 : �5±〉 � |5f 1 : �7
+±〉 + e−, (41)

where

|5f 1 : �7
+±〉 = η|±5/2〉 + δ|∓3/2〉 (42)

is the excited Kramers doublet. The following section will
show how particle-hole symmetry can be used to formulate
the equivalent model with fluctuations into a 5f 3 Kramers
doublet.

To evaluate the matrix elements for valence fluctuations we
need to express the 5f 2 state in terms of one-particle states. The
�5 state can be rewritten as a product of the one-particle J =
5/2 f orbitals, |5/2,m〉 ≡ f

†
m|�〉, using the Clebsch-Gordan

decomposition

|∓1〉 =
(√

5

7
f

†
±1/2f

†
∓3/2 +

√
2

7
f

†
±3/2f

†
∓5/2

)
|�〉,

(43)
|±3〉 = f

†
±5/2f

†
±1/2|�〉.

Next we decompose the one-particle f states in terms of
the one-particle crystal-field eigenstates, |�±〉 ≡ f

†
�,±|�〉;

writing f
†
m = f

†
�β〈�β|m〉, or more explicitly,

f
†
±1/2 = f

†
�6±,

f
†
∓3/2 = δf

†
�7

+± − ηf
†
�7

−±, (44)

f
†
±5/2 = ηf

†
�7

+± + δf
†
�7

−±,

the non-Kramer’s doublet can be written in the form

|�5+〉 = (
pf

†
�7

−↓f
†
�7

+↓ + qf
†
�6↑f

†
�7

+↑ + sf
†
�6↑f

†
�7

−↑
)|�〉,

(45)
|�5−〉 = (

pf
†
�7

−↑f
†
�7

+↑ + qf
†
�6↓f

†
�7

+↓ + sf
†
�6↓f

†
�7

−↓
)|�〉,

where p = b

√
2
7 , q = bδ

√
5
7 − aη, s = −bδ

√
5
7 − aη. Va-

lence fluctuations from the ground state (5f 2 �5) to the excited
state (5f 1 �7

+) are described by a one-particle Anderson
model with an on-site hybridization term,

HV F (j ) =
∑

�=�6,�7
±;σ

[v�c
†
�σ (j )f�σ (j ) + H.c.], (46)

where the v� are the hybridization matrix elements in the
three orthogonal crystal-field channels and c

†
�σ (j ) creates a

conduction electron in a Wannier state with symmetry �σ on
site j .

Now we need to project this Hamiltonian down into the
reduced subspace of the ground state |5f 2 : �5α〉 and |5f 1 :
�7

−σ 〉 excited state doublets, replacing

f�σ (j ) →
∑

σ ′,α=±
|�7

+σ ′〉(〈�7
+σ ′|f�σ (j )|�5α〉)〈�5α| (47)

in (46). Using (45), the only nonvanishing matrix elements
between the 5f 2 and 5f 1 states are

〈�7
+ ∓ |f�7

−∓|�5±〉 = p,
(48)〈�7

+ ± |f�6±|±〉 = q.

Matrix elements for the �7
+ channel identically vanish

〈�7
+σ |f�7

+±|σ ′〉 = 0, so the third term in (45) does not
contribute to the projected Hamiltonian. The final projected
model is then written

H =
∑
kσ

εkc
†
kσ ckσ +

∑
j

[HV F (j ) + Ha(j )], (49)

where c
†
kσ creates a conduction electron of momentum k spin

σ , with energy εk, and

HV F (j ) = V6c
†
�6±(j )|�7

+±〉〈�5±|
+V7c

†
�7

−∓(j )|�7
+∓〉〈�5±| + H.c. (50)

describes the valence fluctuations between the �5 doublet and
the excited �7

+ Kramers doublet. Here V6 = v�6q and V7 =
v�7

−p while

Ha(j ) = �E
∑
±

|�7±〉〈�7±| (51)

is the atomic Hamiltonian for the excited 5f 1 : �7
+ Kramers

doublet. Notice that, as we have projected out most of the
possible U states, we are working in terms of the Hubbard
operators, |�5±〉 and |�7±〉 to describe the allowed U states.

To further develop the valence fluctuation term, we need
to determine the form factors relating the conduction electron
Wannier states in terms of Bloch waves,

c
†
�α =

∑
k

c
†
kβ[��k]βαe−ik·Rj . (52)
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For a single site interacting with a plane wave, these are given
by [��k]αβ = y�

αβ(k), where

y�
αβ (k) =

5/2∑
m=−5/2

Y3m−α/2(k̂)

〈
3m − α

2
,
1

2

α

2

∣∣∣∣5/2m

〉
〈m|�, β〉

= α

5/2∑
m=−5/2

√
1

2
− mα

7
Y3m−α/2(k̂)〈m|�β〉,

(53)

where α,β ∈ ±. However, in URu2Si2, the uranium atoms are
located on a body centered tetragonal (bct) lattice at relative
locations, RNN = (±a/2, ± a/2, ± c/2), and the correct form
factor must respect the lattice symmetries. Our model treats the
conduction band as a single band of s electrons located at the U
sites. Moreover, we assume that the f electrons hybridize via
electron states at the nearby silicon atoms located at aNN =
(±a/2, ± a/2, ± z) where z = 0.371c is the height of the
silicon atom above the U atom [55]. The form factor is then

[��k]αβ =
∑

{RNN ,aNN }
e−ik·(RNN −aNN ) × e−ik·aNN y�

αβ(aNN )

=
∑

{RNN ,aNN }
e−ik·RNN y�

αβ (aNN ). (54)

Here, the term e−ik·aNN y�
αβ(aNN ) is the amplitude to hy-

bridize with the silicon site at site aNN , while the prefactor
e−ik·(RNN −aNN ) is the additional phase factor for hopping from
the silicon site aNN to the U atom RNN directly above it.
This form of the hybridization can also be derived using
Slater-Koster [56] methods, under the assumption that the
important part of the hybridization potential is symmetric
about the axis between the U and Si atom. Notice that this
function has the following properties: [��k+G]αβ = [��k]αβ

and [��k+Q]αβ = −[��k]αβ . We should note that this model
of the hybridization is overly simplified, in that the U most
likely hybridizes with the d electrons sitting on the Ru site.
Such a d − f hybridization can be treated in a similar fashion,
and is the subject of future work.

2. 5 f 3 case

For simplicity we have discussed the two-channel Anderson
model involving fluctuations from a 5f 2 �5 ground state to
5f 1 (J = 5/2). However, the more realistic case involves
fluctuations to 5f 3, whose low-energy states have J = 9/2,
and are split into five Kramers doublets by the tetragonal
crystal field,∣∣�λ

6±〉 = cλ|±9/2〉 + dλ|±1/2〉 + eλ|∓7/2〉,∣∣�1
7±

〉 = a|±5/2〉 + b|∓3/2〉, (55)∣∣�2
7±

〉 = −b|±5/2〉 + a|∓3/2〉,
where λ ∈ (1,2,3) labels the three �6 Kramer’s doublets. There
are two generic situations: either a �7 doublet is lowest in
energy, and the valence fluctuations are then determined by
the overlap,

|�7±〉 = αψ
†
6∓|�5±〉 + βψ

†
7∓|�5∓〉, (56)

or alternatively, a �6 doublet is lowest in energy, with the
relevant overlap,

|�6±〉 = αψ
†
7∓|�5±〉 + βψ

†
6∓|�5∓〉, (57)

where the form factors are as above. In both cases fluctu-
ations will involve conduction electrons in both �6 and �7

symmetries. When the lowest excited state is a �7, the valence
fluctuation Hamiltonian is given by

HV F3(j ) = V6
(
ψ

†
j�6∓|�5±〉〈�7±| + H.c.

)
+V7

(
ψ

†
j�7∓|�5∓〉〈�7±| + H.c.

)
. (58)

The only difference between the 5f 3 and the 5f 1 model is
that the excited state requires adding a particle, so the valence
fluctuation term here is the particle-hole conjugate of the 5f 1

case.

B. Slave particle treatment

Hubbard operators cannot be directly treated with quantum
field theory techniques since they do not satisfy Wick’s
theorem. We follow the standard approach and introduce
a slave particle factorization of the Hubbard operators that
permits a field theoretic treatment,

|�7
+σ 〉〈�5α| = 
̂†

σχα, (59)

where

|�5α〉 = χ †
α|�〉 (60)

is the non-Kramers doublet, represented by the pseudofermion
χ †

α , while 
̂†
σ is a slave boson [48] representing the excited f 1

doublet

|�7
+σ 〉 = 
̂†

σ |�〉 (61)

that carries a positive charge and a spin quantum number.
Condensation of the spin- 1

2 boson then gives rise to the hastatic
order parameter


 =
(

〈
̂↑〉
〈
̂↓〉

)
. (62)

Due to this condensation process, we may now replace the
Hubbard operator X̂σα by a single bound-state fermion,


†
σχα → 〈
̂σ 〉χα. (63)

We may interpret this replacement as a kind of multiparti-
cle contraction of the many-body Hubbard operator into a
single fermionic bound state. Once this bound-state forms,
a symmetry-breaking hybridization develops between the
conduction electrons and the Ising 5f 2 state.

The dual Schwinger/slave character of the boson 
̂†
σ

representing the occupation of 5f 1 means that when this
field condenses, it not only breaks the local U(1) gauge
symmetry, but also the global SU(2) spin symmetry. However,
it breaks the U(1) gauge symmetry as a slave boson, which
has been well studied in the context of heavy fermions. The
U(1) phase of the local gauge symmetry is subject to the
Anderson-Higgs mechanism, in which the difference between
the electromagnetic gauge field and the internal U(1) gauge
field acquires a mass [51]. It is this process that gives the
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χ fermions a physical charge. The combination of the global
and local symmetry-breaking processes means that the hastatic
order parameter can be thought of as a magnetic Higgs boson.

With this slave particle factorization, we can reformulate∑
j

Ha(j ) → �E
∑

j,σ=±

†

σ (j )
σ (j ). (64)

The valence fluctuation term at each site takes the form

HV F (j ) = V6c
†
�6±(j )
†

±(j )χ±(j ) + V7c
†
�7

−∓(j )
†
∓(j )χ±(j )

+ H.c. (65)

We now rewrite this expression in terms of Bloch waves by
absorbing the momentum dependent Wannier form factors
into the spin-dependent hybridization matrix, introducing the
operator

V̂(k,j ) = V6��6B
†
j + V7��7

−B̂
†
j σ1, (66)

where σ1 is the Pauli matrix, and the matrix

B̂
†
j =

(

̂

†
j↑ 0

0 
̂
†
j↓

)
(67)

contains the hastatic boson. The valence fluctuation term then
becomes

HV F (j ) =
∑

k

c
†
kσ V̂σα(k,j )χα(j )e−ik·Rj + H.c. (68)

Putting these results all together, our model for URu2Si2 is
given by

H =
∑
kσ

εkc
†
kσ ckσ +

∑
k

[
c
†
kσ

(
V6��6B

†
j + V7��7

−B̂
†
j σ1

)
×χα(j )e−ik·Rj + H.c.

] + �E
∑

j,σ=±

†

σ (j )
σ (j )

+
∑

j

λj

(∑
σ


†
σ (j )
σ (j ) +

∑
α

χ †
α(j )χα(j ) − 1

)
.

(69)

The respective terms in this Hamiltonian describe the con-
duction electrons, the hybridization between the excited
Kramers and ground-state non-Kramers doublets, and the
energy �E of the excited Kramers doublets. The second line
of the Hamiltonian describes the constraint n
 (j ) + nχ (j ) = 1
associated with the slave boson representation. Finally notice
that if we compare (69) with the parent Anderson model (46),
the original f -annihilation operators in the �6 and �7− channel
have been replaced as follows:

f�6α(j ) → (B†
jχj )α, f�7α(j ) → (B†

j σ1χj )α. (70)

So while χ± is a slave particle representing the non-Kramers
doublet, these operators represent composite fermions in the
two hybridization channels, with all the quantum numbers of
an electron.

C. Mean-field theory for hastatic order

1. Mean-field Hamiltonian: A spinorial order parameter

The central element of the mean-field theory is the hastatic
order parameter, described by a two-component spinor. We
consider the following configurations:

� ≡ 〈
̂σ 〉 =
(

e−i(Q·Rj +φ)/2

ei(Q·Rj +φ)/2

)
, (71)

where Q = (0,0, 2π
c

), corresponding to a hybridization that is
staggered between planes, with a spinorial order parameter that
points in the Basal plane, rotated through an angle φ around
the c axis. Eventually, we shall choose φ = π/4 to provide a
45◦ rotation of the scattering t matrix relative to the x axis, an
orientation that provides consistency with the measured χxy

anomaly in the bulk susceptibility [57].
Next, in (66) we make the substitution

〈V̂(k,j )〉 = V6��6〈B̂†
j 〉 + V7��7

−〈B̂†
j 〉σ1. (72)

It is convenient to write 〈B†
j 〉 in the form

〈B̂†
j 〉 = |
|Uj , (73)

where

Uj =
(

ei(Q·Rj +φ)/2

e−i(Q·Rj +φ)/2

)
(74)

is a diagonal unitary matrix.
The gauge symmetry of the slave particle representation

allows us to redefine the f electrons, χ̃j = Ujχj , to absorb the
spatial dependence of 〈B̂†

j 〉 into the redefined f electrons (70),
so that

B̂
†
jχj = |
|χ̃j (75)

and

B̂
†
j σ1χj = |
|(Ujσ1U

†
j )χ̃j = |
|(n̂ · 
σ )eiQ·Rj χ̃j , (76)

where n̂ = 1√
2
(x̂ + ŷ) is the unit vector representing the

orientation of the hastatic spinor. The commensurate nature of
the wave vector is important, as here we have used the fact that
eiQ·Rj ≡ (−1)zj /c is real. In this gauge, the �6 hybridization
is uniform while the �7

− hybridization is staggered. In
preparation for our transition to momentum space, we write

V6(k) = |
|V6�
6(k), (77)

and

V7(k) = |
|V7�
7(k)(n̂ · 
σ ), (78)

where we introduce the shorthand �6(k) ≡ ��6 (k) and
�7(k) ≡ ��7

− (k). Notice that V6(k + Q) = −V6(k) and
V7(k + Q) = −V7(k) both change sign when shifted by Q.
In the slave formulation, the atomic Hamiltonian is Ha(j ) =
�E

∑
σ 


†
jσ
jσ = �E|
|2.

While we treat the hybridization between the conduction
electrons and the f moments very carefully, we take a simple
model of the conduction electron hopping, treating them as
s-wave electrons located at the U sites, hopping on a bct lattice
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with dispersion

εk = −8t cos
kxa

2
cos

kya

2
cos

kzc

2
− μ. (79)

We do, however, want to capture the essential characteristics
of the URu2Si2 band structure—namely nesting between an
electron Fermi surface about the zone center and a hole Fermi
surface at Q [55]. In order to favor a staggered hybridization,
and to match up with ARPES experiments suggesting a heavy
f band [58], we take the hole Fermi surface to be generated
from a weakly dispersing χ band. This f electron hopping
will be naturally generated by hybridization fluctuations above
THO, effectively where 〈B̂†B̂〉 �= 0 while 〈B̂〉 = 0. A large
N expansion of this problem would capture these fluctuation
effects, but is overly complicated for this problem so we put
this dispersion in by hand, εf k = −8tf cos kxa

2 cos kya

2 cos kzc

2 .
So to summarize, our mean-field Hamiltonian is

H =
∑

k

εkc
†
kσ ckσ +

∑
k

(εf k + λ)χ †
kηχkη

+Ns[(�E + λ)|
|2 − 1]

+
∑

k

[c†kσ [V6σα(k)χkα + V7σα(k)χk+Qα] + H.c.],

(80)

where we have dropped the tildes on the χk and Ns is the
number of sites in the lattice. We rewrite this Hamiltonian in
matrix form,

H =
∑

k

(c†k,c
†
k+Q,χ

†
k,χ

†
k+Q)

×

Hαβ (k)︷ ︸︸ ︷⎛
⎜⎜⎜⎝

εk 0 V6(k) V7(k)

0 εk+Q −V7(k) −V6(k)

V†
6(k) −V†

7(k) λk 0

V†
7(k) −V†

6(k) 0 λk+Q

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

ck

ck+Q

χk

χk+Q

⎞
⎟⎟⎟⎠

+Ns[(�E + λ)|
|2 − λ], (81)

where we have suppressed spin indices, made the assumption
that the Lagrange multiplier λj = λ is uniform, equivalent
to enforcing the constraint on average, introduced λk = λ +
εf k, and used the simplification that Q is half a reciprocal-
lattice vector, making V(k + Q) = −V(k), as shown above.
When we diagonalize this Hamiltonian, we obtain a set of
four doubly degenerate bands, Ekη. These eigenvalues can
be obtained analytically in the special case where the band
structure has particle-hole symmetry, but more generally they
must be obtained numerically.

The corresponding mean-field free energy is then

F [b,λ] = −β−1

2

∑
k,η

ln[1 + e−βEkη ]

+Ns[2(�E + λ)|
|2 − λ], (82)

where β = (kBT )−1. In the work presented here, the mean-
field parameters |
| and λ are obtained by numerically finding
a stationary point that minimizes F with respect to |
| and
maximizes it with respect to λ.

FIG. 6. (Color online) Band structure of the hastatic order is
shown in solid blue, while the bare conduction (red) and f (green)
bands are dashed. Position in the Brillouin zone is labeled by the
high-symmetry points of the simple tetragonal Brillouin zone. The
parameters used for this calculation are given in Sec. III C 2.

2. Mean-field parameters

In order to plot the band structure and calculate semireal-
istic experimental quantities, we have chosen the following
parameters: the internal hastatic angle, φ = π/4 is chosen
to reproduce χxy �= 0-type tetragonal symmetry breaking;
t = 12.5 meV is taken to match the magnitude of χxy from
the torque magnetometry data [57]; μ/t = −0.075 gives
the slight particle-hole asymmetry essential to reproduce the
flattening of χxy at low temperatures, and has also been
adjusted so that μ + λ = 0 at T = 0 for consistency with the
dI /dV calculations (see later section); tf /t = −0.025 gives a
weak f -electron dispersion; the crystal-field angle ξ = 0.05
is taken to be small, as it is in CeRu2Si2 [59] and NdRu2Si2;
V6/V7 = 1 is arbitrary; and finally V 2/�E = 2t is chosen to
give 2|
|2 ≈ 15% mixed valency. The actual degree of mixed
valency in URu2Si2 is unknown, with 15% being an upper
estimate. The band structure corresponding to these parameters
is shown in Fig. 6.

A plot of |
| and λ as a function of temperature is shown
in Fig. 7, for these parameters. |
| controls the amplitude

FIG. 7. (Color online) Mean-field parameters |
| and λ as a
function of temperature. The parameters used for this calculation
are given in Sec. III C 2.
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FIG. 8. (Color online) Density of states in the hastatic ordered
phase, for the region close to the Fermi energy containing the
hybridization gap. The parameters used for this calculation are given
in Sec. III C 2.

of the hybridization gap opening at THO, while λ controls
the location of the hybridization gap center in energy. We
plot the band structure, both above THO (dashed lines) and at
zero temperature (solid lines) in the hastatic phase, and the
integrated density of states, to show how hastatic order opens
up a gap above EF .

The total density of states is given by

A(ω) =
∑
kη

δ(ω − Ekη)

= 1

π
Im

∫
d3k

(2π )3

∑
η

1

ω − Ekη − iδ
, (83)

where the integral is over the Brillouin zone. The results of
a numerical calculation of the above density of states are
shown in Fig. 8. The calculation was carried out with a discrete
summation over momenta, dividing the Brillouin zone into 403

points and using a small value of δ to broaden the δ function
into a Lorentzian.

D. Conduction and f -electron Green’s functions

In order to calculate various moments and susceptibilities,
we will require the full conduction electron Green’s function,
which can be found from the Hamiltonian by integrating out
the f electrons,

[Gc(k,iω)]−1 =
(

iωn − εk 0

0 iωn − εk+Q

)

−Vk

(
iωn − λk 0

0 iωn − λk+Q

)−1

V†
k, (84)

where

Vk =
( V6k V7k

−V7k −V6k

)
. (85)

Using isospin 
τ to represent k,k + Q space, we split the
conduction electron energy εk into ε0k = 1

2 (εk + εk+Q), ε1k =
1
2 (εk − εk+Q), into the particle-hole symmetric and antisym-
metric parts (and similarly with λ0k,λ1k). So now we can write

the conduction electron Green’s function as

[Gc(k,iω)]−1 = (iωn − ε0k) − ε1kτ3 − �c(k,iωn), (86)

where

�c(k,iωn) = V iωn − λ0k + λ1kτ3

(iωn − λ0k)2 − λ2
1k

V† (87)

is the self-energy generated by resonant Kondo scattering off
the hastatic order. The scattering terms in this quantity are
determined by two matrices, a diagonal, symmetry-preserving
matrixVkV†

k and a symmetry-breakingVkτ3V†
k. We decompose

these matrices into their channel and spin components as
follows:

VkV†
k = V 2

kc+ + ( 
�kc+ · 
σ )τ1,
(88)

Vkτ3V†
k = V 2

kc− + �kc−τ2,

where the only nonvanishing components are

V 2
kc+ = 1

4
Tr[VkV†

k] = 1

2
Tr[V6kV†

6k + V7kV†
7k], (89)

V 2
kc− = 1

4
Tr[Vkτ3V†

kτ3] = 1

2
Tr[V6kV†

6k − V7kV†
7k], (90)

−→
� kc+ = 1

4
Tr[VkV†

kτ1 
σ ] = −1

2
Tr[(V6kV†

7k + V7kV†
6k)
σ ], (91)

�kc− = 1

4
Tr[Vkτ3V†

kτ2] = i

2
Tr[V6kV†

7k − V7kV†
6k]. (92)

We note that the nonzero form factor �kc− which involves a
product of hybridization in different channels V6k and V7k
has a d-wave form factor, reflecting the fact that electron
scattering off hastatic order parameter breaks tetragonal lattice
symmetry. The related form factor that describes the c-electron
moments,

−→
� kc−, is a vector in spin space which is even parity

in momentum space. Under time reversal, this component
changes sign and therefore breaks time-reversal symmetry.

The Green’s function can now be written in the form
[G]−1 = Aτ0 + Bτ3 + 
C · 
στ1 + Dτ2. The eigenvalues are
found by taking det[Gc(k,ω)]−1 = 0, leading to an eighth-
order polynomial that cannot be generically solved analyti-
cally, except in the special case of particle-hole symmetry. The
four (doubly degenerate) eigenvalues are Ekη and are found
numerically on a grid of k points. Due to the structure of the
Green’s function, we can write

Gc(iωn,k) = 1∏
η(iωn − Ekη)

(Ack(iωn)τ0 − Bck(iωn)τ3

− 
Cck(iωn) · 
στ1 − Dckτ2),

Ack(iωn) = (iωn − ε0k)
[
(iωn − λ0k)2 − λ2

1k

]
− (iωn − λ0k)V 2

kc+,

Bck(iωn) = −ε1k
[
(iωn − λ0k)2 − λ2

1k

] − λ1kV
2

k−,


Cck(iωn) = −(iωn − λ0k)
−→
� kc+,

Dck(iωn) = −λ1k�kc−. (93)

Once Ekη is obtained numerically, this structure makes
calculations with the conduction electron Green’s function
fairly straightforward, as we shall illustrate in Secs. IV B
and V C. The f -electron Green’s function can be obtained
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by integrating out the conduction electrons, and is quite
similar,

[Gf (k,iω)]−1 = (iωn − λ0k) − λ1kτ3 − V†

× iωn − ε0k + ε1kτ3

(iωn − ε0k)2 − ε2
1k

V. (94)

The main difference is that the hybridization terms will be
of the form TrV†

k(1,τ3)Vkτaσb, as given below. We note that
V 2

kf + = V 2
kc+ = TrV†

kVk, and �kf − = �kc− are the same for
the c and f electrons. There is only one new, nonzero term,
−→
� kf + = 1

4 TrV†
kVkτ1 
σ = − 1

2 Tr[(V†
6kV7k + V†

7kV6k)
σ ], (95)

that breaks time-reversal symmetry and generally has a d-wave
symmetry.

The f -electron Green’s function is then

Gf (iωn,k) = 1∏
η(iωn − Ekη)

(Af k(iωn)τ0 − Bf k(iωn)τ3

− 
Cf k(iωn) · 
στ1 − Df kτ2),

Af k(iωn) = (iωn − λ0k)
[
(iωn − ε0k)2 − ε2

1k

]
− (iωn − ε0k)V 2

kc+,

Bf k(iωn) = −λ1k
[
(iωn − ε0k)2 − ε2

1k

] − ε1kV
2

kc−,


Cf k(iωn) = −(iωn − ε0k)
−→
� kf +,

Df k = −ε1k�kc−. (96)

We will examine the k-space structure of these terms, and the
related moments, in Sec. V C.

E. Particle-hole symmetric case

For the special case of a particle-hole symmetric dispersion,
where (εk+Q + μ) = −(εk + μ) and εf k+Q = −εf k, we can
solve the Hamiltonian (81) exactly provided λ + μ = 0, so
that ε0k = λ0k = λ = −μ are both dispersionless. In fact, the
simple c and f dispersions we have chosen already satisfy
particle-hole symmetry, so the special case λ = −μ provides
a limit where we can obtain analytic results. In this case,
ε0k = λ0k = λ, and the determinant of the Green’s function can
be calculated from (86). We wish to evaluate the determinant
det[ω − H (k)], where H (k) is the matrix Hamiltonian given
in (81). By integrating out the f electrons we can factorize
the determinant into a product of the full-conduction electron
determinant and the bare f -electron determinant as follows to

obtain

det[ω − H (k)] = det[−Gc(k,ω)−1]det[ω − λ0k − λ1kτ3]

= det[−Gc(k,ω)−1][(ω − λ0k)2 − λ2
1k]2,

(97)

where the overall square in the second factor results from the
twofold spin degeneracy and

det[−Gc(k,ω)−1]

= det

[
(ω − ε0k) − ε1kτ3 − Vk

ω − λ0k + λ1kτ3

(ω − λ0k)2 − λ2
1k

V†
k

]
. (98)

We now impose particle-hole symmetry, setting λ0k = λ =
ε0k = −μ. For convenience, we redefine z = ω − λ. Then

det[ω − H (k)]

= det[−Gc(k,ω)−1]
(
z2 − λ2

1k

)2

= det

[
z − ε1kτ3 − Vk

z + λ1kτ3

z2 − λ2
1k

V†
k

](
z2 − λ2

1k

)2

= D2(z)/
(
z2 − λ2

1k

)2
, (99)

where we have multiplied all four rows of the determinant by
z2 − λ2

1k and have defined

D2(z) = det
[
(z − εkτ3)

(
z2 − λ2

1k

) − Vk(z + λ1kτ3)V†
k

]
.

(100)

Note that since this is a four-dimensional determinant, D2(z)
is a 12th-order polynomial. Now by employing the shorthand
V 2

+ ≡ V 2
kc+, V 2

− ≡ V 2
kc−, 
�+ ≡ 
�kc+, and �− ≡ �kc−, and

substituting VkV†
k = V 2

+ + ( 
�+ · 
σ )τ1 and Vkτ3V†
k = V 2

− +
�−τ2 from (89), we obtain

D2(z) = det
[
z
(
z2 − λ2

1k − V 2
+
) − (

z2 − λ2
1k

)
ε1kτ3

− z 
�+ · 
στ1 − λV 2
−τ3 − �−λ1kτ2

]
. (101)

If we normalize 
�+ = �+n̂, then the triplet of matrices
(γ1,γ2,γ3) ≡ ((n̂ · 
σ )τ1,τ2,τ3) forms a triplet of anticommuting
Dirac matrices, ({γi,γj } = 2δij ), which satisfy the charge
conjugation symmetry UγiU

† = −γ T
i (i ∈ [1,3]), where U =

σ2τ2. Since the determinant is unchanged under this transfor-
mation, it is unchanged under a reversal γi → −γi . If we
take the product of the γ -reversed determinant with itself, the
resulting “squared” determinant is then diagonal, giving

D4(z) = Det
[(

z2(z2 − λ2
1k − V 2

+)2 − (z2 − λ2
1k)2ε2

1k − z2�2
+ − λ2

1kV
4
− − �2

−λ2
1k

)
14
]
. (102)

And since the argument of the determinant is a diagonal four-dimensional matrix,

D(z) = z2
(
z2 − λ2

1k − V 2
+
)2 − (

z2 − λ2
1k

)2
ε2

1k − z2�2
+ − λ2

1kV
4
− − �2

−λ2
1k. (103)

Now there can be no poles in det[ω − H (k)] at z = λ1k, so D(z) must have zeros at z = ±λ1k to cancel the denominator in
det[ω − H (k)] = D2(z)/(z2 − λ2

1k)2. We can factorize the determinant as follows:

D(z) = (
z2 − λ2

1k

)(
z2
(
z2 − λ2

1k − 2V 2
+
) − ε2

1k

(
z2 − λ2

1k

) − 2ε1kλ1kV
2
−
) + z2(V 4

+ − �2
+) − λ2

1k(V 4
− + �2

−). (104)

Now since D(z = λ1k) = 0 is a zero, it follows that

V 4
+ − V 4

− = �2
+ + �2

−, (105)
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which also follows somewhat nonintuitively from the form-factor definitions, allowing us to rewrite

D(z) = (
z2 − λ2

1k

)(
z2
(
z2 − λ2

1k − 2V 2
+ − ε2

1k

) + (ε1kλ1k − V 2
−)2 + �2

−
)

= (
z2 − λ2

1k

)[
z4 − 2z2(V 2

+ + 1
2

(
ε2

1k + λ2
1k

)) + (ε1kλ1k − V 2
−)2 + �2

−
]
. (106)

Therefore, by (99)

det[ω − H (k)] = [
(ω − λ)4 − 2αk(ω − λ)2 + γ 2

k

]2
, (107)

where

αk = V 2
kc+ + 1

2

(
ε2

1k + λ2
1k

)
,

(108)
γ 2

k = (
ε1kλ1k − V 2

kc−
)2 + �2

kc−.

The square in the determinant reflects a twofold Kramers
degeneracy associated with the invariance of the physics
under a combined translation and time reversal. The energy
eigenstates are then determined by the condition

(ω − λ)4 − 2αk(ω − λ)2 + γ 2
k = 0. (109)

The four bands are then given by

Ekη = λ ±
√

αk ±
√

α2
k − γ 2

k , (110)

where η = 1 − 4 labels the ++, +−, −+, and −− bands.

F. Hybridization gaps

As hastatic order is, at its heart, a spinorial hybridization,
the nature of the resulting hybridization gaps is essential to
understanding the order. In fact, there are generically two
types of gaps: those that break one or more symmetries:
translation, spin rotation, crystal, or time-reversal symmetries,
and those that break no symmetries. In our mean-field picture,
the intrachannel gaps V 2

kc± break no symmetries and are
proportional to the amplitude of the hastatic spinor 〈
†
〉,
while the interchannel gap �kc− breaks all of the above
symmetries and is proportional to 〈
† 
σ
〉. The role of these
form factors as hybridization gaps is especially clear in the
particle-hole symmetric case (110), where their relative roles
may be distinguished. While in the mean-field theory, all
hybridization gaps will develop at THO, we believe that hastatic
order will melt via phase fluctuations, destroying the coherence
of the symmetry breaking gap, but keeping the symmetry
preserving gaps. The existence of two types of hybridization
gaps that turn on at different temperatures can reconcile the
number of experiments that find hybridization gaps turning
on either at THO [43,44] or around the coherence temperature
T ∗ ∼ 50–70 K [45,60]. In addition, these hybridization gaps
will connect different parts of the Fermi surface as the
intrachannel gaps carry Q = 0, while the interchannel gap
connects the folded bands.

The symmetry-breaking hybridization gap �kc−, shown in
Fig. 9(a), has an approximate fourfold “d-wave” symmetry
about a nematic axis n̂ lying in the basal plane [see Fig. 9(b)].
While only the square of the interchannel gap appears in
Eq. (110), it plays the same role as the superconducting gap
in composite pairing [61], and the nodal structure corresponds
to a changing phase of the hybridization between c and f

electrons around the Brillouin zone. The modulus of the gap,

|�kc−|, carries a nematicity, whereby the moments of the gap
function squared averaged over the Fermi surface,

〈
�2

kc−k̂αk̂β

〉
FS

∝ n̂αn̂β, (111)

define a secondary nematic director n̂ = (nx,ny) of magnitude

n̂x,y ∝ 
†σx,y
, (112)

proportional to the square of the hastatic order parameter.
The orientation of the nematicity is set by φ, here chosen
to be φ = π/4. The tetragonal symmetry breaking can be
tuned by changing the crystal-field parameter ξ , but cannot
be eliminated. However, as the tetragonal symmetry breaking
is d wave in nature, it cannot couple linearly to strain and
therefore will not lead to a first-order structural transition.

FIG. 9. (Color online) (a) Three-dimensional plot showing the
symmetry-breaking component of the hybridization gap �kc− for the
chosen crystal-field parameters, ξ = 0.05 and for φ = π/4. Orange
and blue represent positive and negative values of the gap. The gap
lobes are oriented in the plane along the nematic director n̂ shown in
the figure. The labels (b) and (c) denote viewpoints for the following
two planar perspectives: (b) top view showing the nematic character of
the gap function, aligned along the nematic director n̂; (c) side view
along the axis of the nematic director n̂ showing its nodal d-wave
structure.

205103-13



PREMALA CHANDRA, PIERS COLEMAN, AND REBECCA FLINT PHYSICAL REVIEW B 91, 205103 (2015)

IV. COMPARISON TO EXPERIMENT: POSTDICTIONS

A. g-factor anisotropy

The Zeeman energy is determined by the Hamiltonian

− 
B · 
M = −
∑

k∈(1/2)BZ

ψ
†
k


Mψk · 
B, (113)

where ψk = (ck,ck+Q,χk,χk+Q)T and


M = 1

2

⎛
⎜⎜⎜⎝

2μB 
σ 0 0 0

0 2μB 
σ 0 0

0 0 gf μBσ z 0

0 0 0 gf μBσ z

⎞
⎟⎟⎟⎠ , (114)

where gf is the effective g factor of the Ising Kramers doublet.
In a field, the doubly degenerate energies, |kησ 〉 (σ = ±1) are
split apart so that �Ekη = |Ekη↑ − Ekη↓| = gkη(θ )B, so the g

factor is given by gkη(θ ) = | d�Ekη

dB
|B→0. Now we are interested

in the Fermi surface average of the g factor, given by

g(θ ) =
∑

kη gkη(θ )δ(Ekη)∑
kη δ(Ekη)

.

These quantities were calculated numerically, on a 403 grid, us-
ing gf = 2.9 for the effective g factor of the local non-Kramers
doublet. The resulting g factor in the z direction is reduced to
geff(θ = 0) = 2.6 because of the admixture with conduction
electrons. The δ functions were treated as narrow Lorentzians
δ(E) = 1

π
Im(E − iη)−1, where η is a small positive number.

The g factors at each point in momentum space were computed
by introducing a small field δB into the Hamiltonian, with the
approximation gkη(θ ) = |Ek↑ − Ek↓|/δB.

B. Anisotropic linear susceptibility

The uniform basal plane conduction electron magnetic
susceptibility acquires a tetragonal symmetry-breaking com-
ponent in the hastatic phase, given by

χxy = −(gμB)2T
∑
iωn

∑
k

Tr[σxGc(k,k + Q,iωn)

× σyGc(k + Q,k,iωn)]. (115)

Expanding this in terms of the conduction electron Green’s
function, we obtain

χxy = −(gμB)2T
∑
iωn

∑
k

Tr[σxGc(k,iωn)σyGc(k,iωn)]

= −(gμB)2
∑
kη

⎡
⎣2(Ekη − λ0k)f (Ekη) + (Ekη − λ0k)2f ′(Ekη)∏

η′ �=η(Ekη − Ekη′ )2
−
∑
η′ �=η

2(Ekη − λ0k)2f (Ekη)

(Ekη − Ekη′)
∏

η′′ �=η(Ekη − Ekη′′ )2

⎤
⎦�x

k+�
y

k+. (116)

Note that the above integral may be positive or negative. The
functions f and f ′ are the Fermi function f (x) = (e−x/T +
1)−1 and its derivative f ′(x) = df (x)/dx, respectively. The
exact nature of the tetragonal symmetry breaking is determined
by the angle of the hastatic spinor φ; when φ = π/4, χxx =
χyy , but χxy �= 0, but changing φ can rotate the direction of
the tetragonal symmetry breaking.

C. Entropy

In our current mean-field approach, all Kondo behavior
develops at the hidden order transition, which would lead to an
entropy of R ln 2 at THO. Incorporating Gaussian fluctuations
should suppress the hidden order phase transition THO, while
allowing many of the signatures of heavy fermion physics,
including the heavy mass and a partial quenching of the
spin entropy, to develop at a higher crossover scale TK .
The two-channel Kondo impurity has a zero-point entropy
of 1

2R ln 2 [62–64], which should be incorporated into the
hastatic phase. There is considerable uncertainty in the entropy
associated with the development of hidden order, S(THO), due
to difficulties subtracting the phonon and other nonelectronic
contributions, leading to estimates ranging from 0.15R ln 2
[65] to 0.3R ln 2 [1]. If we take a conservative estimate of
S(THO) = 0.2R ln 2, and the normal state γ = 180 mJ/mol K2

[1], S(TK ) = 0.2R ln 2 + ∫ TK

THO
γ dT = 1

2R ln 2 yields TK = 27
K, much lower than the coherence temperature seen in the
resistivity.

V. COMPARISON TO EXPERIMENT: PREDICTIONS

A. Resonant nematicity in scanning probes

To calculate the tunneling density of states, we assume that
the differential conductance is proportional to the local Green’s
function on the surface of the material,

dI

dV
(x) ∝ A(x,eV ), (117)

where

A(x,ω) = 1

π
ImGσσ (x,ω − iδ)

=
∑

σ

∫ ∞

−∞
dt〈{ψσ (x,t),ψ†

σ (x,0)}〉eiωt (118)

is the imaginary part of the local electronic Green’s function.
To calculate this quantity, we decompose the local elec-

tron field in terms of the low-energy fermion modes of
the system. Typically, in a Kondo system, there are two
channels—a conduction channel, and a f -electron channel
into which the electron may tunnel [66]. However, in URu2Si2
the presence of a non-Kramer’s doublet now involves two
f -tunneling channels—the �6 and �7− channel, and tun-
neling through three channels can mutually interfere (see
Fig. 10). We therefore decompose the electron field ψσ (x)
in terms of a conduction and two f -electron channels,
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FIG. 10. (Color online) Schematic illustrating the tunneling and
cotunneling into three channels: a conduction, a �6, and a �6 f -
electron channel.

writing

ψσ (x) =
∑

j

(
φc(|x − Rj |),φ6

σα(x − Rj ),φ7
σα(x − Rj )

)

·

⎛
⎜⎝ cjσ

fj�6α

fj�7α

⎞
⎟⎠, (119)

where φc(|x − Rj |) is the wave function of the conduction
electron centered at site j , while

φ6
σα(|x − Rj |) = φ6(|x − Rj |)Y6

σα(x − Rj ),
(120)

φ7
σα(|x − Rj |) = φ7(|x − Rj |)Y7

σα(x − Rj )

are the wave functions of the �6 and �7−f orbitals centered at
site j .

Projected into the low-energy subspace, following Eqs. (70)
we have fj�6α → (〈B†

j 〉χj )α and fj�7α → (〈B†
j 〉σ1χj )α . Writ-

ing B
†
j = bUj , and χ̃j = Ujχj the expression for the electron

field operator becomes

ψσ (x) =
∑

j

(
φc(|x − Rj |),φ6

σα(x − Rj ),φ7
σα(x − Rj )

)

·

⎛
⎜⎝ cjσ

bχ̃jα

b(n̂ · 
σ )e−iQ·Rj χ̃jα

⎞
⎟⎠. (121)

Next, rewriting the field operators in momentum space,

cjσ =
∑

k∈(1/2)BZ

eik·Rj (ckσ + eiQ·Rj ck+Qσ ),

(122)
χjα =

∑
k∈(1/2)BZ

eik·Rj (χkσ + eiQ·Rj χk+Qα),

we can decompose the electron field operator as the dot product
of two four-component vectors

ψσ (x) =
∑

jk∈(1/2)BZ

e−ik·Rj �j (x − Rj ) ·

⎛
⎜⎜⎜⎝

ckα

ck+Qα

χkα

χk+Qα

⎞
⎟⎟⎟⎠ , (123)

where

�j (x) = (
φc(|x|)δσα,eiQ·Rj φc(|x|)δσα,bφ6

σα(x)

+ e−iQ·Rj bφ7
σα(x)(n̂ · 
σ ),eiQ·Rj bφ6

σα(x)

+ bφ7
σα(x)(n̂ · 
σ )

)
. (124)

We choose a layer where e−i(Q·Rj ) = +1, then on this layer the
local Green’s function is given by

G(x,ω) =
∑
j,l

�̃(x − Rj ) · Gj l(ω) · �̃†(x − Rl), (125)

where

Gj l(ω) =
∑

k∈(1/2)BZ

Tr[(1 + τ1)G(k,ω)]e−ik·(Rj −Rl )

is a trace only over the momentum degrees of freedom, so Gj l

is a four-by-four matrix for each pair of lattice points j and l,
where

�̃(x) = (
φc(|x|)δσα,bφ6

σα(x) + bφ7
σα(x)(n̂ · 
σ )

)
. (126)

The final spectral function is then

A(x,ω)

= 1

π
Im Tr

⎡
⎣∑

j,l

�̃(x − Rj ) · Gj l(ω − iδ) · �̃†(x − Rl)

⎤
⎦ .

(127)

To evaluate this quantity, the summations were limited to the
four nearest-neighbor sites at the corner of a plaquette. The
positions x were taken to lie in the plane of the U atoms.
The wave functions φ6(|x|) = e−|x|/a , φ7(|x|) = e−|x|/a , and
φc(|x|) = e−|x|/a were each taken to be simple exponentials of
characteristic range equal to the U − U spacing a.

The nematicity of the tunneling conductance was then
calculated numerically from the spatial integral

η(eV ) =
∫

A(x,eV ) sgn(xy)dxdy( ∫
dxdyA(x,eV )2 − [ ∫

dxdyA(x,eV )
]2)1/2 .

(128)
This nematicity is shown in Fig. 11. Note that the nematicity
near the Fermi energy is nearly zero, consistent with the
absence of quadrupolar moments, but is largest at the hy-
bridization gap energy.

B. Anisotropy of the nonlinear susceptibility anomaly

1. Landau theory

The origin of the large c-axis nonlinear susceptibility
anomaly in URu2Si2 [36] has been a long-standing mystery.
It has been understood phenomenologically within a Landau
theory as a consequence of a large 
2B2

z coupling of unknown
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FIG. 11. (Color online) Upper panel: showing the total density
of states, decomposed according to f , conduction, and total spectral
weight. These curves were calculated for a particle-hole symmetric
dispersion, setting λ = −μ as described in Secs. III C 2 and III E. The
red curve shows energy dependent nematicity. Small panels below
show the density of states at three different energies, showing the
energy dependence of the nematicity. Reprinted from [23].

origin [36,67], which can now be understood within the
hastatic proposal. While the conduction electrons couple
isotropically to an applied field, the non-Kramers doublet
linearly couples only to the z-component of the magnetic field,
Bz = B cos θ , which splits the doublet as it begins to suppress
the Kondo effect. When we include the effect of the magnetic
field in the Landau theory, we obtain

f [
] = [
α(Tc − T ) − ηzB

2
z − η⊥B2

⊥
]

2 + β|
|4

+ γ (
†σz
)2, (129)

where the coefficients of the 
2B2
z and the 
2B2

⊥ terms, ηz and
η⊥, will be estimated using a simplified microscopic approach
discussed shortly in Sec. V B 2. Minimizing this functional
with respect to 
, we obtain

f = − 1

4β
[α(Tc − T ) − ηz(B cos θ )2 − η⊥(B sin θ )2]2.

(130)
Following the arguments of [67], we can calculate the
jump in the specific heat �Cv and the linear and nonlinear
susceptibility anomalies d�χ1

dT
and �χ3, respectively, to find

�CV

THO
= α2

2β
, (131)

dχ1

dT
= − α

2β
(ηz cos2 θ + η⊥ sin2 θ )

≈ −αηz

2β
cos2 θ, (132)

�χ3 = 6

β
(ηz cos2 θ + η⊥ sin2 θ )2 ≈ 6η2

z

β
cos4 θ, (133)

where d�χ1

dT
and �χ3 are the anomalous components of the

linear and nonlinear susceptibilities that develops at THO.
These results show that �χ3 will exhibit a giant Ising
anisotropy; we note that these results are compatible with the
observed Fermi-surface magnetization results that indicate that
g(θ ) ∼ cos θ so that χ1 ∼ cos2 θ . The thermodynamic relation

�C

T
χ3 = 12

(
dχ1

dT

)2

(134)

is maintained for all angles θ ; the important point here is
that the anisotropy in �χ3 is significantly larger than that in
�χ1 and numerical estimates will be discussed once we have
introduced the microscopic approach to hastatic order.

2. ηz and η⊥ from microscopics

To complete this simple Landau theory, we will calculate

η in a simplified model: we will neglect the momentum
dependence of both the f level and the hybridization and take
the hastatic order to be uniform. None of these assumptions
qualitatively changes the results. The |
|2 coefficient is
calculated from the microscopic theory (see the next section)
by expanding the action, S = −Tr ln[1 − F0(V 
)G0(V 
†)]
in 
, whereF0 = (iωn − λ − gf μf Bzσ3)−1 and G0 = (iωn −
εk − g/2 
B · 
σ )−1 are the bare χ and conduction electron
Green’s functions (remember, χ are the fermions representing
the non-Kramers doublet). V represents the hybridization
matrix elements, which are momentum-independent here,
and proportional to the unit matrix. Note that while the
conduction electrons are isotropic, the χ ’s are perfectly Ising.
The coefficient of |
|2 is then

= V 2T
∑
iωn

∑
kσ

1

iωn − εkσ

1

iωn − λσ

, (135)

where εkσ = εk − g/2
σ · 
B and λσ = λ − gf μf σBz are the
dispersions in field. Performing the Matsubara sum, we obtain

V 2
∑

σ

∫ ∞

−∞
dεD(ε)

tanh εkσ

2T
− tanh λσ

2T

2(λσ − εkσ )

= ρV 2
∑

σ

∫ D

−D

dε
tanh ε−g/2
σ · 
B

2T
− tanh λσ

2T

2
(
λσ − ε + g

2 
σ · 
B) , (136)

where we approximated the conduction electron density of
states as a constant ρ within the bandwidth 2D. Let us first
calculate η⊥, taking the field along the x direction and g = 2,

η⊥ =

= −ρV 2
∑

σ

∫ D

−D

dε
∂2

∂B2
⊥

tanh ε−σB⊥
2T

− tanh λ
2T

2(λ − ε + σB⊥)

∣∣∣∣∣
B⊥=0

.

(137)

As the integrand is a function of ε − σB, the integral
is straightforward. And as D � λ,T , the dominant term
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will be

η⊥ = −ρV 2

(
sech2 ε

2T

4T (ε − λ)
+ tanh ε

2T
− tanh λ

2T

(ε − λ)2

)∣∣∣∣∣
D

−D

= ρV 2

D2
. (138)

ηz will have three contributing terms: one purely from the
conduction electrons that is η⊥, one arising from cross terms
between the conduction and f electrons, and finally one solely
from the f electrons that dominates the other two. We shall
focus on this last term,

ηz =

= −ρV 2
∑

σ

∫ D

−D

dε
∂2

∂B2
z

tanh ε
2T

− tanh λ−gf μf σBz

2T

2(λ − ε − gf μf σBz)

∣∣∣∣∣
Bz=0

.

(139)

This integral cannot be done analytically at finite temperature,
so we take T → 0.

ηz ≈ −ρV 2 ∂2

∂B2
z

∑
σ

∫ 0

−D

1

2(λσ − ε)

∣∣∣∣
Bz=0

= ρV 2

λ2
− ρV 2

(D + λ)2

= ρV 2

T 2
HO

, (140)

as λ = THO at zero temperature. So η⊥/ηz = T 2
HO

D2 .
Using a conservative value of THO/D ∼ 1/30, we predict

an anisotropy of about 900 in dχ1/dT and nearly 106 in
�χ3. However, in a realistic model, there will be f -electron
contributions to η⊥ involving fluctuations to excited crystal-
field states that may reduce the anisotropy somewhat. The
important point here is that the anisotropies will be orders
of magnitude larger than the single-ion anisotropy in χ1

(approximately 3), and furthermore, that they will develop
exclusively at the hidden order transition.

C. Basal-plane moment

Another key aspect of the hastatic picture is the presence
of broken time-reversal symmetry in both the HO and AFM
phases, manifested by a staggered moment of wave vector
Q = (0,0,π ),


m(Q) = 
mc(Q) + 
mf (Q). (141)


m contains two parts: a conduction electron component,


mc(Q) = gcμB

2

∑
k

〈c†k+Qα 
σαβckβ + H.c.〉

= −gμB

4
T
∑
iωn

∑
k

Tr[
σGc(k,iωn)τ1], (142)

which involves the off-diagonal component of the conduction
electron Green’s function (see Sec. III D), and an f -electron

component,


mf (Q) = mI (Q)ẑ + 
mf 3 (Q). (143)

Here

mI (Q) = −gf 2μB

4
T
∑
iωn

∑
k

Tr[σzGf (k,iωn)τ1] (144)

is the Ising 5f 2 contribution, and


mf 3 (Q) = gf 3μB

2
〈
† 
σ
〉, (145)

is the contribution derived from valence fluctuations into the
5f 3 Kramer’s doublet, where 
 is the staggered component
of the hastatic order parameter. In the antiferromagnet, the
hastatic order parameter at site j is given by


j = exp

[
−i(Q · Rj )

σy

2

]

, (146)

where


 =
(

ψ0

0

)
(147)

points out of the plane. By contrast, in the hidden order phase


j = exp

[
−i(Q · Rj )

σz

2

]

, (148)

where


 = ψ0√
2

(
eiφ/2

e−iφ/2

)
, (149)

lies in the basal plane, and φ determines the angle of moment
from the x axis in the plane; now the magnetic moment lies
entirely in the basal plane, determined by


m(Q) = 
mc(Q) + gf 3μB

2
〈
† 
σ
〉. (150)

According to the Clogston-Anderson compensation theorem
[68], the magnetic polarization of the conduction electrons

mc ∼ O(TK/D) is small and set by the same ratio TK/D

that determines the g-factor anisotropy. The magnitude of the
second f 3 term is set by the overall magnitude of 
, which
in turn is determined by the overall amount of mixed valent
admixture of 5f 3 configuration into the ground state.

Writing out the conduction electron polarization 
mc in
detail using Eq. (93) we have


mc(Q) = −(gμB)T
∑
k,ωn

Tr[
σGc(k,iωn)τ1]

= −(gμB)
∑
kη

(Ekη − λ0k)∏
η′ �=η(Ekη − Ekη′)

f (Ekη)
−→
� kc+,

(151)

where
−→
� kc+ was defined in Eq. (91).

Figure 12 shows the temperature dependence of the
magnetic moment calculated for a case where D/TK ≈ 30,
for which m⊥(0) = 0.015μB , which is an upper bound for
the predicted conduction electron moment. While the hidden
order phase itself has no c-axis magnetic moment, strain causes
extrinsic pockets of the antiferromagnetic phase with c-axis
phases. Neutron-scattering measurements on URu2Si2 have
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placed bounds on the c-axis magnetization of the f electrons
using a momentum transfer Q in the basal plane. Detection
of an m⊥(0) carried by conduction electrons, with a small
scattering form factor requires high-resolution measurements
with a c-axis momentum transfer. Recent high-resolution
neutron measurements to detect this small transverse moment
have not detected a signal, and quote a bound on the f

component of the moment | 
mf | < 0.001μB . We discuss the
implications of this result in Sec. VI B. We note that there
have been reports from μ spin rotation (μSR) and NMR
measurements [69,70] of very small intrinsic basal plane fields
in URu2Si2 comparable with this bound.

We can also examine the quadrupolar moment associated
with the HO state. This is set by the expectation of the
transverse components of the non-Kramers doublet,

Qx,y ∝ 〈χ †
α(σx,y)αβχβ〉

= −T
∑
iωn

∑
k

Tr[σx,yGf (k,iωn)τ1]. (152)

If we expand this using the f Green’s function from Eq. (96),
we find

Qxy ∝ −
∑
kη

(Ekη − ε0k)∏
η′ �=η(Ekη − Ekη′ )

f (Ekη)
−→
� kf +.

. (153)

The f -electron quadrupole moment (153) has an identical
form to the conduction electron moment, (151), with ε ↔ λ

everywhere, and the relevant form factor is (95)
−→
� kf + = −TrV†

kVkτ1 
σ
= −2Tr[(V†

6kV7k + V†
7kV6k)
σ ], (154)

which has a d-wave form factor. This means that the
summation over momentum vanishes, so that the staggered
quadrupolar moments Qx,y must vanish. (Indeed, there would
be no associated lattice distortion, even for a uniform
hastatic order.) As a d-wave quadrupole is an L = 4-tupole,
or “hexadecapole,” this means that like Haule and Kotliar
[12], the hastatic order has staggered (JxJy + JyJx)(J 2

x − J 2
y )

hexadecapolar moments. However, unlike Haule and Kotliar,
where the hexadecapolar moments are the primary order

FIG. 12. (Color online) Predicted temperature dependence of the
basal plane moment. Parameters used for this calculation are given in
Sec. III C 2.

parameter (and thus of order 1), here the hexadecapolar
moments are a secondary effect of the composite hastatic order,
and like the conduction electron moments, will be of order
TK/D. Given how difficult it is to observe large hexadecapolar
moments, the hexadecapolar moments associated with hastatic
order will almost certainly be unobservably small. By contrast,
in the antiferromagnetic phase, the f electrons develop a large
c-axis magnetic moment.

We will return to the predicted basal plane moment in the
HO phase of URu2Si2 in Sec. VI B when we discuss recent
experimental constraints.

VI. DISCUSSION AND OPEN QUESTIONS

In summary, the key idea of the hastatic proposal for
hidden order in URu2Si2 is that observation of heavy Ising
quasiparticles implies the development of resonant scattering
between half-integer spin electrons and integer spin local
moments. It is perhaps useful to contrast the various staggered
multipolar scenarios for the hidden order with the hastatic one
proposed here. In the former, mobile f electrons Bragg diffract
off a multipolar density wave [see Fig. 13(a)], whereas in the
latter, the multipole contains an internal structure, associated
with the resonant scattering into an integer spin f state [see
Fig. 13(b)]. Hastatic order can thus be loosely regarded as the
“square root” of a multipole order parameter,


 ∼
√

multipole OP. (155)

In fact, as we have seen, the square of the hastatic order
parameter breaks tetragonal symmetry, and is thus nematic (see
Fig. 9), with a director 
n = (nx,ny) of magnitude determined
by the square of the hastatic order parameter,

(nx + iny) ∝ ψ∗
↑ψ↓. (156)

It can also be viewed to result from a symmetry-breaking
Kondo effect between non-Kramers and Kramers doublets.
Hastatic order should be present in any f -electron material
whose unfilled f shell contains a geometrically stabilized
non-Kramers doublet, and we expect its realization in other 5f

uranium and 4f praseodymium compounds. Praseodymium

FIG. 13. (Color online) Schematic contrasting the multipolar and
spinorial theories of hidden order. (a) In a multipolar scenario,
the heavy electrons Bragg diffract off a staggered spin or charge
multipole; (b) in the hastatic scenario, the development of a spinor
hybridization opens up resonant scattering with an integer spin state of
the ion. The multipole is generated as a consequence of two spinorial
scattering events. In this way, the Hastatic spinor order parameter can
be loosely regarded as the square root of a multipole.
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compounds are particularly promising tests for hastatic order,
as the presence and nature of any non-Kramers doublets can be
determined via inelastic neutron scattering. Any non-Kramers
doublet Pr compound must order either magnetically or
quadrupolarly or form hastatic order—there is no nonsym-
metry breaking option, as in Kramers materials.

A. Broader implications of hastatic order

At a microscopic level hastatic order demands a new kind
of particle condensation, one that gives rise to a Landau order
parameter that transforms under half-integer spin or double-
group representations [25]. Conventionally Landau theory in
electronic systems is based on the formation and condensation
of two-body bound states. For example the development of a
magnetic order parameter 
M(x) is given by the contraction

ψ†
α(x)ψβ(x)= 
σαβ · 
M(x) (157)

and s-wave superconductivity is based on the formation of
spinless bosons

ψ↑(1)ψ↓(2)= −F (1 − 2), (158)

where F (1 − 2) = −〈T ψ↑(1)ψ↓(2)〉 is the anomalous
Gor’kov Green’s function that breaks the gauge system of
the underlying system [see Fig. 14(a)]. The take-home mes-
sage from conventional two-body condensation is that when
the two-body bound-state wave function carries a quantum
number (e.g., charge or spin), a symmetry is broken. However
under this scheme, all order parameters are bosons that carry
integer spin.

Hastatic order carries half-integer spin and cannot develop
via this mechanism. We are then led to the question of whether
it is possible for Landau order parameters to transform under
half-integer representations of the spin rotation group. At first
sight this is impossible for all order parameters, which are
necessarily bosonic and bosons carry integer spin. However the
connection between spin and statistics is strictly a relativistic
idea that depends on the full Poincaré invariance of the vacuum.
This invariance is lost in nonrelativistic condensed-matter
systems,where high-energy degrees of freedom are integrated

FIG. 14. (Color online) Schematic Feynman diagrams indicating
(a) two-body (b) and three-body electronic bound states where in
the latter case spin indices have been suppressed for pedagogical
simplicity.

out, suggesting the possibility of order parameters with half-
integer spin that transform under double-group representations
of the rotation group. Spinor order parameters involving
“internal” quantum numbers are well known in the context of
two-component Bose-Einstein condensates. The Higgs field of
electroweak theory is also a two-component spinor. However
in neither case does the spinor transform under the physical
rotation group. Moreover it is not immediately obvious how
such bound states emerge within fermionic systems.

Hastatic order is a generalization of Landau’s order pa-
rameter concept to three-body bound states. This is natural in
heavy fermion systems since the conventional Kondo effect
is the formation of a three-body bound state between a spin
flip and a conduction electron. However here the three-body
wave function carries no quantum number and thus is not an
order parameter; this is why conventional Kondo behavior is
associated with a crossover and not a true phase transition.

In the mean-field formulation of hastatic order [23], a
spin-1/2 order parameter develops as a consequence of a
factorization of a Hubbard operator that connects the Kramers
and non-Kramers states; it is a tensor operator that corresponds
to the three-body combination

Xασ (R) ≡ |f 2α〉〈f 1σ |
= �abc

ασ (R; 1,2,3)ψ†
a (1)ψ†

b (2)ψc(3), (159)

where we have used the shorthand notation 1 ≡ R1, etc., and

�abc
ασ (R; 1,2,3) = 〈R1,a; R2,b|X̂ασ (R)|R3,c〉 (160)

defines the overlap between the Hubbard operators and the
bare electron states. In a simple model, this three-body
wave function is local, �abc

ασ (R; 1,2,3) = �abc
ασ δ(R − 1)δ(R −

2)δ(R − 3). The factorization of the Hubbard operator into a
spin-1 fermion and a spin-1/2 boson,

Xασ (R) → χ †
α(R)〈
σ (R)〉, (161)

then represents a “fractionalization” of the three-body oper-
ator. Written in terms of the microscopic electron fields, this
becomes

�abc
ασ (R; 1,2,3) ψ†

a (1)ψ†
b (2)ψc(3) = χ †

α(R)〈
σ (R)〉.
(162)

This expression can be inverted to give the three-body
contraction

ψ†
a (1)ψ†

b (2)ψc(3) =
∑
R

Gασ
abc(1,2,3; R)χ †

α(R)〈
σ (R)〉,
(163)

where Gσα
abc(1,2,3; R) = [�abc

σα (R; 1,2,3)]∗ [see Fig. 14(b)].
The asymmetric decomposition of a three-body fermion

state into a binary combination of boson and fermion is
a fractionalization process; if the boson carries a quantum
number, when it condenses we have the phenomenon of
“order parameter fractionalization.” Fractionalization is well
established for excitations of low-dimensional systems, such
the one-dimensional Heisenberg spin chain and the frac-
tional quantum Hall effect [71–74], but order parameter
fractionalization is a new concept. Unlike pair or exciton
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condensation, the hastatic order parameter transforms under
a double-group representation of the underlying symmetry
group, and thus represents a fundamentally new class of broken
symmetries. We are currently investigating order parameter
fractionalization beyond the realm of URu2Si2. The proposed
three-body bound state has a nonlocal order parameter, and it
may be possible to identify a dual theory with a local order
parameter that breaks a global symmetry.

B. Experimental constraints and more tests

Let us now return to the situation in URu2Si2. As we
discussed earlier, hastatic order leads to a predication of a
basal-plane moment of order TK

D
, where TK and D are the

Kondo temperature and the bandwidth respectively. The trans-
verse moment in our mean-field treatment has contributions
from both conduction and f electrons, and the ratio TK

D
is very

sensitive to the degree of mixed valence of the U ion. Our
original calculation assumed 20% 5f 3, leading to a predicted
basal-plane moment of 0.01μB . Recent high-resolution neu-
tron experiments [75–77] with momentum transfer along the c

axis designed to detect this predicted transverse moment have
placed a bound μ⊥ < 0.0011μB on the ordered transverse
moment of the uranium ions, constraining it to be at best an
order of magnitude smaller than what we predicted.

Clearly we need to reconsider our calculation of the
transverse moment and understand why it is so small if not
absent and we are currently exploring a number of possibilities:

(i) Fluctuations. Amplitude fluctuations of the hastatic
order parameter are needed to describe the incoherent Fermi
liquid observed to develop at temperatures well above THO

in optical, tunneling, and thermodynamic measurements
[43–45,60], and they will reduce the transverse moment. We
note that various probes, including x rays, μ-spin resonance,
and NMR [69,70,78,79] have consistently detected basal plane
fields of order 0.5G, consistent with the presence of a tiny
in-plane moment.

(ii) Uranium valence. The predicted transverse moment is
very sensitive to the 5f valence, decreasing with increasing
proximity to pure 5f 2. More specifically it is proportional
to the change in valence between THO and the measurement
temperature and thus is significantly smaller than the high-
temperature mixed valency. It would be very helpful to have
low-temperature probes of the 5f valence.

(iii) Domains. X-ray [78], muon [69], torque magnetometry
[57], cyclotron resonance [80], and NMR measurements
[70,79] that have indicated either a static moment or broken
tetragonal symmetry were performed on small samples. By
contrast, the neutron measurements that show no measurable
moment use large samples [75–77]. The apparent inconsis-
tency between these two sets of measurements may be due
to domain formation of hidden order. Such domain structure
could result from random pinning [81] of the transverse
moment by defects of random strain fields. The situation in
URu2Si2 is somewhat analogous to that in Sr2RuO4, where
there is evidence for broken time-reversal symmetry breaking
with a measured Kerr effect and μSR to support chiral
p-wave superconductivity, but no surface currents have yet
been observed [82]. Domains are an issue in this system too.

(iv) x-y order and spin superflow. The current mean-field
theory has the transverse hastatic vector 
† 
σ
 pointing in
one of four possible directions at each site, corresponding to
a four-state clock model. The tunneling barrier between these
configurations is very small. When we expand the effective
action as a function of φ, the leading-order anisotropy will
have the form

�E(φ) = E4 cos 4φ, (164)

where E4φ determines the magnitude of the tunneling barrier.
Now the anisotropic terms have the form e±i4φ , and since the
φ dependence in 
 enters as e±i(φ/2), the leading dependence
of this term on 
 has the form

E4 ∼ TK |
|8. (165)

Now since |
|2 ∼ TK

D
, this implies that the tunneling barrier

has magnitude

E4 ∼ TK

(
TK

D

)4

. (166)

In our theory we have estimated TK/D ∼ 0.01, so that the
tunneling barrier is of order 10−8 times smaller than the Kondo
temperature. In practice, the XY -like basal plane hastatic
moments will be extremely weakly pinned, with large domain
walls between Z4 domains, with widths ∼ D

TK
∼ 100 lattice

spacings. To our knowledge, such nearly perfect XY order,
which can lead to spin superflow [83–85], is completely
unknown in magnetism, its only counterpart occurring in
neutral superfluids. This opens the interesting possibility that
the presence of persistent spin currents in the hastatic phase
jspin ∝ ∇φ give rise to a destruction of the staggered moment
associated with hastatic order. By contrast, near the surfaces,
where the tetragonal symmetry is broken, the Z2 pinning is
expected to be much greater. This might account for why large
moments and broken tetragonal symmetry only appear in tiny
crystals.

The central tenet of the hastatic proposal is that Ising
quasiparticles are associated with the development of hidden
order and there remain several tests of this aspect that can be
made, in particular the following:

(1) Giant anisotropy in �χ3 ∝ cos4 θ . In this measurement
the temperature dependence of the Ising anisotropy of the
conduction fluid can be probed to confirm that it is associated
with the development of hidden order.

(2) dHvA on all the heavy Fermi-surface pockets. Based
on the upper-critical field results, we expect that the heavy
quasiparticles in the α, β, and γ orbits will exhibit the multiple
spin zeros of Ising quasiparticles but to date only the α orbits
have been measured as a function of field orientation.

(3) Spin zeros in the AFM phase (finite pressure). If the
antiferromagnetic phase is also hastatic, then we expect the
spin zeros to persist at finite pressures.

C. Future challenges

The observation of Ising quasiparticles in the hidden
order state [10,27–29] represents a major challenge to our
understanding of URu2Si2; such anisotropic mobile electrons,
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as we have emphasized, are completely unexpected for f

electrons in a tetragonal environment. As we have emphasized
throughout this paper, Ising quasiparticles are the central
motivation for the hastatic proposal, and a key question is
whether this phenomenon can be described by other HO
theories—in particular the following:

(i) Can band theory account for the g(θ ) observed in
URu2Si2? Recent advances in the understanding of orbital
magnetization [86–88] suggest it may be possible to compute
the g factor associated with conventional Bloch waves; in a
strongly spin-orbit coupled system, the orbital contributions
to the total energy in a magnetic field are significant. It would
be particularly interesting to compare the g(θ ) computed in
a density functional treatment of URu2Si2 with that observed
experimentally.

(ii) Can other 5f 2 theories account for the multiple spin
zeroes and the upper bound � < 1 K on the spin degeneracy of
the heavy fermion bands? In particular, is it possible to account
for the observed spin zeros without invoking a non-Kramers
5f 2 doublet?

Note added in Proof: Recently, we learned of the elasto-
resistivivity measurements on URu2Si2 by Riggs et al.
[89], in which the authors conclude that the nematic-
ity is proportional to the square of the hidden order

parameter, results that are consistent with spinorial order [see
Eq. (156)].
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