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Hastatic order in the heavy-fermion
compound URu2Si2
Premala Chandra1, Piers Coleman1,2 & Rebecca Flint3

The development of collective long-range order by means of phase transitions occurs by the spontaneous breaking of
fundamental symmetries. Magnetism is a consequence of broken time-reversal symmetry, whereas superfluidity results
from broken gauge invariance. The broken symmetry that develops below 17.5 kelvin in the heavy-fermion compound
URu2Si2 has long eluded such identification. Here we show that the recent observation of Ising quasiparticles in URu2Si2
results from a spinor order parameter that breaks double time-reversal symmetry, mixing states of integer and
half-integer spin. Such ‘hastatic’ order hybridizes uranium-atom conduction electrons with Ising 5f2 states to
produce Ising quasiparticles; it accounts for the large entropy of condensation and the magnetic anomaly observed in
torque magnetometry. Hastatic order predicts a tiny transverse moment in the conduction-electron ‘sea’, a colossal
Ising anisotropy in the nonlinear susceptibility anomaly and a resonant, energy-dependent nematicity in the tunnelling
density of states.

The hidden order that develops below THO 5 17.5 K in the heavy-fer-
mion compound URu2Si2 is particularly notable, having eluded iden-
tification for 25 years1–12. Recent spectroscopic13–17, magnetometric18

and high-field measurements19,20 suggest that the hidden order is con-
nected with the formation of an itinerant heavy-electron fluid, as a
consequence of quasiparticle hybridization between localized, spin–
orbit-coupled f-shell moments and mobile conduction electrons.
Although the development of hybridization at low temperatures is
usually associated with a crossover, in URu2Si2 both optical17 and
tunnelling14–16 probes suggest that it develops abruptly at the hidden-
order transition, leading to proposals9,10 that the hybridization is an
order parameter.

Ising quasiparticles
High-temperature bulk susceptibility measurements on URu2Si2

show that the local 5f moments embedded in the conduction-electron
sea are Ising in nature1,21, and quantum oscillation experiments deep
within the hidden-order phase22 reveal that the quasiparticles possess
a giant Ising anisotropy20,23,24. The Zeeman splitting DE(h) depends
solely on the c-axis component of the magnetic field: DE 5 g(h)mBB
(ref. 24). Here B is the magnetic field, mB is the Bohr magneton and the
empirically determined g-factor takes the form g(h) 5 gcos(h), where
h is the angle between the magnetic field and the c axis and g is the
Ising g-factor. The g-factor anisotropy exceeds 30, corresponding to
an anisotropy of the Pauli susceptibility in excess of 900; this aniso-
tropy is also observed in the angle dependence of the Pauli-limited
upper critical field of the superconducting state23,24, showing that the
Ising quasiparticles pair to form a heavy-fermion superconductor.
This giant anisotropy suggests that the f moment is transferred to
the mobile quasiparticles through hybridization25.

In the tetragonal crystalline environment of URu2Si2, such Ising
anisotropy is most natural in an integer-spin 5f 2 configuration of
the uranium ions4,26. Although a variety of singlet crystal-field
schemes have been proposed6,27, the observation of paired Ising qua-
siparticles in a superconductor with a transition temperature of

Tc < 1.5 K indicates that this 5f 2 configuration is doubly degenerate
to within an energy resolution of gmBHc2 < 5 K, where Hc2 is the
upper critical field of the superconductor. Moreover, the obser-
vation of multiple spin zeroes in the quantum oscillations, result-
ing from the interference of Zeeman split orbits in a tilted field,
requires that in a transverse field the underlying 5f 2 configura-
tion is doubly degenerate to within a cyclotron energy, which is
Bvc~BeB=m�<1:5 K for the largest extremal orbit20,22 (a)
(m*5 12.5me measured in B 5 13.9 T, where me is the electron mass).
These tiny bounds suggest that the Ising 5f 2 state is intrinsically
degenerate. In URu2Si2, tetragonal symmetry protects such a mag-
netic non-Kramers C5 doublet28, the candidate origin of the Ising
quasiparticles4,29.

The quasiparticle hybridization of half-integer-spin conduction
electrons with an integer-spin doublet in URu2Si2 has profound impli-
cations for hidden order; such mixing can not occur without the break-
ing of double time-reversal symmetry. Time-reversal, Ĥ, is an anti-
unitary quantum operator with no associated quantum number30.
However double time-reversal, Ĥ2, which is equivalent to a 2p rotation,
forms a unitary operator with an associated quantum number, the
‘Kramers index’, K (ref. 30). For a quantum state of total angular
momentum J, K 5 (21)2J defines the phase factor acquired by its
wavefunction after two successive time-reversals: Ĥ2 yj i~K yj i~
y2p
�� �

. An integer-spin state jaæ is unchanged by a 2p rotation, and
so ja2pæ 5 1jaæ and K 5 1. However, conduction electrons with half-
integer-spin states, jksæ, where k is the vector momentum and s is the
spin component, change sign: jks2pæ 5 2jksæ. Hence, K 5 21 for
conduction electrons.

Double time-reversal symmetry
Although conventional magnetism breaks time-reversal symmetry, it
is invariant under Ĥ2, with the result that the Kramers index is con-
served. However, in URu2Si2 the hybridization between integer-spin
and half-integer-spin states requires a quasiparticle mixing term of
the form H~ ksj iVsa kð Þ ah jzH:c:, where H.c. indicates Hermitian
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conjugate, in the low-energy fixed-point Hamiltonian. After two suc-
cessive time-reversals

ksj iVsa kð Þ ah j? ks2p
�� �

V2p
sa kð Þ a2p

� ��
~{ ksj iV2p

sa kð Þ ah j
Because the microscopic Hamiltonian is time-reversal invariant, it
follows that Vsa kð Þ~{V2p

sa kð Þ; the hybridization thus breaks time-
reversal symmetry in a fundamentally new way, forming an order
parameter that, like a spinor, reverses under 2p rotations. The result-
ing ‘hastatic’ order (hasta is Latin for spear), is a state of matter that
breaks both single and double time-reversal symmetry and is thus
distinct from conventional magnetism.

Indirect support for time-reversal symmetry breaking in the hid-
den-order phase is provided by recent magnetometry measurements
that indicate the development of an anisotropic basal-plane spin sus-
ceptibility, xxy, at the hidden-order transition18. The strong Ising
anisotropy of the f electrons prevents them from responding in the
basal plane, which leads us to interpret xxy as a anomalous conduction
electron response (Fig. 1), induced by scattering off the hidden-order
parameter. In this interpretation, the associated scattering matrix
must mix the x and y components of the conduction electron spins
and must take the form t(k) 5 (sx 6 sy)d(k), where d(k) is the scatter-
ing amplitude. The scattering matrix t(k) has recently been linked to a
spin nematic state11, under the special condition that d(2k) 5 2d*(k)
(where an asterisk denotes complex conjugation) to avoid time-
reversal symmetry breaking. However, in our interpretation, d(k) is
associated with resonant scattering off the Ising f state, a process with
a real, even-parity scattering amplitude, d(k) 5 d(2k). In this case,
the observed t matrix is necessarily odd under time-reversal in the
hidden-order phase.

Hybridization in heavy-fermion compounds is usually driven by
valence fluctuations mixing a ground-state Kramers doublet and an
excited singlet (Fig. 2a). In this case, the hybridization amplitude is a
scalar that develops via a crossover, leading to mobile heavy fermions.
However, valence fluctuations from a 5f 2 ground state create excited
states with an odd number of electrons and, hence, a Kramers degen-
eracy (Fig. 2b). Then the quasiparticle hybridization has two compo-
nents, Ys, that determine the mixing of the excited Kramers doublet
into the ground state. These two amplitudes form a spinor defining
the hastatic-order parameter

Y~
Y:

Y;

� �

The presence of distinct up and down hybridization components
indicates that Y carries the global spin quantum number; the onset
of hybridization must now break double time-reversal and spin rota-
tional invariance by means of a phase transition.

Under pressure, URu2Si2 undergoes a first-order phase transition
from the hidden-order state to an antiferromagnetic (AFM) state31.
These two states are remarkably close in energy and share many key
features19,32,33 including common Fermi surface pockets; this motivated
the recent proposal that despite the first-order transition separating the
two phases, they are linked by ‘adiabatic continuity’32, corresponding to
a notional rotation of the hidden order in internal parameter space5,34.
In the magnetic phase, this spinor points along the c axis

YA!
1

0

 !

YB!
0

1

 !

corresponding to time-reversed configurations on alternating layers A
and B, implying a large staggered Ising moment. For the hidden-order
state, the spinor points in the basal plane

YA<
1ffiffiffi
2
p

e{iw=2

eiw=2

 !

YB<
1ffiffiffi
2
p

{e{iw=2

eiw=2

 !

where, again, YB 5 HYA, and the hidden order is protected from devel-
oping a large moment by the pure Ising character of the 5f2 ground state.

Hastatic order permits a direct realization of the adiabatic continu-
ity between the hidden-order and AFM phases in terms of a single
Landau functional for the free energy

f T,P,Bz½ �~ a THO{Tð Þ{gzB2
z

� 	
Yj j2zb Yj j4{c Y{szY


 �2

where c 5 d(P 2 Pc) (d being the Dirac delta function) is a pressure-
tuned anisotropy term and a dagger denotes adjoint. The unique
feature of the theory is that the non-Kramers doublet has Ising

t =

ψH ψHb

σy
Δχxy =

k k + Q

t

t
a

σx

Figure 1 | Phenomenological interpretation of the anomalous spin
susceptibility in URu2Si2. a, The anomalous spin susceptibility is given by
conduction electrons (solid lines) scattering off the hidden-order parameter,
sandwiched between sx and sy vertices. b, The anomalous scattering t matrix
can be rewritten as a resonant scattering off the order parameter. The dashed
lines represent f electrons and the yH vertex represents scattering off the
hidden-order parameter.
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Figure 2 | Spinor hybridization and signatures of hastatic order. a, A
normal Kondo effect occurs in ions with an odd number of f electrons, where
the ground state is guaranteed to be doubly degenerate by time-reversal
symmetry (and is known as a Kramers doublet). Virtual valence fluctuations to
an excited singlet state are associated with a scalar hybridization. b, In URu2Si2,
quasiparticles inherit an Ising symmetry from a 5f 2 non-Kramers doublet. Loss
or gain of an electron necessarily leads to an excited Kramers doublet, and the
development of a coherent hybridization is associated with a two-component
spinor hybridization that carries a magnetic quantum number and must
therefore develop at a phase transition. c, Phase diagram for hastatic order,
showing how tuning the parameter l / P 2 Pc leads to a spin flop between
hastatic order and Ising magnetic order. Inset: at the first-order line, the
longitudinal spin gap, D, is predicted to vanish because D!

ffiffiffiffiffiffiffiffiffiffiffiffi
Pc{P
p

. d, Polar
plot showing the predicted cos4(h) form of the nonlinear susceptibility, x3,
induced by hastatic order, where h is the angle between the magnetic field and
the c axis.
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character and couples only to the z component of the magnetic field,
Bz 5 Bcos(h). The resulting Ising splitting of the non-Kramers doub-
let suppresses the Kondo effect, giving rise to the B2

z term in the
quadratic coefficient, where the coefficient gz is of order 1

�
T2

HO
(Supplementary Information). The phase diagram predicted by
this free energy is shown in Fig. 2c. When P , Pc(T), the vector
Y{~sY~ Yj j2 nx,ny,0


 �
(where ~s~(s1,s2,s3)) denotes a vector of

the three Pauli matrices) lies in the basal plane, resulting in hastatic
order. At P 5 Pc, there is a first-order ‘spin flop’ into a magnetic state
where Y{~sY~ Yj j2 0,0,+1ð Þ lies along the c axis.

Adiabatic continuity provides a natural interpretation of the soft,
or low-energy, longitudinal spin fluctuations observed to develop in
the hidden-order state35 as an incipient Goldstone excitation between
the two phases34. In the hidden-order state, rotations between hastatic
and AFM order will lead to a gapped Ising collective mode that we
identify with the longitudinal spin fluctuations observed in inelastic
neutron scattering35. At the first-order phase transition, where P 5 Pc,
the quartic anisotropy term vanishes; we predict that the gap, D, to

longitudinal spin fluctuations will soften according to D!
ffiffiffiffiffiffiffiffiffiffiffi
c Yj j2

q
<

Yj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pc Tð Þ{P

p
(Supplementary Information). Experimental obser-

vation of this feature would provide confirmation of the common
origin of the hidden and AFM order.

Another prediction of the phenomenological theory is the develop-
ment of a nonlinear susceptibility anomaly with a colossal Ising aniso-
tropy. From the Landau theory (Supplementary Information), the
jump in the specific heat, DC, the susceptibility anomaly, dx1/dT,
and the nonlinear susceptibility anomaly, Dx3, obey the relation
(DC=THO)Dx3~12 dx1=dTð Þ2, where dx1=dT~{(a=2b)gz cos2 (h),
such that Dx3 / cos4(h) (Fig. 2d). A large anomaly in the c-axis non-
linear susceptibility of URu2Si2 has been observed at THO (refs 21, 36),
but its Ising anisotropy has never been quantified. The development
of a colossal Ising anisotropy in the zero-field nonlinear susceptibility
at the hidden-order transition is predicted to be another consequence
of hastatic order.

Two-channel valence fluctuation model
We now present a model that relates hastatic order to the valence
fluctuations in URu2Si2 and is based on a two-channel Anderson
lattice model. The uranium ground state is a 5f2 Ising C5 doublet4,
+j i~a +3j izb +1j i, written in terms of J 5 5/2 f electrons in the

three tetragonal orbitals C+
7 and C6:

zj i~ af {C{
7 ;f {

Cz
7 ;zbf {C6:

f {
Cz

7 :

 �
0j i

{j i~ af {C{
7 :f {

Cz
7 :zbf {C6;

f {
Cz

7 ;

 �
0j i

The lowest-lying excited state is most likely the 5f 3 (J 5 9/2) state, but
for simplicity here we take it to be the symmetry-equivalent 5f 1 state.
Valence fluctuations from the ground state (5f 2 C5) to the excited
state (5f 1 C+

7 ) occur in two orthogonal conduction channels37,38, C{
7

and C6. This allows us to read off the hybridization matrix elements of
the Anderson model

HVF jð Þ~V6c{C6+ jð Þ Cz
7 +

�� �
C5+h j

zV7c{C7+ jð Þ Cz
7 +

�� �
C5+h jzH:c:

where the plus and minus signs respectively denote the ‘up’ and
‘down’ states of the coupled Kramers and non-Kramers doublets.

The field c{Cs jð Þ~
P

k W{
C kð Þ

h i
st

c{kte{ik:Rj creates a conduction elec-

tron at site j (at position Rj) with spin s in a Wannier orbital with
symmetry C g {C6, C7}, and V6 and V7 are the corresponding hybrid-
ization strengths. The full model is then written

H~
X

ks

kc{kscksz
X

j

HVF jð ÞzHa jð Þ½ �

where Ha jð Þ~DE
X

+
Cz

7 +,j
�� �

Cz
7 +,j

� �� is the atomic Hamiltonian.

Hastatic order is revealed by factorizing the Hubbard operators,
Cz

7 s
�� �

C5ah j~Ŷ{
sxa. Here C5aj i~x{

a Vj i is the non-Kramers doub-
let, represented by the pseudo-fermion x{a, and Ŷ{

s is a slave boson39

representing the excited f 1 doublet Cz
7 s

�� �
~Ŷ{

s Vj i. Hastatic order

is the condensation of this boson, Y{
sxa? Ŷs

D E
xa, generating a

hybridization between the conduction electrons and the Ising 5f 2

state while also breaking double time-reversal symmetry. The C5

doublet has both magnetic and quadrupolar moments represented
by x{~sx~ Ox2{y2 ,Oxy,mz


 �
, where mz is the Ising magnetic moment

and Ox2{y2 and Oxy are quadrupole moments. The tensor product
Qab:YaY{

b describes the development of composite order between
the non-Kramers doublet and the spin density of conduction elec-
trons. Composite order has been considered previously by several
authors in the context of two-channel Kondo lattices37,40,41 in which
the valence fluctuations have been integrated out. However, by
factorizing the composite order in terms of the spinor Ya, we are able
to understand directly the development of coherent Ising quasi-
particles and the broken double time-reversal symmetry.

Using this factorization, we can rewrite the valence fluctuation term
as

HVF jð Þ~
X

k

c{ksV̂sg k,jð Þxg jð Þe{ik:RjzH:c:

where V̂ k,jð Þ~V6W{
C6

kð ÞB̂{
j zV7W{

C{
7

kð ÞB̂{
j s1 with

B̂j~
Ŷ: 0

0 Ŷ;

 !

In the ordered state, Bj~ B̂j
� �

is replaced by its expectation value, such
that in the hidden-order state

B{
j

D E
~ Yj j ei Q:Rjzwð Þ=2 0

0 e{i Q:Rjzwð Þ=2

 !
: Yj jUj

with magnitude jYj. The internal angle, w, rotates Bj within the basal
plane.

Because the hidden-order and AFM phases seem to share a single
commensurate wavevector, Q~ 0,0,2p=cð Þ (refs 19, 32, 33), we use
this wavevector here. It is convenient to absorb the unitary matrix Uj

into the pseudo-fermion, such that ~xj~Ujxj. This gauge transforma-
tion transfers the charge from the slave boson to the pseudo-fermion,
making it a charged quasiparticle. In this gauge, one channel (C6) is
uniform whereas the other C{

7


 �
is staggered, and the valence fluc-

tuation Hamiltonian becomes

HVF~
X

k

c{kV6 kð Þxkzc{kV7 kð ÞxkzQzH:c:

where the hybridization form factors are V7 kð Þ~V7W{
7 kð Þs1 and

V6 kð Þ~V6W{
6 kð Þ

g-factor anisotropy
There are two general aspects of this condensation that deserve special
comment. First, the two-channel Anderson impurity model is known
to possess a non-Fermi liquid ground state with an entanglement
entropy of (1=2)kBln(2) (ref. 42). The development of hastatic order
in the lattice liberates this zero-point entropy, accounting naturally
for the large entropy of condensation. As a slave boson, Y carries
both the charge, e, of the electrons and the local gauge charge,
Qj~Y{

j Y jzx{j xj, of constrained valence fluctuations, and its con-
densation gives a mass to their relative phase through the Higg’s
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mechanism43. But as a Schwinger boson, Y ’s condensation breaks the
SU(2) spin symmetry. In this way the hastatic boson can be regarded
as a magnetic analogue of the Higg’s boson.

One of the key elements of the hastatic theory is the formation of
mobile Ising quasiparticles, and the observed Ising anisotropy enables
us to set some of the parameters of the theory. The full anisotropic
g-factor is a combination of f-electron and conduction-electron com-

ponents given by g hð Þ<g cos hzgc
TK

D

� �
where g 5 2.6, gc 5 2 and

the factor TK/D (TK, Kondo temperature; D, conduction-electron
bandwidth) derives from the small conduction-electron admixture
in the quasiparticles. Experimentally20, the g-factor anisotropy, that
is, the ratio of the c-axis and basal-plane g-factors, gz=g\<D=TK, is in
excess of 30, which enables us phenomenologically to set a lower
bound on D/TK in our model. The g-factor is defined in terms of
the Zeeman splitting of the heavy-fermion dispersion, DEkg 5

jEkg"2 Ekg#j5 gkg(h)mBB, where g g [1, 4] is a band index.
Figure 3a shows the Fermi-surface-averaged g-factor, defined by

�g(h)~

P
kg gkg hð Þd Ekg


 �
P

kg d Ekg


 �
and calculated within the mean-field hastatic model, as a function
of field angle to the c axis, choosing the lower-bound estimate
D/TK < 30.

Broken time-reversal and nematicity
Another key aspect of the hastatic picture is that there must be time-
reversal symmetry breaking in both the hidden-order and the AFM
phases, manifested by a staggered moment; in the AFM phase this
leads to a large c-axis f-electron moment, but in the hidden-order
phase it becomes a small transverse moment carried by conduction
electrons, ~mc~{gmBTr~sGc k,kzQð Þ, where Gc is the conduction-
electron Green’s function (Supplementary Information). The small
magnitude of the induced moment is a consequence of the Clogston–
Anderson compensation theorem, which states that changes in the
conduction-electron magnetization are set by the same ratio, TK/D,
that determines the g-factor anisotropy44. There will also be a small
mixed-valent contribution from the excited Kramers doublet,
~m1! Y{~sY

� �
. The angle of the moments in the plane is controlled

by the internal hastatic angle, w. Figure 3b shows the temperature
dependence of the in-plane magnetic moment, mH, calculated for a
case where D/TK < 30, for which mH(0) 5 0.015mB, an upper bound
for the predicted conduction-electron moment. Neutron scattering
measurements on URu2Si2 have placed bounds on the c-axis magnet-
ization of the f electrons using a momentum transfer, Q, in the basal
plane. Detection of an mH(0) carried by conduction electrons, with a
small scattering form-factor, will require high-resolution measure-
ments with a c-axis momentum transfer. We note that there have
been reports from muon spin relaxation and NMR measurements45,46

of very small intrinsic basal-plane fields in URu2Si2, which are con-
sistent with this theory.

Although the conduction electrons develop a magnetic moment,
in the hastatic-ordered state, the non-Kramers 5f 2 state does not
develop an ordered dipole or quadrupolar moment, because both
the z component and the transverse moment of the pseudovector
x{~sx
� �

~0 identically vanish. In the microscopic model, the quad-
rupolar moments vanish because of the d-wave form factor between
the C6 and C7{ channels (Supplementary Information). The absence
of a charge quadrupole implies that there will be no lattice distortion
associated with hastatic order. By contrast, hastatic order does in-
duce a weak broken tetragonal symmetry in the spin channel. In
the hidden-order state, the interchannel components of the hastatic
t matrix, V̂6V̂{7!sxzsy , break tetragonal symmetry in the spin chan-
nel, resulting in a non-zero spin susceptibility within the conduction
fluid

xxy~{ gmBð Þ2TrsxGc k,kzQð ÞsyGc kzQ,kð Þ

! TrV̂6V̂{7
 �2

of a magnitude of order (TK=D)2, which onsets at the hidden-order
temperature as jYj4 < (THO 2 T)2 as shown in Fig. 3c.

Hastatic order also manifests itself as an anisotropic hybridization
gap, which vanishes along lines in momentum space, giving rise to a
V-shaped density of states due to the partial gapping of the Fermi
surface, as shown in Fig. 4, which will be smeared out by disorder in
the real material. The anisotropy of the hybridization also breaks tet-
ragonal symmetry, giving rise to a energy-dependent nematicity, g(E),
that peaks over a narrow energy window around the Kondo resonance.
Some of this nematicity is present at the Fermi surface, accounting for
the splitting seen in quantum oscillation frequencies22 and cyclotron
resonance experiments47. An ideal way to verify this prediction is to use
scanning tunnelling spectroscopy, where the measured differential
conductivity, dI=dV!A eV,xð Þ is proportional to the local density of
states A eV ,xð Þ at position x on the surface. A measure of the broken
tetragonal symmetry is provided by the ‘nematicity’

g Vð Þ~ (dI=dV)(x,y) sgn xyð Þ

dI=dVð Þ2{ dI=dV
 �2

� �1=2

Here x and y are the coordinates relative to the centre of the unit cell
and the overbar denotes an average over the unit cell. The resonant
scattering of the hastatic order causes this quantity to vary rapidly as a
function of voltage, over an energy range of order the Kondo temper-
ature TK. Figure 4 shows the variation of the nematicity, calculated
within our model of hastatic order. The nematicity is found to peak at
the Kondo resonance, at a value of approximately 50%.
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Figure 3 | Magnetic response of hastatic order. a, Polar plot of the calculated
g-factor, g(h), averaged over the Fermi surface, as a function of magnetic field
angle, h (see Supplementary Information for details), compared with results of
ref. 20 (overlaid in green). b, As a consequence of the broken time-reversal
symmetry, we predict a staggered conduction-electron moment that onsets at
the HO transition with a linear, THO 2 T temperature dependence (staggering
pattern shown in inset). In the plot, the moment is expressed in Bohr
magnetons per formula unit. The magnitude of this moment is governed by TK/
D < 0.01mB/U, and its orientation is fixed by the way the uniform magnetic
susceptibility breaks tetragonal symmetry. c, We calculated the tetragonal
symmetry breaking component of the uniform susceptibility, xxy(T). To
compare our results with those of ref. 18 (overlaid in green), we plotted the
twofold oscillation amplitude of the magnetic torque, A (black), where
A cos (2w):t2w=V~{(m0H2=V) cos (2w)xxy(T). This amplitude is
proportional to (THO 2 T)2 just below the hidden-order transition. For details
of our calculation, including parameter choices, see Supplementary
Information.
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Beyond mean-field theory
So far we have focused on the mean-field consequences of hastatic
order. The recently observed softening of the commensurate longit-
udinal spin fluctuations at THO (ref. 48) suggests that hastatic order
‘melts’ via phase fluctuations (the hastatic-order parameter vanishes
but correlations remain). Although the hybridization spinor itself,
ÆYæ, can become non-zero only below the phase transition at THO,
we expect that its amplitude, ÆY{Yæ, will have a non-zero value to
higher temperatures. Because Y{~sY

� �
remains zero above THO, only

the non-symmetry-breaking (uniform, intrachannel) components of
the hybridization can develop: V̂6V̂{6 and V̂7V̂{7 will emerge via a cross-
over at a higher temperature, T*, to create an incoherent Fermi liquid,
consistent with the heavy mass inferred from thermodynamic and
optical measurements1,17 and the development of Fano signatures in
both scanning and point-contact tunnelling spectroscopy14–16. The
symmetry-breaking, interchannel components, V̂6s1V̂{7 , will always
develop precisely at the hidden-order transition. Another aspect of
experiments that is not covered by our mean-field description is the ob-
servation of gapped, low-energy incommensurate fluctuations around
a Q-vector Q*5 (1 6 0.4, 0, 0) in the hidden-order phase33,35,48,49, which
seems to be a sign of an unfulfilled predisposition towards an incom-
mensurate phase, probably driven by partial Fermi surface nesting.
These effects lie beyond a mean-field description, but would emerge
from the Gaussian fluctuations about the mean-field theory.

Although we have discussed hastatic order in the context of
URu2Si2, it should be a more widespread phenomenon associated
with hybridization in any f-electron material whose unfilled f shell
contains a geometrically stabilized non-Kramers doublet. As such, we
expect realizations of hastatic order in other 5f uranium and 4f pra-
seodymium intermetallic compounds.
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8. Pépin, C., Norman, M. R., Burdin, S. & Ferraz, A. Modulated spin liquid: a new
paradigm for URu2Si2. Phys. Rev. Lett. 106, 106601–106604 (2011).

9. Yuan, T., Figgins, J. & Morr, D. K. Hidden order transition in URu2Si2: evidence for
the emergence of a coherent Anderson lattice from scanning tunneling
spectroscopy. Phys. Rev. B 86, 035129–035134 (2012).

10. Dubi, Y. & Balatsky, A. V. Hybridization wave as the ‘hidden order’ in URu2Si2. Phys.
Rev. Lett. 106, 086401–086404 (2011).

11. Fujimoto, S. Spin nematic state as a candidate of the hidden order phase of
URu2Si2. Phys. Rev. Lett. 106, 196407–196410 (2011).

12. Ikeda, H. et al.Emergent rank-5 ‘nematic’ order in URuSi2. Nature Phys. 8, 528–533
(2012).

13. Santander-Syro, A. F. et al. Fermi-surface instability at the ‘hidden order’ transition
of URu2Si2. Nature Phys. 5, 637–641 (2009).

14. Schmidt, A.R. et al. Imaging the Fano lattice to ‘hidden order’ transition inURu2Si2.
Nature 465, 570–576 (2010).

15. Aynajian, P. et al. Visualizing the formation of the Kondo lattice and the hidden
order in URu2Si2. Proc. Natl Acad. Sci. USA 107, 10383–10388 (2010).

16. Park, W. K. et al. Fano resonance and hybridization gap in Kondo lattice URu2Si2.
Phys. Rev. Lett. 108, 246403 (2012).

17. Nagel, U. et al. Optical spectroscopy shows that the normal state of URu2Si2 is an
anomalous Fermi liquid. Proc. Natl Acad. Sci. USA 109, 19161–19165 (2012).

18. Okazaki, R. et al. Rotational symmetry breaking in the hidden order phase of
URu2Si2. Science 331, 439–442 (2011).

19. Hassinger, E. et al. Similarity of the Fermi surface in the hidden order state and in
the antiferromagnetic state of URu2Si2. Phys. Rev. Lett. 105, 216409–216412
(2010).

20. Altarawneh, M.M. et al.Sequential spin polarizationof theFermi surface pockets of
URu2Si2 and its implications for the hidden order. Phys. Rev. Lett. 106,
146403–146416 (2011).

21. Ramirez, A. P. et al. Nonlinear susceptibility as a probe of tensor spin order in
URu2Si2. Phys. Rev. Lett. 68, 2680–2683 (1992).

22. Ohkuni, H. et al. Fermi surface properties and de Haas-van Alphen oscillation in
both the normal and superconducting mixed states of URu2Si2. Philos. Mag. B 79,
1045–1077 (1999).

23. Brison, J. P. et al. Anisotropy of the upper critical field in URu2Si2 and FFLO state in
antiferromagnetic superconductors. Physica C 250, 128–138 (1995).

24. Altarawneh, M. M. et al. Superconducting pairs with extreme uniaxial anisotropy in
URu2Si2. Phys. Rev. Lett. 108, 066407–066410 (2012).

25. Goremychkin, E. A. et al. Magnetic correlations and the anisotropic Kondo effect in
Ce12xLaxAl3. Phys. Rev. Lett. 89, 147201–147204 (2002).

26. Flint, R., Chandra, P. & Coleman, P. Basal-plane nonlinear susceptibility: a direct
probe of the single-ion physics in URu2Si2. Phys. Rev. B 86, 155155–155160
(2012).

27. Nieuwenhuys, G. J. Crystalline electric field effects in UPt2Si2 and URu2Si2. Phys.
Rev. B 35, 5260–5263 (1987).

28. Zołnierek, Z. & Troc, R. Magnetic properties of tetragonal uranium componds. I.
The U2N2Z ternaries. J. Magn. Magn. Mater. 8, 210–222 (1978).

29. Ohkawa, F. J. & Shimizu, H. Quadrupole and dipole orders in URu2Si2. J. Phys.
Condens. Matter 11, L519–L524 (1999).

30. Sakurai, J. J. Modern Quantum Mechanics rev. edn 266–282 (Addison-Wesley,
1994).

31. Amitsuka, H. et al. Pressure-temperature phase diagram of the heavy-electron
superconductor URu2Si2. J. Magn. Magn. Mater. 310, 214–220 (2007).

32. Jo, Y. J. et al. Field-induced Fermi surface reconstruction and adiabatic continuity
between antiferromagnetism and the hidden-order state in URu2Si2. Phys. Rev.
Lett. 98, 166404 (2007).

33. Villaume, A. et al. Signature of hidden order in heavy fermion superconductor
URu2Si2: resonance at the wave vector Q0 5 (1, 0, 0). Phys. Rev. B 78, 012504
(2008).

34. Haule, K. & Kotliar, G. Complex Landau-Ginzburg theory of the hidden order in
URu2Si2. Europhys. Lett. 89, 57006 (2010).

35. Broholm, C. et al. Magnetic excitations in the heavy-fermion superconductor
URu2Si2. Phys. Rev. B 43, 12809–12822 (1991).

36. Miyako, Y. et al. Magnetic properties of U(Ru12xRhx)2Si2 single crystals (0 # x # 1).
J. Appl. Phys. 70, 5791 (1991).

37. Cox, D. L. & Jarrell, M. The two-channel Kondo route to non-Fermi liquids. J. Phys.
Condens. Matter 8, 9825–9853 (1996).

38. Cox, D. L. & Zawadowski, A. Exotic Kondo Effects in Metals (Taylor & Francis, 2002).
39. Coleman, P. A new approach to the mixed valence problem. Phys. Rev. B 29,

3035–3044 (1984).
40. Coleman, P., Tsvelik, A. M., Andrei, N. & Kee, H. Y. Co-operative Kondo effect in the

two-channel Kondo lattice. Phys. Rev. B 60, 3608–3628 (1999).
41. Hoshino, S., Otsuki, J. & Kuramoto, Y. Diagonal composite order in a two-channel

Kondo lattice. Phys. Rev. Lett. 107, 247202–247205 (2011).

I II III

IIIIII

V (mV)

Atot
Af
Ac

η

1.2

0.6

0.4

0.2

0.8

–3 –2 –1 1 2 3 4

a

b c d

Figure 4 | Density of states and resonant nematicity predicted by theory.
a, Density of states (arbitrary units) as a function of energy predicted by model
calculation (blue line), showing f-electron and conduction-electron
components. Red line, voltage dependence of nematicity, g(V), in model
calculation of scanning tunnelling spectrum. b–d, Spatial dependence of
density of states for selected bias voltages in model calculation of scanning
tunnelling spectrum, showing the resonant character of the nematicity.
Voltages I, II and III are located at the center, the maximum and the shoulder of
the density of states, respectively.

ARTICLE RESEARCH

3 1 J A N U A R Y 2 0 1 3 | V O L 4 9 3 | N A T U R E | 6 2 5

Macmillan Publishers Limited. All rights reserved©2013



42. Bolech, C. & Andrei, N. Solution of the two-channel Anderson impurity model:
implications for the heavy fermion UBe13. Phys. Rev. Lett. 88, 237206–237209
(2002).

43. Coleman, P., Marston, J. B. & Schofield, A. J. Transport anomalies in a simplified
model for a heavy-electron quantum critical point. Phys. Rev. B 72, 245111
(2003).

44. Anderson,P.W.Localizedmagnetic states inmetals.Phys.Rev.124,41–53 (1961).
45. Amitsuka, H. et al. Inhomogeneous magnetism in URu2Si2 studied by muon spin

relaxation under high pressure. Physica B 326, 418–421 (2003).
46. Bernal, O. O. et al. Ambient pressure 99Ru NMR in URu2Si2: internal field

anisotropy. J. Magn. Magn. Mater. 272–276, E59–E60 (2004).
47. Tonegawa, S. et al. Cyclotron resonance in the hidden-order phase of URu2Si2.

Phys. Rev. Lett. 109, 036501 (2012).
48. Niklowitz, P. G. et al. Role of commensurate and incommensurate low-energy

excitations in the paramagnetic to hidden-order transition of URu2Si2. Preprint at
http://arxiv.org/abs/1110.5599 (2011).

49. Wiebe, C. R. et al. Gapped itinerant spin excitations account for missing entropy in
the hidden order state of URu2Si2. Nature Phys. 3, 96–99 (2007).

Supplementary Information is available in the online version of the paper.

Acknowledgements An early version of this work was begun in collaboration with
P. Fazekas, since deceased. We thank N. Andrei, S. Burdin, B. Coleman, L. Greene,
N. Harrison, K. Haule, G. Kotliar, P. Lee, G. Luke, Y. Matsuda, J. Mydosh, P. Niklowitz,
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