
PHYSICAL REVIEW B 89, 094417 (2014)

Emergent criticality and Friedan scaling in a two-dimensional frustrated
Heisenberg antiferromagnet

Peter P. Orth,1 Premala Chandra,2 Piers Coleman,2,3 and Jörg Schmalian1,4

1Institute for Theory of Condensed Matter, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
2Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA

3Hubbard Theory Consortium and Department of Physics, Royal Holloway, University of London, Egham,
Surrey TW20 0EX, United Kingdom

4Institute for Solid State Research, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
(Received 12 December 2013; revised manuscript received 8 February 2014; published 19 March 2014)

We study a two-dimensional frustrated Heisenberg antiferromagnet on the windmill lattice consisting of
triangular and dual honeycomb lattice sites. In the classical ground state, the spins on different sublattices are
decoupled, but quantum and thermal fluctuations drive the system into a coplanar state via an “order from
disorder” mechanism. We obtain the finite temperature phase diagram using renormalization group approaches.
In the coplanar regime, the relative U(1) phase between the spins on the two sublattices decouples from the
remaining degrees of freedom, and is described by a six-state clock model with an emergent critical phase.
At lower temperatures, the system enters a Z6 broken phase with long-range phase correlations. We derive
these results by two distinct renormalization group approaches to two-dimensional magnetism: Wilson-Polyakov
scaling and Friedan’s geometric approach to nonlinear sigma models where the scaling of the spin stiffnesses is
governed by the Ricci flow of a 4D metric tensor.
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I. INTRODUCTION

Two-dimensional systems with continuous symmetry and
short-range interactions obey the Hohenberg-Mermin-Wagner
theorem [1,2] and thus exhibit true long-range continuous
order only at strictly zero temperature. Nevertheless, it is
now known that (geometrically) frustrated two-dimensional
(2D) Heisenberg spin systems can sustain long-range discrete
order at finite temperatures [3–10]. More specifically short-
wavelength thermal fluctuations select maximum entropy
states from the degenerate ground-state manifolds of frustrated
spin systems that break lattice symmetries and thus have
discrete order parameters, a phenomenon known as “order
from disorder” [11–18].

The emergent discrete order parameter is defined as the rel-
ative orientation of spins and remarkably long-range discrete
order exists despite a finite magnetic correlation length of the
underlying Heisenberg spin system. This fluctuation-induced
discrete ordering leads to finite temperature Z2 Ising and Z3

Potts phase transitions in frustrated square and honeycomb
lattices respectively [3–6,8,10]. Such “order from disorder” is
well-established in the J1-J2 Heisenberg model on the square
lattice [3–5,16] and has recently found unexpected application
in the physics of iron-based superconductors [19–23], where it
induces a nematic structural phase transition of the lattice in the
absence of long-range magnetic order. Emergent discrete order
occurs in a range of strongly correlated materials [8,24–35].

In this paper, we ask whether an isotropic Heisenberg spin
system in two dimensions may also host a critical phase
with algebraic order and associated Berezinskii-Kosterlitz-
Thouless (BKT) phase transitions [36,37]. We note that there
is consistency with the Hohenberg-Mermin-Wagner theorem,
since in the BKT phase there is algebraic ordering and
thus no continuous broken symmetry. In fact, the correlation
length of the Heisenberg spin system is always finite and
the associated magnetic order parameter thus exhibits only
short-range correlations.

In order to construct such a Hamiltonian, we exploit the
fact that discrete Zp clock models host a critical phase
for p � 5 [38,39]. In this paper we study a frustrated 2D
Heisenberg model with an emergent Z6 order parameter. The
order parameter describes the relative orientation of spins
on different sublattices. Using a renormalization group (RG)
analysis, we show that these emergent discrete degrees of
freedom are described by a Z6 clock model that admits

FIG. 1. (Color online) Schematic phase diagram summarizing
the main results of our study of the “windmill” Heisenberg model
of interpenetrating triangular and honeycomb lattices. The phase
behavior of its square-lattice counterpart is also shown (on the left)
for reference where in each case J1 and J2 refer to the inter and
intralattice couplings, respectively. We note that the development of
fluctuation-induced collinearity is a transition in the square-lattice
problem whereas its analog in the windmill model, the development
of coplanarity, is a crossover. (I) and (II) refers to the development of
coplanarity and criticality in the windmill model and are discussed
extensively in the main text and in the Appendices.
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a critical phase bracketed by two Berezinskii-Kosterlitz-
Thouless (BKT) transitions at finite temperature [38,39]. In
addition to discussing details of this work reported briefly
elsewhere [40], we include a self-contained presentation of a
“Ricci flow” methodology to study classical 2D magnetism
based on Friedan’s geometric approach to nonlinear sigma
models [41,42]; at each stage all results are compared with
those obtained by Wilson-Polyakov scaling [43–46].

Generalizing previous work on the J1-J2 Heisenberg model
on the square lattice [3–5], here we study a J1-J2 Heisenberg
Hamiltonian on interpenetrating triangular and honeycomb
lattices that we call the “windmill” lattice Heisenberg model
(see Fig. 2). Both models consider coupling of spins on a given
lattice to spins on the corresponding dual lattice. Exchange
couplings exist between all nearest-neighbor pairs within both
sublattices and between the sublattices. The couplings within
each triangular and honeycomb sublattice Jtt and Jhh play the
role of J2, while the coupling between different sublattices Jth

corresponds to J1.
In Fig. 1, we display the main results of this paper as

a schematic phase diagram using the square J1-J2 model
as a reference. At high temperatures T � J2, both spin
systems display free moment behavior, and then at T ∼ J2,
they each become two decoupled lattices where the local
exchange field of one of the sublattice on the spins on the
other sublattice is identically zero. In the simpler square
lattice case, a renormalization group analysis indicates that
at low temperatures, short-wavelength thermal and quantum
fluctuations break the Z4 lattice symmetry down to Z2 and
select two collinear states from the ground-state manifold
leading to long-range discrete (Z2) order. A finite Z2 phase
transition occurs at T ∼ J2

ln( J2
J1

)
when the domain wall thickness

separating the two states is less than the Heisenberg spin
correlation length [3–5,16].

The corresponding physics in the windmill lattice model
occurs in two distinct stages, as indicated schematically in
Fig. 1. At T ∼ J2, the two sublattices are decoupled leading to
a SO(3) × O(3)/O(2) order parameter. Its low-energy descrip-
tion, derived from its microscopic Heisenberg Hamiltonian,
takes the form of a nonlinear sigma model (NLSM) that
contains two additional potential terms arising from short-
wavelength quantum and thermal spin-wave fluctuations. One
of these potential terms forces the spins on both sublattices to
be coplanar (I in Fig. 1) at a crossover temperature Tcp ∼ J2

ln( J2
J1

)

with SO(3) × U(1) order where no symmetry is explicitly
broken; the other potential term sets a sixfold potential in
the plane. Using a RG analysis, we explicitly show that in the
coplanar state the U(1) degrees of freedom decouple to form an
XY model with a sixfold potential. Following the well-known
RG program of this BKT problem [36–39], we find that the
vortex-unbinding transition temperature to enter the critical
phase is of the same order as that of the coplanar crossover.
Ultimately at low temperatures, the sixfold potential term
becomes relevant, and the system enters a Z6 broken phase;
the two transitions bracketing the critical phase are both in the
BKT universality class. To our knowledge, this is the first iden-
tification and characterization of a 2D isotropic Heisenberg
spin system with a finite temperature power-law correlated

phase and the associated BKT transitions. We do note that such
a scenario was previously found on a Kitaev-Heisenberg model
resulting from a conceptually different mechanism [30–33],
and also for discrete spins on the triangular lattice [47,48] as
well as for stacks of triangular lattices [49].

A novel feature of our work is that we apply Friedan’s
gravitational scaling approach [41] to 2D classical magnetism;
this is not just an amusing conceptual link but, with the
use of the MATHEMATICA script supplied here, is a practical,
efficient way to calculate the renormalization group flows
of the spin stiffnesses of a 2D antiferromagnet without the
detailed book-keeping associated with the Wilson-Polyakov
methodology. In the Friedan approach, the configurations of
the 2D spin system described by four Euler angles correspond
to the world sheet of a string evolving in four dimensions
where the metric is determined by the spin stiffnesses. Using
Friedan’s coordinate-independent approach to nonlinear sigma
models [41], we then identify the renormalization of the
spin stiffnesses with the Ricci flow of the corresponding
metric tensor; all results in this paper are presented using
both the Wilson-Polyakov renormalization group [43–46]
and Friedan’s coordinate-independent approach [41] with
technical details in the Appendices. Using this analogy, the
decoupling of the U(1) phase in our system can be viewed as
a toy model for compactification of a four-dimensional string
theory [50–53]; we note that this nontrivial decoupling of the
U(1) phase is essential for the occurrence of the emergent
critical phase.

We now describe the modular structure of this paper. In
Sec. II, we introduce the microscopic Heisenberg Hamiltonian
of the windmill model and compute its spin-wave spectrum.
We also derive its long-wavelength action that takes the form
of a coupled SO(3) × O(3)/O(2) NLSM.

In Sec. III, we outline the renormalization group (RG)
program that we use to determine the system’s phase diagram,
discussing key features of the Wilson-Polyakov and the
Friedan approaches to scaling and presenting the main results
of the subsequent analysis obtained with these two distinct
methods.

High-temperature behavior, where the two sublattices are
approximately uncoupled, is studied in Sec. IV; we derive and
analyze the corresponding RG scaling equations of the spin
stiffnesses and the potential terms coupling the two sublattices.
“Order from disorder” soon drives the system into a coplanar
state, where spins on the honeycomb and the triangular lattice
are lying in the same plane in spin space.

In Sec. V, we derive and analyze the scaling of the
spin stiffnesses in the coplanar regime where the system is
described by a coupled SO(3) × U(1) NLSM. We show
that the U(1) relative in-plane angle between triangular and
honeycomb spins decouples, and analyze the resulting low-
energy action of this emergent U(1) degree of freedom in
Sec. VI; it takes the form of a Z6 clock model where the
sixfold potential results from the discrete lattice environment.
We adapt a BKT RG analysis to our specific situation and show
that the system exhibits two consecutive BKT phase transitions
which frame a critical phase with power-law correlations in the
relative U(1) angle.

At low temperatures, the sixfold potential is RG relevant
and leads to a spontaneous breaking of the Z6 symmetry
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and long-range discrete order. We summarize our results,
discuss experimental realizations and open questions for future
research in Sec. VII. We present predominantly results in the
main text; technical details of the calculations, using both the
Wilson-Polyakov RG and the Friedan coordinate-independent
approaches are provided in several Appendices. We also
provide electronic Supplemental Material [54] in the form of
a MATHEMATICA file that includes the calculation of the RG
equations using the Friedan approach.

II. WINDMILL LATTICE HEISENBERG
ANTIFERROMAGNET

Here, we introduce the “windmill” model, an antiferromag-
netic Heisenberg model on interpenetrating two-dimensional
triangular and honeycomb lattices, shown in Fig. 2(a), that we
study in detail in this paper. The underlying Bravais lattice
is triangular with primitive lattice vectors a1 = a0

2 (1,
√

3)
and a2 = a0

2 (−1,
√

3). It contains three basis sites per unit
cell at positions bt = a0(0,2/

√
3), bA = (0,0), and bB =

a0(0,1/
√

3), where t refers to the triangular and A,B to the
two honeycomb basis sites. In the following, we set the lattice
constant a0 = 1. The Hamiltonian consists of nearest-neighbor
coupling terms on the same sublattice as well as between the
two sublattices, and is given by

H = Htt + HAB + HtA + HtB (1)

with

Hab = Jab

NL∑
m=1

∑
{δab}

Sa(rm) · Sb(rm + δab). (2)

Here, Sa(rm) denote spin operators at Bravais lattice site
rm and basis site a ∈ {t,A,B} and NL is the number
of Bravais lattice sites. Antiferromagnetic Heisenberg ex-
change coupling constants Jab > 0 act between pairs of
nearest-neighbor spins on sublattices a and b. The vectors

FIG. 2. (Color online) (a) Windmill lattice Heisenberg model
consisting of spins Sa on sites of both triangular (a = t) and hon-
eycomb (a = A,B) lattice. Exchange interaction Jab exists between
all nearest-neighbor spins with a,b ∈ {t,A,B}. Interaction between
spins on different sublattices JtA = JtB (dashed links, for clarity only
shown in one plaquette) is assumed to be weaker than between same
sublattice spins Jtt ,JAB (solid links). (b) Definition of angles α and
β that describe relative orientation of magnetic order parameter n for
O(3)/O(2) Néel order on the honeycomb lattice and triad {t1,t2,t3}
for the SO(3) order on the triangular lattice. Note that β = π/2
corresponds to coplanar order with honeycomb (blue) and triangular
spins (red) sharing a common plane.

{δab} point between nearest neighbors on sublattices a and
b. Explicitly, they are given by {δt t } = {±a1,±a2,±(a1 −
a2)}, {δAB} = {(0,0),−a1,−a2}, {δtA} = {a1,a2,a1 + a2},
and {δtB} = {(0,0),a1,a2}.

In this paper, we always set JtA = JtB ≡ Jth and focus
on the regime where the Heisenberg exchange couplings Jth

between spins on different sublattices are smaller than the
couplings within the two sublattices:

Jth < Jtt ,Jhh. (3)

We write Jhh ≡ JAB for clarity. This situation is realized,
for example, in a system of two layers with weak inter-layer
couplings; we will discuss possible experimental realizations
in Sec. VII. A good starting point for our analysis is therefore
the ground state of individual honeycomb and triangular
sublattices, and in the following sections, we derive the
low-energy action around the classical ground state.

A. Order parameter symmetry and long-wavelength
gradient action

Let us start from the ground state of decoupled sublattices,
i.e., considering Jth = 0. This state will turn out to be stable
up to some critical coupling Jth > 0. In agreement with the
Hohenberg-Mermin-Wagner theorem [1,2], magnetic order
only occurs at strictly zero temperature. At T = 0, the honey-
comb lattice exhibits uniaxial Néel order since it is a bipartite
lattice. The magnetic order is described by a normalized vector
n = (nx,ny,nz) that points along the magnetization on the A

sites. The magnetization on the B sites points along (−n).
The symmetry of the honeycomb order parameter is therefore
n ∈ O(3)/O(2). The magnetic ground state of the triangular
lattice, on the other hand, is noncollinear. Neighboring spins
on a plaquette arrange in a 120◦ configuration with respect
to each other (see Fig. 2). The order is described by three
orthonormal vectors {t1,t2,t3}, where we take t1 and t2 to span
the plane of the triangular magnetization. The chirality of the
magnetic order is encoded in the direction of the third vector
t3 = t1 × t2 [or t3 = −(t1 × t2)]. We may group the vectors
into an orthogonal matrix t = (t1,t2,t3), and the chirality is
thus determined by the sign of det(t) = ±1. For smooth spin
configurations, which we restrict ourselves to, the sign of det(t)
cannot change by continuity and the order parameter manifold
reads t ∈ SO(3).

At finite temperatures T > 0, magnetic correlations decay
exponentially on both sublattices over finite correlation length
scales, ξh and ξt , for the honeycomb and the triangular lattices,
respectively. The order parameters n(x) and t(x) are now
spatially fluctuating. We assume that the magnetic correlation
length is larger than the lattice spacing ξh,ξt � a0, which is
the case for temperatures T < Jtt ,Jhh (see Fig. 1).

The gradient part of the long-wavelength action takes
the form of a O(3)/O(2) × SO(3) NLSM. As we derive in
Appendix A, it reads

S0 =
∫

d2x

⎡
⎣K

2
(∂μn)2 +

3∑
j=1

Kj

2
(∂μ tj )2

⎤
⎦ . (4)

This equation describes the elastic energy cost of long-
wavelength spatial spin-wave fluctuations of the order
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parameter fields. The dimensionless elastic energy scale is
set by the spin stiffnesses {K,Kj }, which are determined
microscopically by the ratio of Heisenberg exchange couplings
Jab to temperature T . In a 1/S expansion, where S is the length
of the spins, we show in Appendix A that the spin stiffnesses
are given by [55–57]

K = JhhS
2

√
3T

, (5)

K1 = K2 =
√

3JttS
2

4T
, (6)

K3 = 0. (7)

Since the coupling constant K3 will be generated during the
RG flow, it is included already in the beginning.

In contrast to the J1-J2 square lattice case [3], in the
“windmill model” there are no gradient terms coupling
the different sublattices and S0 is independent of Jth (see
Appendix A3). In the J1-J2 square lattice model, the long-
wavelength action includes a gradient coupling between the
two antiferromagnetic sublattices of the form [3]

Ssq.;coupling ∼
∫

d2x(∂xn1 · ∂yn2 − ∂yn1 · ∂xn2), (8)

where n1 and n2 are the sublattice magnetizations of the two
interpenetrating antiferromagnets. This term is invariant under
time-reversal and the point-group symmetries of the lattice.
One might expect a similar coupling of the form

Sc1 ∼
∫

d2x καβ(∂α t1,2 · ∂βn) (9)

between n and the “in-plane” components of the SO(3) order
parameter t1 and t2, or alternatively,

Sc2 ∼
∫

d2x καβ(∂α t3 · ∂βn) (10)

between the third component of the SO(3) order parameter
and n. Here, καβ refers to the coupling between different
sublattices. However, Eq. (9) is not invariant under 60◦ lattice
rotations and Eq. (10) is not invariant under time reversal;
this is because n reverses under time-reversal whereas t3,
a pseudovector, does not. Therefore coupling terms like
Sc1 and Sc2 are not permitted by symmetry. In this way,
we can qualitatively eliminate the possibility of gradient
couplings between the two sublattices, and a rigorous analysis
is presented in Appendix A3.

B. Potential terms in the long-wavelength action

In the absence of fluctuations, i.e., for classical spins at
zero temperature, one easily sees that in the classical ground
state, shown in Fig. 2, the exchange fields at each site from all
neighboring spins exactly cancel each other, both for triangular
and honeycomb spins. Since apart from global O(3)/O(2) ×
SO(3) transformations the ground state is nondegenerate, we
can conclude by continuity that it remains the classical ground
state of the system for a range of nonzero couplings Jth. We
have confirmed this by classical Monte Carlo simulations and
find that the 120◦ × Néel spin configuration depicted in Fig. 2
is the classical ground state up to Jth/

√
JttJhh = 1 [58].

Quantum and thermal fluctuations, on the other hand,
induce a coupling of the magnetic order parameters on
different sublattices. This is the well-known “order-from-
disorder” mechanism. It is a general principle that spins tend
to align themselves perpendicular to the fluctuating Weiss
field of the surrounding spins on the other sublattice [15],
thereby maximizing the coupling of their respective fluctuating
exchange fields. Since the fluctuating Weiss field of a given
spin points perpendicular to the direction of this spin, it follows
that spins on different sublattices prefer a “maximally aligned”
relative configuration. Below we will find this from an explicit
calculation.

In addition to the gradient terms S0, the long-wavelength
action thus contains potential terms arising from those short-
wavelength spin fluctuations [3]. They probe the local envi-
ronment of the spins, and favor a certain relative orientation
of the two order parameters n(x) and t(x). Below, we derive
the potential terms in a 1/S expansion and find

Sc = 1

2

∫
d2x[γ cos2(β) + λ sin6(β) sin2(3α)] (11)

with γ > 0 and λ > 0. The azimuth α and polar angle β

describe the relative orientation of spins on different sublattices
as defined in Fig. 2(b). In terms of the local order parameter
triads, the two potential terms read

γ cos2(β) = γ (n · t3)2 (12)

and

λ sin6(β) sin2(3α) = λ[(n · t2)3 − 3(n · t2)(n · t1)2]2. (13)

The amplitude γ describes the tendency towards a coplanar
spin configuration where the honeycomb spins lie everywhere
in the plane of the spatially varying triangular magnetization
n(x) ⊥ t3(x). The sixfold potential term λ energetically favors
a configuration where the honeycomb spins point along one of
the six equivalent directions parallel or antiparallel to one of
the three neighboring triangular spins on a plaquette.

The potential terms in Eq. (11) are derived by calculating
corrections to the free energy due to spin fluctuations. We
perform a Holstein-Primakov spin-wave expansion around the
classical ground state in Fig. 2, which takes both quantum
and thermal fluctuations into account. Details can be found in
Appendix B, where we show that the fluctuation correction
to the free energy δF = F (Jth) − F (Jth = 0) as a function of
angles α and β takes the form

δF (α,β) = T
∑

p∈MBZ

∑
i

ln

{
sinh[Ei, p(Jth)/2T ]

sinh[Ei, p(0)/2T ]

}
. (14)

Here, p is taken from the magnetic Brillouin zone (MBZ) and
Ei, p(Jth,α,β) is the spin-wave energy of the ith band, which
is numerically known exactly. We present δF (α,β) for fixed
values of Jab and T in Figs. 3(a) and 3(b). From the free energy
δF , we can identify the coupling action Sc = δF/T with bare
potential strengths

γ = (Jth/J̄ )2 Aγ (Jtt /Jhh,J̄ /T ), (15)

λ = (Jth/J̄ )6 Aλ(Jtt /Jhh,J̄ /T ). (16)
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FIG. 3. (Color online) (a) Fluctuation free energy δF (α,β) for
Jtt = Jhh = 1, Jth = 0.2Jtt , and T = 0.5Jtt . (b) Fluctuation free
energy δF (α,π/2) exhibits sixfold symmetry as function of in-plane
angle α. (c) Coplanar amplitude γ as function of Jth/J̄ exhibits γ ∼
(Jth/J̄ )2 scaling. Plot is for T = 0.5J̄ and includes three different val-
ues of (Jtt ,Jhh) = {(2,0.5),(1,1),(1,4)} (red, green dashed, blue dot-
ted). The dependence on the ratio Jtt /Jhh is weak. (d) Sixfold potential
λ as function of Jth/J̄ exhibits λ ∼ (Jth/J̄ )6 scaling. Parameters are
identical to (c).

We have defined J̄ = √
JttJhh and the dimensionless functions

Aγ and Aλ depend only weakly on the ratio Jtt /Jhh [see
Figs. 3(c) and 3(d)]. While the coplanar term ∝γ appears
already at second order in perturbation theory in Jth/J̄ , the
sixfold potential term ∝λ appears only at sixth order. It
involves interaction of a honeycomb spin with all its three
neighboring triangular spins.

The sign of γ determines whether the magnetization of
the honeycomb lattice tends to lie perpendicular to the plane
of triangular magnetization (γ < 0) or coplanar (γ > 0).
We find γ > 0 favoring coplanarity [see Fig. 3(a)], which
is in agreement with the “order-from-disorder” principle of
“maximal relative alignment” mentioned above. The sixfold
symmetric potential λ, which is only relevant for γ > 0,
requires zooming into Fig. 3(a) as λ/γ ∼ O(J 4

th/J̄
4) 
 1.

This is shown in Fig. 3(b) for the coplanar configuration
β = π/2.

The functions Aγ and Aλ can be exactly calculated
numerically. In Figs. 3(c) and 3(d), we show γ and λ for
different ratios of Jtt /Jhh to show that Aγ and Aλ are only
very weakly dependent on the ratio Jtt /Jhh. Explicit analytic
expressions are obtained by combining an expansion at high
and at low temperatures compared to the bandwidth of the
spin-wave spectrum, where one finds

Aγ = fT (Jtt /Jhh)GT + fQ(Jtt /Jhh)GQ

J̄S

T
, (17)

Aλ = fT (Jtt /Jhh)HT + fQ(Jtt /Jhh)HQ

J̄S

T
(18)

with fT (x) ≈ 0.015√
x

+ 0.98 + 0.005
√

x, GT = 0.95, GQ =
0.09, fQ(x) ≈ − 0.23√

x
+ 1.37 − 0.19

√
x, HT = 5 × 10−3, and

HQ = 2 × 10−4. The form of the functions fT and fQ, which
fulfill fT (1) = fQ(1) = 1, are obtained from a simple fit of the
exact numerical result.

C. Complete long-wavelength action

We arrive at the full long-wavelength action S = S0 + Sc

by combining the gradient terms in Eq. (4) and the potential
terms in Eq. (11):

S =
∫

d2x

⎡
⎣K

2
(∂μn)2 +

3∑
j=1

Kj

2
(∂μ tj )2

⎤
⎦

+ 1

2

∫
d2x[γ cos2(β) + λ sin6(β) sin2(3α)] . (19)

As discussed above, the O(3)/O(2) × SO(3) gradient terms
describe the elastic energy of spatial spin fluctuations and turn
out to be independent of Jth. The potential terms, however,
couple the order parameters n(x) and t(x) of the two sublattices
and depend on the relative orientation of the spins on different
sublattices. The derivation of the action S assumes a classical
ground state of the form depicted in Fig. 2, which is the ground
state of the system for small intersublattice coupling Jth �√

JttJhh [58]. We also assume that the magnetic correlation
lengths on the two sublattices ξt and ξh, respectively, are both
larger than the lattice constant a0, which holds for temperatures
T � J̄ .

III. WILSON-POLYAKOV AND FRIEDAN
RG APPROACHES

The action S in Eq. (19) is the starting point for the
renormalization group (RG) analysis that we perform to
determine the phase diagram of the system. The RG analysis
is separated into three temperature regions, going from high
to low temperatures, as described briefly in the introduction.
In this section we set the stage to perform this RG analysis,
by first describing the two distinct scaling procedures that we
employ.

We want to discuss and contrast the conceptual un-
derpinnings of the two scaling procedures, the Wilson-
Polyakov [16,43–46] and the Friedan approaches [41,42], used
in this paper to follow the renormalization group flows of
the two-dimensional windmill model. Both methods integrate
or “smooth” out the short-wavelength fluctuations in the
magnetization of the spin system, following the resulting flow
of its spin-wave stiffnesses; however, the methodologies are
very different but yield the same results.

In general, the local orientation of the axes of an an-
tiferromagnet are determined by a D dimensional vector
X(x) parametrized by coordinates x in d dimensions. In the
following, we allow for general dimensions d with d = 2
in case of the windmill model. For example, in a simple
uniaxial magnet with order parameter symmetry O(3)/O(2)
the vector X = (θ,φ) is a two-dimensional spin magnitude
containing the spherical coordinates of the magnetization,
whereas for a biaxial helical magnet with order parameter
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symmetry SO(3), X = (θ,φ,ψ) are the three Euler angles that
define the orientation of a local triad of vectors. The gradient
part of the action can then be written as [cf. Eq. (4)]

S0 = 1

2

∫
ddx

D∑
i,j=1

d∑
μ=1

gij [X(x)](∂μXi)(∂μXj ), (20)

where the metric gij (X) define the spin-wave stiffnesses and
the vector X(x) depends on x = (x1,x2, . . . ,xd ), which are
the spatial coordinates in d = 2 + ε dimensions. This is an
Euclidean version of a Nambu-Goto string theory action [51].
Whereas in magnetism x is the physical coordinate and
X is the magnetization, in the context of string theory X
is the string displacement in D-dimensional spacetime and
x = (τ,y1, . . . ,yd−1) is the parameter space where τ is time
and y is the coordinate along the string (d brane).

The basic philosophy underlying Wilson-Polyakov scaling
of two-dimensional spin systems is to divide the spin fluctua-
tions into short- and long-wavelength components, integrating
out the fast degrees of freedom while maintaining the spin
amplitude fixed, a sort of “poor man’s scaling” approach to
magnetism [59,60]. The magnetization X(x) is divided into a
coarse-grained slow long-wavelength component X<(x) and
one due to short-wavelength fluctuations X>(x),

X(x) = X<(x) + X>(x) . (21)

If the Fourier transform of X(x) involves wave vectors
from q ∈ [0,�] then the Fourier transform of X< involves
wave vectors q ∈ [0,�/b], where b = el > 1 is the dilation
factor, while X> involves wave vectors in the small sliver
q ∈ [�/b,�] of momentum space [61]. The action is then
expanded to Gaussian order in the fast fluctuations,

S0[X< + X>] = S0[X<] + δS0

δX>

X> + 1

2
X>

δ2S0

δX2
>

X>.

(22)

By integrating out the fast Gaussian degrees of freedom X>

and rescaling x → x/b, the action is now renormalized; the
renormalizations in the stiffnesses are described by a set of β

functions,

− ∂gij

∂ ln �
≡ ∂gij

∂l
= βij [g] (23)

with l = ln b and

βij = (d − 2)gij + O(g2) . (24)

The first term results from the rescaling of spatial coordinates,
and the terms quadratic in g emerge from the Gaussian integral
over X>.

By contrast, in the Friedan approach [41,42] the action
of the 2 + ε-dimensional spin system is treated as a kind of
“ministring theory” where the coordinates X(x) are regarded
as the coordinates of a string (or “d brane”) in a D-dimensional
target space. In a d = 2 dimensional coordinate space (note
the distinction with the D = 4 dimensional target space that
will be relevant for the windmill model here), we can identify
the first component of x = (x,y) as the time coordinate τ , so
that (x,y) → (τ,y) and X(τ,y) describes the time evolution
of the string coordinate at time τ and at position y along the

FIG. 4. (Color online) Schematic to illustrate the Friedan ap-
proach [41] to the windmill model. (a) The magnetization is in general
a D-dimensional vector where D = 4 for the windmill model. (b) In
Friedan’s methodology, the long-wavelength action of the magnet is
treated as a Nambu-Goto action of a string with coordinates X(τ,y)
moving in a D-dimensional target space. Here, τ refers to the time
and y to the position along the string. For the coplanar regime of
the windmill model the target space is a four-dimensional manifold
S3 × S1 associated with the SO(3) × U(1) symmetry of the action.

string. For the windmill model, as we shall discuss in detail
shortly, the magnetization in the coplanar regime is a function
of four Euler angles and thus is a D = 4 vector; in Fig. 4, we
display a schematic to depict the Friedan approach in this case.

Friedan’s essential observation was that the action of the
system is covariant under coordinate changes in target space,
X → X ′, provided that

gij [X] → g′
ij [X ′] =

∑
k,l

gkl

∂Xk

∂X
′i

∂Xl

∂X
′j . (25)

This is precisely the covariance of a metric tensor

ds2 =
∑
i,j

gij dXidXj (26)

under the coordinate transformation X → X ′. With this identi-
fication, Friedan established a mapping between the renormal-
ization group flows of NLSMs and “Ricci flow” describing the
slow time evolution of a geometric manifold. Friedan reasoned
that since the action S[X] is covariant, the same is true of
the scaling; thus the coefficients of the β function must be
second-rank tensors with the same transformation properties
as the metric tensor gij . Indeed, the only tensors available are
gij itself, and two-component contractions of the Riemann
tensor Rk

lij defined below; this places significant constraints
on the form of the β function. For (2 + ε)-dimensional NLSM,
Friedan showed that the renormalization group flow of the spin
stiffnesses up to two-loop order is given by the Ricci flow of
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the metric tensor [41,42]

dgij

dl
= εgij − 1

2π
Rij − 1

8π2
Ri

klmRjklm , (27)

where repeated indices are summed over. The Riemann tensor
Rk

lij is determined by the Christoffel symbols

�i
jk = 1

2gil(gjl,k + gkl,j − gjk,l) (28)

as

Rk
lij = �k

lj,i − �k
li,j + �k

ni�
n
lj − �k

nj�
n
li . (29)

Here, we use the standard notation gij,k = ∂gij

∂Xk . The leading
order loop contribution of the RG flow is determined by the
Ricci tensor Rij , which is a contraction of the Riemann tensor

Rij = Rk
ikj . (30)

The application of the Friedan approach to two-dimensional
magnetism on a lattice provides a beautiful link between the
statistical mechanics of d = 2 magnetism and the geometry
of a string theory. Integrating out the short-wavelength fluc-
tuations of the magnet, we find that its stiffness renormalizes.
In the Friedan mapping, this corresponds to integrating out
the high-frequency fluctuations of the string. When these
fluctuations are removed, the metric and hence the underlying
geometry of space defined by ds2 = ∑

i,j gij dXidXj evolves
according to Ricci flow. g becomes smaller and the size of
the “universe” decreases; thus the renormalization of the spin-
wave stiffness in a d = 2 Heisenberg magnet is linked with
the compactification of spacetime in a D-dimensional string
theory [50–53]. In the windmill model, we will see later that the
decoupling of the U(1) degrees of freedom to form a decoupled
XY magnet can be viewed from the string perspective as the
formation of a one-dimensional “universe,” decoupled from
its compactified D − 1 = 3 interior dimensions.

As we demonstrate in this paper, the Wilson-Polyakov
and the Friedan scaling approaches yield identical results for
the renormalization flows of the spin stiffnesses. In order
to be self-contained and to introduce the interested reader
to both methodologies, we have included detailed technical
appendices where all results are derived with both approaches,
and as electronic Supplementary Material, we also provide a
MATHEMATICA file that includes the computation of the RG
equations via the Ricci flow [54]. In the main text, however,
we focus mainly on the results of these calculations for the
frustrated windmill model.

IV. RG ANALYSIS AT HIGH TEMPERATURES

In this section, we investigate the windmill model at high
temperatures. The triangular and honeycomb sublattices are
then approximately uncoupled, because the bare potential
values γ,λ 
 1 since Jth/J̄ 
 1. The symmetry of the system
is SO(3) × O(3)/O(2). The RG flow equations are therefore
given by those of the uncoupled honeycomb and triangular
lattices [43,62]. In order for the reader to obtain familiarity with
the Wilson-Polyakov and Friedan scaling methods, we rederive
those equations in Appendix C. As electronic Supplementary
Material we provide a MATHEMATICA file that includes the
computation of the RG equations via Friedan scaling [54].

The potential terms are both RG relevant, since they contain
no derivatives. Thus, they increase exponentially under the RG.
As soon as the coplanar amplitude becomes of order unity
γ (lγ ) � 1, scaling stops and the system undergoes a crossover
into a coplanar regime, which is discussed in Sec. V.

A. Derivation of RG equations

The RG proceeds from the action S in Eq. (19) and succes-
sively integrates out short-wavelength degrees of freedom to
arrive at an effective action S ′ that only contains slow modes.
Those modes dominate the behavior at low temperatures. The
effective action S ′ has the same form as S, but contains
modified parameters {K(l),Ki(l),γ (l),λ(l)} that depend on
the RG flow parameter l that determines the increased lattice
constant of the effective action a(l) = a0e

l . We first bring
the action S into a form amenable to the two RG procedures
discussed above. We then derive the RG equations in the
uncoupled regime. Technical details are given in Appendix C.

To bring the action S into a suitable form to perform the RG
calculation, we first rewrite the action (19) in terms of matrix
fields

t(x) = (t1(x),t2(x),t3(x)) ∈ SO(3) (31)

and

h(x) = (h1(x),h2(x),h3(x)) ∈ SO(3). (32)

Here, n(x) = h1(x) denotes the direction of the staggered
magnetization on the honeycomb lattice, and h2 and h3 are two
orthonormal vectors that complete the local triad describing
magnetic order on the honeycomb lattice. In matrix form, the
action in Eq. (19) reads

S = 1

4

∫
d2x Tr[(∂μQh)T (∂μQh)]

+ 1

2

∫
d2x Tr[Kt (∂μt−1)(∂μt)] + Sc, (33)

where we have defined the matrix Qh = hKhh
−1 and the

diagonal stiffness matrices

Kh = diag(
√

K,0,0), (34)

Kt = diag(K1,K2,K3). (35)

The first (second) term in Eq. (33) describes spins on the
honeycomb (triangular) lattice. In general, the triangular
coupling matrix Kt contains three independent stiffnesses
{K1,K2,K3}, but in our case it holds initially that K1 = K2

and this is preserved during the RG flow.
The first term in Eq. (33) defines the O(3)/O(2) NLSM of

the honeycomb lattice. Here, two elements h(x) and h′(x) =
h(x)r(x) of the coset space are identical, if they only differ by
a (local) rotation r(x) ∈ O(2) around the h1 axis. It is therefore
useful to define the NLSM in terms of the matrix Qh =
hKhh

−1 since Qh is constant if [Kh,h] = 0. A functional
integral over the matrices Qh thus runs automatically over the
coset space O(3)/O(2). Note that a straightforward expansion
shows that the action in Eq. (33) is identical to Eq. (19).
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It will be useful for us to rewrite the action (33) in yet
another form using angular velocities as

S = 1

2

∫
x

{
K
[(

�2
μ

)2 + (
�3

μ

)2]+
3∑

a=1

Ia

(
�̃a

μ

)2

}
+ Sc (36)

with
∫
x

= ∫
d2x and Ia = Kb + Kc where a �= b �= c. Here,

we have defined angular velocities for the order parameter on
the honeycomb and triangular lattice

�μ = h−1(∂μh) = −i

3∑
a=1

�a
μτa, (37)

�̃μ = t−1(∂μt) = −i

3∑
a=1

�̃a
μτa. (38)

The 3 × 3 matrices τa fulfill the SU(2) algebra [τa,τb] =
iεabcτc and take the adjoint form (τa)bc = iεbac. Different
components of the angular velocity are obtained from �a

μ =
i
2 Tr(�μτa) and �̃a

μ = i
2 Tr(�̃μτa). Note the analogy of Eq. (36)

to the action of a spinning top with moments of inertia Ia

around the principal axes [16].
Next, we express the matrix fields t,h in terms of Euler

angles and write

h = e−iφhτ2e−iθhτ3e−iψhτ1 , (39)

t = e−iφt τ2e−iθt τ3e−iψt τ1 . (40)

We use a convention of Euler angles such that the angle
ψh immediately drops out of the action as [Kh,τ1] = 0 and
Qh is independent of ψh. In total, five Euler angles are
required to describe the local orientation of spins, three angles
{φt ,θt ,ψt } for the triangular lattice and two angles {φh,θh}
for the honeycomb lattice, reflecting the SO(3) × O(3)/O(2)
symmetry.

The action is now in a form useful to derive scaling
equations for the spin stiffnesses within both RG schemes; both
methods are discussed in detail in Appendix C. Here, we focus
on Wilson-Polyakov scaling which proceeds by separating t

and h into slow and fast fields, performing an integration over
the fast modes which is followed by momentum and field
rescaling. First, the matrix fields are expressed as a product
of matrices containing only slow and fast components in the
Euler angles: h = h<h> and t = t<t>. Here, h<,t< are rotation
matrices that only contain slowly fluctuating Euler angles

h< = e−iφ<
h τ2e−iθ<

h τ3e−iψ<
h τ1 (41)

and h>,t> contain only fast fluctuating fields

h> = e−iφ>
h τ2e−iθ>

h τ3e−iψ>
h τ1 . (42)

Corresponding equations exist for t< and t>. Then, one
expands to quadratic order in the fast angles and performs
the functional integral over the fast modes. Expanding to
quadratic order corresponds to a one-loop approximation, the
small parameters being inverse stiffnesses gh = 1/K 
 1 and
gt = 1/K1 
 1. Finally, we rescale momenta and fields to
arrive at the renormalized action. The coupling of fast and
slow modes leads to a renormalization of spin stiffnesses and
potential amplitudes.

B. Scaling equations and coplanar crossover

Iterating the RG procedure as shown in Appendix C one
obtains the scaling equations for the spin stiffnesses:

d

dl
K = − 1

2π
, (43)

d

dl
K1 = − (1 + η)2

8π
, (44)

d

dl
η = −η(1 + η)2

4πK1
, (45)

where we have defined the triangular lattice anisotropy

η = K1 − K3

K1 + K3
(46)

and the flow parameter l determines the running cutoff �(l) =
a−1

0 e−l . These equations hold in the uncoupled lattice regime
at high temperatures and are the known flow equations of
individual honeycomb and triangular lattices [43,62]. Solving
Eqs. (43)–(45) yields

K(l) = K(0) − l

2π
, (47)

K1(l) = K1(0)/

{√
3 tan

[
π

6
+

√
3

8π

l

K1(0)

]}
, (48)

η(l) = η(0)[K1(l)/K1(0)]2, (49)

where we have used that initially K1(0) = K2(0). The stiff-
nesses are reduced at longer length-scales, which is in
agreement with the Hohenberg-Mermin-Wagner theorem. If
it holds initially that K1 = K2, this is preserved during the RG
flow. Importantly, the anisotropy η(l) is irrelevant and flows
from its initial value of η(0) = 1 towards zero. The stiffnesses
of the triangular lattice approach an isotropic fixed point with
all stiffnesses being equal. These equations are derived under
the assumption that the potential terms are small γ,λ 
 1,
i.e., neglecting Sc. The potential amplitudes γ and λ, however,
scale as

d

dl
γ = 2γ, (50)

d

dl
λ = 2λ, (51)

and thus grow exponentially:

γ (l) = γ (0)e2l , (52)

λ(l) = λ(0)e2l . (53)

Scaling therefore stops as soon as γ (lγ ) = 1, which defines
the coplanar length scale

aγ = a0e
lγ � a0J̄ /Jth . (54)

This condition marks a crossover to a coplanar regime where
the honeycomb spins tend to lie in the plane of the triangular
spins. This transition occurs as a crossover rather than a phase
transition since no symmetry is being broken. The crossover
occurs when aγ is comparable to the shorter of the two
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magnetic correlation lengths ξt and ξh. In case of Jhh < Jtt ,
this occurs at the coplanar crossover temperature

Tcp � JhhS
2

1 + ln[1/γ (0)]/4π
. (55)

In the opposite case of Jtt < Jhh, one obtains an implicit
expression for the coplanar temperature

Tcp = JttS
2

4
cot

(
1

8π

{
4π2

3
+ 2 ln[1/γ (0)]

JttS2
Tcp

})
, (56)

which also approaches zero only logarithmically as γ (0) → 0
[see Eq. (15) and Fig. 3(c)]. The coplanar temperature is
defined as Tcp = minα=1,2 T (α)

cp , where T (1)
cp is determined by

the conditions K(lγ ,T (1)
cp ) = 1 and K1(lγ ,T (1)

cp ) > 1, while
T (2)

cp is determined by the conditions K(lγ ,T (2)
cp ) > 1 and

K1(lγ ,T (2)
cp ) = 1.

V. COPLANAR REGIME AT INTERMEDIATE
TEMPERATURES

For temperatures below Tcp, spins on different sublattices
order coplanar. Once they are coplanar, we can assume
that n · t3 = 0 since fluctuations of the polar angle around
β = π/2 are massive. The azimuth α remains as a soft U(1)
degree of freedom. The coplanar system is thus determined by
a SO(3) × U(1) order parameter defined in terms of three Euler
angles {φ,θ,ψ} and a single relative phase α. In this section, we
derive the RG equations in the coplanar regime by enforcing
this condition as a hard-core constraint. The final values of the
previous flow in the uncoupled regime {K(lγ ),Ki(lγ ),λ(lγ )}
serve as initial parameters in the coplanar RG
equations.

Solving the RG scaling equations, we prove that the
U(1) angle α asymptotically decouples from the underlying
SO(3) Euler angles, which exhibit correlations only over finite
lengthscales. This decoupling is crucial for the emergence of a
critical phase and associated BKT transitions, since otherwise,
vortices in the relative angle α would not necessarily interact
logarithmically due to screening effects that occur via the
coupling to the SO(3) degrees of freedom. Within the Friedan
geometric scaling approach, this decoupling of the phase can
be regarded as a toy model for the compactification of a
four-dimensional string theory.

A. Action in the coplanar regime

To implement the constraint n · t3 = 0, we express the
triangular matrix field t = (t1(x),t2(x),t3(x)) in terms of the
honeycomb matrix field h as

t = hU, (57)

where

U = exp(−iατ3) . (58)

The azimuth α determines the relative in-plane orientation of
the spins on the two sublattices [see Fig. 2(b)]. In the coplanar
regime, it is convenient to choose the following convention of
Euler angles:

h = e−iφhτ3e−iθhτ1e−iψhτ3 . (59)

The physical content of the theory is of course independent of
the choice of Euler angles, but with Eq. (59) the phase angle α

simply shifts the Euler angle ψ . Substituting t = hU into the
action in Eq. (33) yields

S = −1

2

∫
x

Tr
[
Kt

(
�2

μ + u2
μ + 2uμ�μ

)]

+ 1

4

∫
x

Tr[(∂μQh)T (∂μQh)] + Sc

(
β = π

2

)
(60)

with angular velocities �μ = h−1(∂μh) as well as uμ =
U−1(∂μU ). Repeated indices μ = 1,2 are summed over. We
have used that [U,Kt ] = 0 in case of K1 = K2. The initial
values of the parameters {Kj,K} (j = 1,2,3) are set by the
final values of the flow in the uncoupled regime at l = lγ .

If we insert t = hU in Eq. (36), we immediately see that
the coplanar action can also be written in the general form

S = 1

2

∫
x

[
I1
(
�1

μ

)2 + I2
(
�2

μ

)2 + I3
(
�3

μ

)2

+ Iα(∂μα)2 + κ(∂μα)�3
μ

]+ Sc (61)

with �a
μ = i

2 Tr(�μτa) and SO(3) stiffnesses

I1 = K2(lγ ) + K3(lγ ), (62)

I2 = K1(lγ ) + K3(lγ ) + K(lγ ), (63)

I3 = K1(lγ ) + K2(lγ ) + K(lγ ) , (64)

where K1(lγ ) = K2(lγ ). Note that in contrast to the pure
triangular case, here it turns out that I1 �= I2 due to the coupling
of the two sublattices. The U(1) degree of freedom α has an
initial stiffness of

Iα = 2K1(lγ ). (65)

The coupling constant between the SO(3) and U(1) sectors is
given by

κ = 2[K1(lγ ) + K2(lγ )], (66)

which is of the same order as the stiffnesses and thus not small.
The sixfold potential

Sc

(
β = π

2

)
= λ

2

∫
x

sin2(3α) (67)

is a small but relevant perturbation to the gradient part of the
action.

B. Derivation of RG equations

To derive the RG flow equations in the coplanar regime both
the Wilson-Polyakov as well as the Friedan RG approaches
may be used, and we present both calculations in Appendix D.
Within the Wilson-Polyakov scheme, we perform a one-loop
RG by introducing fast and slow modes h = h<h>, U =
U<U> and α = α< + α>, expanding in and integrating over
the fast modes and performing the rescaling. This procedure
is presented in Appendix D1. Alternatively, we may use the
Friedan approach and exploit the analogy between the Ricci
flow of a relativistic metric of a string theory and the
RG equation of the NLSM. This yields the flow equations
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up to two-loops. This calculation is presented in detail in
Appendix D2, and in Ref. [54]. The scaling equation of the
sixfold potential λ is derived in Appendix D3.

The main question that we have to answer is whether the
U(1) sector decouples from the non-Abelian SO(3) part with
a finite stiffness Iα . It is more natural to formulate clear
decoupling criteria within the Friedan approach, where the

gradient part of the action takes the form of Eq. (20) with a
stiffness metric tensor

g =
(

gSO(3) KT

K Iα

)
. (68)

It contains a coupling K = κ
2 (cos θ,0,1) between the U(1) part

Iα and the SO(3) part that reads

gSO(3) =
⎛
⎝(I1 sin2 ψ + I2 cos2 ψ) sin2 θ + I3 cos2 θ (I1 − I2) sin θ cos ψ sin ψ I3 cos θ

(I1 − I2) sin θ cos ψ sin ψ I1 cos2 ψ + I2 sin2 ψ 0
I3 cos θ 0 I3

⎞
⎠. (69)

In contrast to the isolated triangular lattice, here, the stiffnesses
I1 �= I2 [see Eqs. (62) and (63)]. The coupling term K can be
eliminated by a variable transformation of the Euler angle

ψ → ψ ′ = ψ + rα (70)

with shift r = κ/2I3. This yields a metric

g =
(

gSO(3)[θ,φ,ψ ′(α)] 0
0 I ′

α

)
(71)

with K = 0 and rescaled U(1) stiffness

I ′
α = Iα − κ2

4I3
. (72)

The coupling between the U(1) and the SO(3) sectors is
hidden in the fact that ψ ′ depends on the U(1) phase α. From
this gauge transformation to the appropriate center of mass
coordinates, two clear decoupling criteria emerge: the metric
gSO(3) becomes independent of the angle α if either the system
becomes isotropic in the I1-I2-plane

|I2 − I1| 

√

I1I2 (73)

or if the shift of the Euler angle ψ → ψ ′ is small

r 
 1 . (74)

In both cases, the U(1) phase α decouples from the dynamics
of the noncollinear magnetic degrees of freedom {θ,φ,ψ}. The
first criterion follows from the fact that gSO(3) is independent of
the angle ψ ′ if I1 = I2 [see Eq. (69)], while the second criterion
implies that the shift of the Euler angle ψ is negligible. As we
show below, it depends on the ratio Jtt /Jhh, which decoupling
criterion applies.

C. Analysis of scaling equations

The derivation of the RG flow equations of the variables I1,
I2, I3, I ′

α , and r is presented in Appendix D. The flow equation
for the sixfold potential λ is derived in Appendix D3. The
qualitative results are already fully captured by the one-loop
equations, which are given by

d

dl
I1 = −I 2

1 + (I2 − I3)2

4πI2I3
+
(
I 2

2 − I 2
1

)
r2

4πI2I ′
α

, (75)

d

dl
I2 = −I 2

2 + (I1 − I3)2

4πI1I3
+
(
I 2

1 − I 2
2

)
r2

4πI1I ′
α

, (76)

d

dl
I3 = −I 2

3 + (I1 − I2)2

4πI1I2
, (77)

d

dl
I ′
α = βI ′

α
= (I1 − I2)2r2

4πI1I2
, (78)

d

dl
r = − (I1 − I2)2r

4πI1I2I3
, (79)

d

dl
λ =

(
2 − 9

πI ′
α

)
λ . (80)

The initial values of the flow are given in Eqs. (62)–(66) and
λ(lγ ) = λ(0)e2lγ . The shift of the decoupling transformation
follows as

r(lγ ) =
[

1 + K(lγ )

2K1(lγ )

]−1

(81)

and the rescaled U(1) stiffness as

I ′
α(lγ ) =

[
1

2K1(lγ )
+ 1

K(lγ )

]−1

. (82)

In Fig. 5, we present the coplanar RG flow for different sets
of microscopic parameters corresponding to both weak and
strong initial anisotropies |I1 − I2|/

√
I1I2.

Like in the case of the isolated SO(3) magnet, the spin
stiffnesses I1, I2, I3 are reduced during the flow towards
longer lengthscales and approach an isotropic fixed point
with I1 = I2 = I3. The initial anisotropy in the I1-I2 plane is
given by |I2 − I1|/

√
I1I2 = K/[(K1 + K3)(K1 + K3 + K)].

This anisotropy flows to zero faster if the coupling r is large.
This follows from the second term on the right hand side of
Eqs. (75) and (76). For weak initial anisotropies K 
 K1,
which is the case for Jhh 
 Jtt , it implies that the coupling
r ≈ 1 is large. Therefore the decoupling of α emerges rapidly
since |I1 − I2|/

√
I1I2 → 0 quickly in this case (see Fig. 5,

upper right). The SO(3) sector becomes isotropic in the I1-I2

plane. Note also that the shift r remains almost constant during
the flow for small anisotropies, which follows directly from
Eq. (79).

In the opposite regime of strong initial anisotropies K �
K1, which is the case for Jhh � Jtt , |I2 − I1|/

√
I1I2 is not

small. In this situation, however, we observe that the shift
r ≈ 2K1/K 
 1 is small. Moreover, r vanishes faster in the
presence of large anisotropies, which follows from Eq. (79).
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FIG. 5. (Color online) Renormalization group flow of spin stiff-
nesses and coupling constants Ī = (I1I2I3)1/3 (green dashed), (I2 −
I1)/Ī (red), r (pink dotted), and I ′

α (blue). Left column is flow in
the uncoupled lattice regime, where γ (l) 
 1 and right column is in
the coplanar regime. Curves are normalized to initial values at l = 0
(l = lγ ) for uncoupled (coplanar) flow. Inset shows non-normalized
results. Upper panel is for Jtt � Jhh with Jtt = 2, Jhh = 0.5, Jth =
0.2, T = 0.25. Initial values at l = 0 read Ī = 5.5, (I2 − I1)/Ī =
0.36, r = 0.78, I ′

α = 1.55, and initial values at l = lγ are given
by Ī = 5.30, (I2 − I1)/Ī = 0.33, r = 0.79, I ′

α = 1.39. Middle panel
is for isotropic system Jtt = Jhh with Jtt = 1, Jhh = 1, Jth = 0.2,
T = 0.3. Initial values at l = 0 read Ī = 3.5, (I2 − I1)/Ī = 0.95,
r = 0.46, I ′

α = 1.55, and initial values at l = lγ are given by Ī =
3.30, (I2 − I1)/Ī = 0.94, r = 0.44, I ′

α = 1.38. Lower panel is for
Jtt 
 Jhh with Jtt = 1, Jhh = 4, Jth = 0.2, T = 0.4. Initial values
at l = 0 read Ī = 5.3, (I2 − I1)/Ī = 1.90, r = 0.18, I ′

α = 1.78, and
initial values at l = lγ are given by Ī = 5.0, (I2 − I1)/Ī = 1.92,
r = 0.14, I ′

α = 1.40.

For Jhh � Jtt the decoupling of α thus emerges because the
shift r of the Euler angle ψ becomes negligible.

In both cases of large and small initial anisotropy, the
phase angle α rapidly emerges as an independent degree of
freedom during the flow. The phase stiffness I ′

α is determined
by the smaller of the stiffnesses K1 and K—just like a
reduced mass—and actually increases slightly during the flow.
Therefore I ′

α is always finite at the decoupling length scale.
As expected, its β-function βI ′

α
in Eq. (78) approaches zero

once either of the two decoupling conditions |I1 − I2| → 0 or
r → 0 is fulfilled. From then on, no further renormalization of
the U(1) stiffness I ′

α due to spin waves occurs perturbatively.
Vortex excitations, on the other hand, lead to a further
renormalization of I ′

α . We take this into account in the next
Sec. VI.

Analyzing the scaling of the sixfold potential, we find that
according to Eq. (80) the relevance of the sixfold potential λ

depends on the value of the I ′
α . The potential term is relevant

only at sufficiently low temperatures when I ′
α � 9/2π . At

larger temperatures, λ is irrelevant and flows to zero. The
flow of λ depends on the discrete symmetry of the potential
term. For a potential with discrete Zp symmetry, the flow
equation for the coupling strength λp is given by d

dl
λp =

(2 − p2/4πI ′
α)λp. Since it holds that I ′

α � 1, the potential
can only become irrelevant for p � 5. For the coplanar term
γ , for example, p = 2 and the p-dependent correction term is
negligible compared to the dominant tree-level scaling part.

D. Geometric interpretation of decoupling

The geometric formulation of the RG flow allows for an
intriguing interpretation of the decoupling of the U(1) phase α

from the non-Abelian SO(3) sector of the theory. Computing
the Ricci scalar R = gijRij during the flow, we find

R = RSO(3) − 1

2πI ′
α

βI ′
α
. (83)

It is given by a sum of the Ricci scalar of the SO(3) sector

RSO(3) =
3∑

j=1

(
I−1
j − I 2

j

2I1I2I3

)
(84)

and a contribution from the coupled U(1) part that is propor-
tional to the β function βI ′

α
[see Eq. (78)].

Once the decoupling occurs βI ′
α

→ 0, the contribution to
R from the U(1) sector becomes negligible. On the other
hand, R → RSO(3) grows under renormalization since the
stiffnesses Ij decrease. As shown schematically in Fig. 6,
this corresponds to the intriguing situation of a curved
four-dimensional manifold at large energies, which separates

FIG. 6. (Color online) Schematic of the decoupling of the flat
U(1) sector and the “curling up” of the remaining SO(3) manifold
under the renormalization group flow towards longer length scales
in the windmill model. This is analogous to the phenomenon of
compactification in string theory.
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into a flat one-dimensional U(1) part that is only weakly
coupled to the remaining three-dimensional SO(3) manifold
at low energies. Towards smaller energies, the curvature of the
SO(3) part grows larger and larger such that R → ∞. This
asymptotic decoupling of a subspace and “curling-up” of the
complementary dimensions is analogous to the phenomenon
of compactification in string theory [50–53].

VI. LOW-TEMPERATURE REGIME AND
PHASE DIAGRAM

Once the decoupling of the U(1) phase α has occurred, the
resulting low-energy theory of the system is given by S =
SSO(3) + SZ6 with

SSO(3) = 1

2

∫
x

3∑
i,j=1

g
SO(3)
ij (∂μXi)(∂μXj ) (85)

and

SZ6 = 1

2

∫
d2x[I ′

α(∂μα)2 + λ sin2(3α)] (86)

being the familiar action of the six-state clock model [38].
It describes a two-dimensional XY model in the presence
of an additional sixfold potential λ. The Z6 clock model
exhibits two consecutive BKT transitions [38,39]. The upper
transition temperature T >

BKT separates a disordered regime at
high temperatures from a critical phase at lower temperatures,
where correlations 〈exp{i[α(x) − α(x ′)]}〉 in the relative phase
angle α(x) decay as a power law in the distance |x − x ′|.
At the lower transition temperature T <

BKT, the discrete Z6

symmetry is spontaneously broken. Below T <
BKT one observes

true long-range order with phase α = nπ/3 (n ∈ {1, . . . ,6})
being locked into one of the six discrete minima of the potential
[see also Fig. 3(b)].

These conclusions follow from the BKT flow equations
for the spin stiffness I ′

α and the vortex fugacity Y , which we
derive below, in combination with the flow equation (80) of
the sixfold potential λ. We must rederive the BKT flow for our
model to account for the fact that the vortex core size is given
by the coplanar length scale aγ which is much larger than
the microscopic lattice spacing a0 
 aγ . A similar situation
is described in detail in Ref. [63], where it is shown that an
increased vortex core size aγ /a0 � 1 leaves the BKT flow
equations invariant but leads to an increased initial value of the
vortex fugacity y → Y = y(aγ /a0)2. This enhancement of the
fugacity can be understood physically by noticing that vortex
excitations interact logarithmically only on length scales larger
that aγ , but the entropy associated with those excitations is
obtained from counting different centers of the vortex core,
which involves the microscopic lattice scale a0 [63].

To obtain the low-energy phase diagram, we thus have to
analyze the RG flow equations [37,38,63–66]:

d

dl
I ′
α

−1 = 4π3Y 2, (87)

d

dl
Y = (2 − πI ′

α)Y, (88)

d

dl
λ =

(
2 − 9

πI ′
α

)
λ . (89)

FIG. 7. (Color online) Schematic phase diagram of the system
with approximate transition temperatures. Below the largest temper-
ature scale T1 the Heisenberg spin correlation length exceeds the
lattice constant. Spins on different sublattices remain uncoupled until
below the coplanar transition temperature Tcp, where a crossover into
a regime where triangular and honeycomb spins align in a common
plane in spin space occurs. In the coplanar system, we define a
U(1) degree of freedom α on each lattice plaquette describing the
relative in-plane angle between triangular and honeycomb spins.
While correlations in the relative U(1) angle decay exponentially
Gα(x,x ′) = 〈ei[α(x)−α(x′)]〉 ∼ e−|x−x′ |/ξα for T > T >

BKT, the system
shows algebraic order in the critical phase for T <

BKT < T < T >
BKT with

Gα(x,x ′) ∼ |x − x ′|−η. Eventually, for temperatures T < T <
BKT, the

Z6 (lattice) symmetry is spontaneously broken and one observes true
long-range order with lim|x−x′ |→∞ Gα(x,x ′) = const..

As noted above the initial value of the vortex fugacity
is enhanced to Y = (aγ /a0)2 exp[−Sc(T )] [63]. Here, Sc �
π [1 + min(K,K1,K2)] denotes the core action of a vortex with
core size aγ . It contains a contribution from the elastic energy
S0 = K

2

∫
x
(∂μn)2 +∑3

j=1
Kj

2

∫
x
(∂μ tj )2 and one from to the

potential energy Sγ = 1
2a2

0

∫
x
γ cos2 β.

We obtain the phase diagram for temperatures below
the coplanar crossover from analyzing Eqs. (87)–(89). The
resulting phase diagram including estimates for the transition
temperatures is shown in Fig. 7.

From Eq. (88), it follows that the vortex fugacity Y is only
relevant above a certain temperature T >

BKT when I ′
α(T ) � 2/π .

Free vortices then proliferate and the system exhibits only
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FIG. 8. (Color online) (a) Local configuration of the spins on
the lattice in one of the six relative orientations. Intersublattice
bonds where spins are parallel are shown in green. Note that
while the Heisenberg spin correlation length always remains finite,
the relative orientation decays algebraically for T <

BKT < T < T >
BKT

and becomes long-ranged for T < T <
BKT. (b) Six different relative

orientation of honeycomb and triangular spins described by α =
nπ/3, n = {1, . . . ,6}. Note that there are three unit cell sites where
the spins can be parallel (green inter-sublattice bonds, the other
bonds are not shown for clarity) and at each site there are two
possible configurations related by a C2 rotation. Below T <

BKT, this Z6

lattice symmetry, which is a combination of rotation and translational
symmetry, is broken.

short-range order in the relative phase, i.e., 〈ei[α(x)−α(x ′)]〉 ∼
e−|x−x ′ |/ξα with finite correlation length ξα of the relative phase.

On the other hand, Eq. (89) predicts that the sixfold potential
λ is only relevant below a certain temperature T <

BKT when
I ′
α � 9/2π . When the sixfold potential is relevant, it leads to

a locking of the phase into one of the six equivalent minima
α = nπ/3 with n ∈ {1, . . . ,6}. This locking corresponds to
a spontaneous breaking of a discrete Z6 lattice symmetry
and one observes long-range order in the relative phase,
i.e., lim|x−x ′ |→∞〈ei[α(x)−α(x ′)]〉 = const.. A local configuration
of the spins at low temperatures is shown in Fig. 8(a).
The six different states are depicted in Fig. 8(b). Note that
long-range discrete order appears despite a finite Heisenberg
spin correlation length, in agreement with the Hohenberg-
Mermin-Wagner theorem.

Most importantly, since 9
2π

> 2
π

, there exists an inter-
mediate temperature regime T <

BKT < T < T >
BKT where both

vortex fugacity and sixfold potential are irrelevant. In this
regime, the system exhibits an extended critical phase with
algebraic correlations, i.e., 〈ei[α(x)−α(x ′)]〉 ∼ |x − x ′|−η. The
corresponding susceptibility and the correlation length of the
relative phase ξα are both infinite. We note that a general
Zp symmetric potential λp sin2(pα/2) is found to be relevant
below a temperature when I ′

α(T ) � p2/8π . The intermediate-
temperature regime with critical phase, where both vortex
fugacity and p-fold potential scale to zero, thus only exists
for p � 5, since p2/8π > 2/π demands that p2 > 16.

Let us now derive estimates for the transition temper-
atures T >

BKT and T <
BKT. We find the upper BKT transition

temperature T >
BKT, where vortices unbind, from the flow

equations (87)–(89) in implicit form as

I ′
α(T >

BKT)−1 = π

2 + 4πY (T >
BKT)

(90)

with Y (T ) = (aγ /a0)2e−Sc(T ) = e−Sc(T )/γ and core action
Sc(T ) � π [1 + min(K,K1,K2)]. As we show below, we con-
clude from Eq. (90) that the upper BKT transition occurs soon
after the system becomes coplanar:

T >
BKT � Tcp . (91)

The BKT transition temperature is only numerically smaller
than the coplanar crossover temperature. The system enters the
critical phase soon after it becomes coplanar. The enhancement
of the fugacity shifts the BKT transition temperature to the
coplanar crossover scale.

Let us now explicitly show this by solving Eq. (90) to
leading order in small γ . The stiffness I ′

α = ( 1
K

+ 1
2K1

)−1 is
determined by the smaller of the two stiffnesses K and 2K1 at
the decoupling lengthscale. Since the scaling of I ′

α is negligible
in the coplanar regime (see Fig. 5) we can equally well use
the values of K and 2K1 at the coplanar crossover scale aγ .
Let us assume in the following that K(lγ ) < 2K1(lγ ) and thus
I ′
α = K(lγ ) � J̄ /T (the other case of 2K1 < K is analogous).

Here, we have neglected the reduction of K during the high
temperature flow for simplicity. This can easily be incorporated
and does not change our conclusion.

We then introduce the dimensionless variable x =
πJ̄ /T >

BKT such that Eq. (90) takes the form [63]

γ = 4πe−x

x − 2
. (92)

We are interested in a solution as γ ∼ (Jth/J̄ )2 → 0, which
implies that x → ∞. To leading order we thus find that

T >
BKT ∼ J̄

ln(1/γ )
, (93)

which is of the same order as the coplanar crossover tempera-
ture scale Tcp in Eq. (55).

The lower BKT transition temperature T <
BKT is of the

same order as the upper one T >
BKT [38,39]. Below T <

BKT
the Z6 (lattice) symmetry is spontaneously broken and the
system exhibits true long-range order with the phase variable
α = nπ/3 locked into one of the six minima at n ∈ {1, . . . ,6}
(see Fig. 8).

VII. SUMMARY AND OPEN QUESTIONS

To summarize, we have identified an emergent critical phase
at finite temperatures in a 2D isotropic Heisenberg “windmill”
spin model. Like in the J1-J2 model on the square lattice, the
windmill model considers coupling of a lattice with its dual
lattice. Using both Wilson-Polyakov RG and Friedan covariant
approaches, we have studied its phase diagram in the limit of
weak intersublattice coupling Jth < Jtt ,Jhh.

Short-wavelength thermal and quantum fluctuations cou-
ple spins on different sublattices and drive them into a
coplanar state by an “order-from-disorder” mechanism; this
crossover occurs at a temperature Tcp ∼ J̄ / ln(J̄ 2/J 2

th) with
J̄ = √

JttJhh. In the coplanar regime, the system is described
by a coupled SO(3) × U(1) NLSM. Analyzing the scaling
of the coupling strength and the spin stiffnesses, we show that
the U(1) sector quickly decouples from the non-Abelian SO(3)
degrees of freedom. The emergent U(1) degree of freedom of
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the relative in-plane angle of honeycomb and triangular spins
is described by the action of a six-state clock model. It exhibits
two consecutive BKT phase transitions that bracket a critical
phase with algebraic correlations in the relative angle. At
low temperatures, the discrete Z6 symmetry is spontaneously
broken and α exhibits true long-range order.

Naturally, there remain various open questions for further
study. On the theoretical side, there is clearly the challenge
of investigating this windmill model numerically, particularly
in the coupling regimes that are inaccessible to our analytic
approach. Indeed, analogous to its square-lattice counterpart
shown in Fig. 1, in the parameter regime Jth � J̄ , we
have a simple bipartite antiferromagnet with no “order from
disorder,” so the behavior of this model for J̄ ∼ Jth could be
very interesting particularly for nonclassical spin. A purely
1 + 1 quantum analog of emergent criticality would also be
appealing, particularly, as to our knowledge, a purely quantum
version of fluctuation-selected discrete order has not yet been
demonstrated.

The experimental realization of this windmill model is
another open task. Though emergent U(1) and Z6 symmetries
have been discussed for erbium titanate [34,35], this material is
three-dimensional and so there is true long-range Heisenberg
spin order at finite temperatures and no emergent criticality.
One promising route for an experimental realization of the
2D windmill model discussed here is to use spin-resolved
scanning tunneling microscopy techniques for the nanofabrica-
tion and characterization of stacked triangular and honeycomb
monolayers of magnetic atoms like Cr or Co [67–70]. Other
experimental candidates include cold spinful atoms in optical
lattices in the limit of large on-site interactions [71–74]. An
XY version of our model could be realized using ultracold
bosons in a similar manner to that recently reported for the
triangular lattice [75]. However, here, an issue would be the
competition between the BKT transition of the underlying
XY system and those of the fluctuation-selected degrees of
freedom, and more theoretical analysis needs to be done to
identify the parameter regime where these temperature scales
are distinct. The realization of a three-dimensional system of
windmill layers, i.e., weakly coupled and alternate triangular
and honeycomb lattice layers, would be quite interesting as
well. In such a system, we suspect that the relative orientation
degree of freedom α would undergo a finite temperature phase
transition in the universality class of the 3D XY model with
a transition temperature greater (or equal) to the 3D Néel
temperature of the Heisenberg spin system. Such a system
would thus also exhibit a temperature regime with broken Z6

lattice but unbroken spin rotation symmetry, similar to the
situation of the nematic phase transition in the iron pnictides.

Finally, we note that the type of Ricci flow discussed here
plays a central role in the Perelman proof [76] of the Poincaré
conjecture in four-dimensional space; Perelman’s approach
involves surgically removing singularities that develop in the
standard Ricci flow in a systematic fashion. Our work relating
2D classical magnetism and Friedan scaling suggests that
Ricci flow is just the leading term in a renormalization group
scheme that smooths out the short-wavelength fluctuations
in a manifold. From a statistical mechanics perspective, the
singularities that develop in standard Ricci flow are false
Landau poles in the renormalization flow that result from

neglecting higher order terms in the β function. If this is true,
then a proper implementation of the RG scheme may well
eliminate the Landau poles and thus the need for “surgery.”
This line of reasoning then suggests that well-characterized
2D Heisenberg antiferromagnets could be used to “simulate”
generalized, surgery-free Ricci flows of topological manifolds.
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APPENDIX A: DERIVATION OF LONG-WAVELENGTH
ACTION FOR WINDMILL LATTICE HEISENBERG

ANTIFERROMAGNET

In this section, we provide details of the derivation of the
gradient part S0 of the long-wavelength action on the windmill
lattice. We perform a gradient expansion around the classical
ground state on the windmill lattice for Jth 
 Jtt ,Jhh. We
consider each term of the Hamiltonian H = Htt + Hhh + Hth

separately in the next sections. We follow the derivation of
Refs. [56,77] for the parts Htt and Hhh.

1. Triangular lattice

The part of the Hamiltonian coupling spins on the triangular
lattice is given by

Htt = Jtt

2

∑
rm

δ6∑
δα=δ1

S(rm)S(rm + δα) . (A1)

Here, rm denotes a Bravais lattice vector and δα =
{±a1,±a2,±(a1 − a2)} are the vectors to nearest-neighbor
sites. We parameterize the three spin directions close to the
120◦ ground state of the triangular lattice by (i = 1,2,3)

Si = SR(x)[ni + a0 L(x)]√
1 + 2a0ni L(x) + a2

0 L(x)2
. (A2)

Here, R(x) is a rotation matrix that varies in space slowly
and ni are three fixed directions in spin space, which
fulfill

∑3
i=1 ni = 0. We choose n1 = (0,1,0), n2 = (

√
3/2, −

1/2,0), and n3 = (−√
3/2,−1/2,0). The vector L(x) defines

the tilting of the three triangular spins on one plaquette away
from a 120◦ configuration, where we assume that a0|L| 
 1.
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The long-wavelength action arises from an expansion in spatial
derivatives and a0|L| 
 1. We will keep only terms up to
second order in either of the two. To first order in L, we
find Si = SR{ni + a0[L − (ni L)ni]}. Therefore (S1 + S2 +
S3)α = 3a0SRTαγ Lγ with tensor Tαγ = δαγ − 1

3

∑3
i=1 nα

i n
γ

i .
By summing over the three sublattice directions Si and

dividing by three, the Hamiltonian becomes

Htt = Jtt

2

∑
rm

1

3

3∑
i=1

∑
j �=i

3∑
k=1

Si(rm)Sj (rm + δk) . (A3)

We now perform a gradient expansion Sj (rm + δk) =
Sj (rm) + (δk

ij · ∇)Sj (rm) + 1
2a2

0(δk
ij · ∇)2 Sj (rm) + . . .,

where δk
ij denote the nearest-neighbor vectors between spins

Si and Sj . Those vectors are given by {δk
ij } = {±(a1 −

a2),±a2,∓a1}, where the sign depends on the specific pair
(i,j ) considered, but does not matter up to second order. We
perform the summation over nearest-neighbor vectors δk

ij to

find
∑3

k=1(δk
ij · ∇) = 0 and

∑3
k=1(δk

ij · ∇)2 = 3
2a2

0(∂2
x + ∂2

y ).
The Hamiltonian thus takes the form

Htt = Jtt

6

∑
rm

3∑
i=1

∑
j �=i

Si

[
3Sj + 1

2

3a2
0

2

(
∂2
x + ∂2

y

)
Sj

]
(A4)

= Jtt

2

∑
rm

[
(S1 + S2 + S3)2 −

3∑
i=1

S2
i

+ (S1 + S2 + S3)
a2

0

4
∂2
μ(S1 + S2 + S3)

−
3∑

i=1

Si

a2
0

4
∂2
μSi

]
, (A5)

where ∂2
μ = ∂2

x + ∂2
y . We observe that

∑3
i=1 S2

i is just a
constant and the third term is of fourth order in a0|L|∂μ since
(S1 + S2 + S3) = 3a0SR(T L) is of the order of L already.
In the last term, it is sufficient to expand to lowest order and
use Si = SRni . Keeping only the first and the last terms, we

arrive at Htt = Jtt

2

∑
rm

[(S1 + S2 + S3)2 −∑3
i=1 Si

a2
0

4 ∂2
μSi].

We now extremize with respect to L which yields L = 0 for
classical spins. In case of quantum spins, there would be a
Berry phase term linear in L. It is absent in the classical limit,
where the action reads

Stt = Htt

T
= − Jtt

2T

∑
rm

3∑
i=1

SRni

a2
0

4
∂2
μSRni . (A6)

We write this expression as
∑

i,α,β,γ Rαβnβ

i ∂2
μRαγ nγ

i =∑
α,β,γ (R−1)βα∂2

μRαγ

∑
i n

β

i n
γ

i . Using that we can write the

sum
∑

i n
β

i n
γ

i = 3
2Pγβ in terms of the projector matrix

Pγβ =
⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ ,

that (R−1∂μR)2 = −(∂μR−1)(∂μR) and taking the contin-
uum limit

∑
rm

= ∫
d2x/Vunit cell with Vunit cell = √

3a2
0/2, the

action can be written as

Stt = −3JttS
2

16T

∑
rm

∑
α,β,γ

Pγβ(R−1)βα

(
∂2
μRαγ

)

= 1

2
K1

∫
d2x Tr[P (R−1∂μR)2] (A7)

with K1 = √
3JttS

2/4T .

2. Honeycomb lattice

The part of the Hamiltonian describing spins on the
honeycomb lattice reads

Hhh = Jhh

∑
rm

1

2

2∑
i=1
j �=i

3∑
δα=1

SA
i (rm)SB

j (rm + δα) . (A8)

Here, {δα} = {0,−a1,−a2} denote the Bravais lattice vec-
tors to nearest-neighbor sites. We parameterize the spin
directions as S1 = S(n+a0 L)√

1+a2
0 L2

and S2 = S(−n+a0 L)√
1+a2

0 L2
with n(x) ·

L(x) = 0 and S1 + S2 = 2Sa0 L + O(L4). We now per-
form the gradient expansion SB

j (rm + δα) = Sj + 1
2 (δ̃α ·

∇)2 Sj , where {δ̃α} = {δα + bB − bA} with bA = 0 and bB =
(1,1/

√
3). We also use that

∑3
δ̃α=1(δ̃α · ∇)2 = a2

0
2 (∂2

x + ∂2
y ).

Extremizing with respect to L yields L = 0 in the classical
limit, and the action reads

Shh = Hhh

T
= −Jhha

2
0

8T

∑
rm

2∑
i=1

Si∂
2
μSi , (A9)

where we have used that S1∂
2
μS2 + S2∂

2
μS1 = (S1 +

S2)∂2
μ(S1 + S2) − S1∂

2
μS1 − S2∂

2
μS2 and have neglected the

first term which is O(L2∂2
μ). To the order we consider

it is sufficient to replace S1 = Sn and S2 = −Sn. Taking
the continuum limit

∑
rm

= ∫
d2x/Vunit cell with Vunit cell =√

3a2
0/2, we find

Shh = 1

2

∫
d2x K(∂μn)2 , (A10)

with K = JhhS
2/

√
3T .

3. Windmill coupling term

We now demonstrate that the intersublattice coupling term
between triangular and honeycomb lattice does not contribute
to second order to the gradient part of the long-wavelength
action S0. It does contribute to the long-wavelength action S

via the potential term Sc. This is shown in detail in Appendix B.
The coupling term in the windmill lattice Heisenberg model
reads

Hth =
∑
rm

∑
α=A,B

3∑
δtα
k =1

St (rm)Sα
(
rm + δtα

k

)
, (A11)

where δtA
k = {(0,1),(−1/2,

√
3/2),(−1/2,−√

3/2)} and δtB
k =

{(0,−1),(1/2,−√
3/2),(1/2,

√
3/2)} = −δtA

k . We perform a
long-wavelength approximation around a certain ground state
configuration. We choose the spins on the honeycomb lattice
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to (almost) point along direction n on basis sites A, i.e.,
SA ∝ S(n + a0 Lh) and the spins on basis sites B to point
along direction −n, i.e., SB ∝ S(−n + a0 Lh). For the tri-
angular lattice, we choose to sum over the three sublattice
magnetizations S1 = m1 = (0,1,0), S2 = m2 = (

√
3

2 ,− 1
2 ,0),

and S3 = m3 = (−
√

3
2 ,− 1

2 ,0) and divide by a factor of three.
In other words, we average over the configuration where the
directions of the triangular spin at each triangular plaquette
are interchanged with each other. Apart from the central
triangular spin, each honeycomb plaquette looks identical. Its
contribution will thus be identical in all three cases such that
the Hamiltonian can thus be written as

Hth = Jth

∑
rm

1

3

3∑
i=1

⎡
⎣ δtA

3∑
δtA

k =δtA
1

St
i(rm) · SA

1

(
rm + δtA

k

)

+
δtB

3∑
δtB

k =δtB
1

St
i(rm) · SB

2

(
rm + δtB

k

)⎤⎦ , (A12)

We now perform the gradient expansion and use
∑3

δtA
k =1(δtA

k ·
∇)2 = a2

0
2 (∂2

x + ∂2
y ) and

∑3
δtB

k =1(δtB
k · ∇)2 = a2

0
2 (∂2

x + ∂2
y ). We

keep only the second-order term, since the zeroth order is
proportional to L2, which can be neglected in the classical
limit, to obtain

Hth = Jtha
2
0

12

∑
rm

3∑
i=1

{
St

i(rm) · (∂2
x + ∂2

y

)
× [

SA
1 (rm) + SB

2 (rm)
]}

. (A13)

Finally, we employ that SA
1 (rm) + SB

2 (rm) = 2Sa0 Lh and
St

1(rm) + St
2(rm) + St

3(rm) = 3a0SRTαγ Lt ;γ ∼ Lt [see dis-
cussion below Eq. (A2)] to conclude that Eq. (A13) is already
of fourth order in the small quantities (Lt ,Lh,∂

2
μ). To second

order, the coupling term Hth thus does not contribute to S0.

APPENDIX B: SPIN-WAVE THEORY
ON WINDMILL LATTICE

In this section, we provide details to the calculation of
the spin-wave spectrum on the windmill lattice. We perform
a Holstein-Primakov spin-wave analysis of the Heisenberg
Hamiltonian (1) around the classical ground state for Jth 

Jtt ,Jhh shown in Fig. 2(a).

The biaxial magnetic order in the classical ground state of
the triangular lattice is described by the ordering wave vector
Q = 2π√

3
( 1√

3
,1) [see Fig. 9(a)], which allows us to write

t1(rm) = ( cos( Q · rm), sin( Q · rm),0), (B1)

t2(rm) = (− sin( Q · rm), cos( Q · rm),0). (B2)

t3(rm) = (0,0,1). (B3)

Here, rm = m1a1 + m2a2 with a1 = 1
2 (1,

√
3) and a2 =

1
2 (−1,

√
3) is a Bravais lattice vector, and we set the lattice

constant a0 = 1. There also exists a magnetically ordered
state with opposite chirality. This state is described by
the wave vector Q̃ = 4π√

3
( 1√

3
,1), and triangular spins have

FIG. 9. (Color online) (a) First Brillouin zone (BZ) and magnetic
Brillouin zone (MBZ) with location of ordering vectors Q = 2π√

3
(1,1)

and Q̃ = 4π√
3
(1,1). (b) Spin-wave spectrum Ej, p for the path in the

MBZ shown in (a) (blue dashed with arrows).

an opposite sense of rotation around one lattice plaquette.
Since low energy excitations do not induce transitions between
states with different chirality, in the following we assume the
magnetic order described by Q = 2π√

3
( 1√

3
,1).

The uniaxial magnetic order on the bipartite honeycomb
lattice is described by a normalized unit vector n ≡ h1, which
is parallel (antiparallel) to the direction of the spins on the A

(B) basis sites.
We define local triads of orthonormal vectors tj (rm) and hj

with j = 1,2,3 on both sublattices. Here, t1(rm) points along
the direction of the spin St (rm) at the triangular basis site in
the unit cell at site rm. In case of quantum spins, it defines
a local quantization axis for triangular spins. Together with
t2(rm) it spans the plane of the triangular magnetization. The
unit vector h1 points along the direction of the spins on the
honeycomb sublattice A in the classical ground state. It defines
a local quantization axis for quantum spins on the A sites of
the honeycomb lattice. Spins on the honeycomb B sites point
along (−h1) in the classical ground state.

The honeycomb triad hj = R(α,β)tj (0) is rotated with
respect to the triangular triad at the origin with rotation
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matrix [see Fig. 2(b)]

R(α,β) =
⎛
⎝sin β cos α − sin α − cos β cos α

sin β sin α cos α − cos β sin α

cos β 0 sin β

⎞
⎠. (B4)

We define local quantization axis’ for the spins via the triad
tj (rm) and hj as

St (rm) = S̃z
t t1 + S̃x

t t2 + S̃
y
t t3, (B5)

SA(rm) = S̃z
Ah1 + S̃x

Ah2 + S̃
y

Ah3, (B6)

SB(rm) = −S̃z
B h1 + S̃x

B h2 − S̃
y

B h3 . (B7)

Both the spin operators S̃
j
a (rm) and the local triad tj (rm)

depend on the unit cell vector rm. The vectors hj are
independent of rm. Note that we have defined the 1-axis of
the local triad, t1 and h1, as the spin quantization axis S̃z

a . The
last equation (B7) follows from the fact that the rotation matrix
R on the B sites is given by R(α,β + π ) [see Eq. (B4)]. We
then perform a Fourier expansion

S̃j
a (rm) = 1√

NL

∑
p∈BZ

ei p(rm+ba )S̃j
a ( p) (B8)

and introduce three different types of Holstein-Primakov (HP)
bosons a p,b p, and c p, one on each basis site a ∈ {t,A,B}. For
the triangular lattice, we write

S̃x
t ( p) =

√
S

2
(c†− p + c p), (B9)

S̃
y
t ( p) = i

√
S

2
(c†− p − c p), (B10)

S̃z
t ( p) =

√
NLSδ p,0 − 1√

NL

∑
k

c
†
k− pck. (B11)

In the same way, we define HP bosons a p and b p for the
honeycomb A and B sites. Up to terms of order S0, the part
Htt + HAB of the Heisenberg Hamiltonian [see Eq. (1)], takes
the form

Htt = −3

2
JttS

2NL + 3JttS
∑
p∈BZ

[
c†pc p

(
1 + ν p

2

)

− 3

4
ν pc

†
− pc

†
p − 3

4
ν pc− pc p

]
, (B12)

HAB = −3JhhS
2NL + JhhS

∑
p∈BZ

[η0(a†
pa p + b†pb p)

+ η p(a†
pb

†
− p + a− pb p)], (B13)

where we have defined the lattice functions

ν p = 1

3

(
cos p1 + 2 cos

p1

2
cos

√
3p2

2

)
, (B14)

η p = eip2/
√

3 + 2eip2/(2
√

3) cos
p1

2
. (B15)

The part of the Hamiltonian describing exchange between
the two sublattices Hth = HtA + HtB depends on the relative
orientation of spins on the two sublattices and reads in real
space as

Hth = Jth

∑
rm

3∑
k=1

⎧⎨
⎩
∑
{δtA

n }
S̃k

A

(
rm + δtA

n

)[
S̃3

t (rm)R3k(α,β) + cos( Q · rm)
(
S̃1

t (rm)R1k(α,β) + S̃2
t (rm)R2k(α,β)

)

+ sin( Q · rm)
(
S̃1

t (rm)R2k(α,β) − S̃2
t (rm)R1k(α,β)

)]+
∑
{δtB

n }
S̃k

B

(
rm + δtB

n

)
[R(α,β) → R(α,β + π )]

⎫⎬
⎭ . (B16)

Note that we are using the convention S̃1
a = S̃z

a , S̃2
a = S̃x

a , S̃3
a = S̃

y
a [see Eq. (B5)]. Next, we make the transformation to momentum

space using Eq. (B8), which yields

Hth = Jth

∑
p∈BZ

3∑
k=1

{
fA( p)S̃k

A( p)

[
S̃3

t (− p)R3k + R1k

2

(
S̃1

t (− p − Q) + S̃1
t (− p + Q) + iS̃2

t (− p − Q) − iS̃2
t (− p + Q)

)

+ R2k

2

(
S̃2

t (− p − Q) + S̃2
t (− p + Q) + iS̃1

t (− p + Q) − iS̃1
t (− p − Q)

)]+ fB( p)S̃k
B( p)[R(α,β) → R(α,β + π )]

}
,

(B17)

where the lattice functions are given by fA( p) = η p and
fB( p) = η∗

p. Note that the lattice functions vanish at the
ordering wave vector η± Q = 0. It is now straightforward to
insert the HP bosonic representation of the spins, noting that
we have to use separate bosonic operators for wave vectors
p, p ± Q, and thus work with the following bosonic op-
erators {c†p,c− p,c

†
p− Q,c− p+ Q,c

†
p+ Q,c− p− Q,a

†
− p,a p,b

†
− p,b p}.

Later, we will symmetrize the expression with respect to
adding a wave vector ± Q and work with a total number of 18
bosonic operators.

We notice a few simplifications: the contribution of order
O(S2) vanishes, which is due to the fact that the two sublattices
are only coupled via fluctuations. To O(S) only terms of the
form S̃

x,y
t S̃

x,y

A,B and S̃z
t S̃

z
A,B occur. The terms containing S̃z

t S̃
z
A,B
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in fact all vanish, either since they are multiplied by a factor
of η± Q = 0 or because they cancel when the sum over the
A and B sublattices is performed because Rj1(α,β + π ) =
−Rj1(α,β). Note that in our notation S̃1

t = S̃z
t .

In terms of the HP bosons, the expression in Eq. (B17) to
O(S) can be cast into the form

Hth =
∑
p∈BZ

β†
p

(
F p G p

G∗
− p F∗

− p

)
β p (B18)

with bosonic (Nambu) vector

β p = (
c p,c p− Q,c p+ Q,a p,b p,

c
†
− p,c

†
− p+ Q,c

†
− p− Q,a

†
− p,b

†
− p

)T
(B19)

and block matrices

F p =

⎛
⎜⎜⎜⎜⎜⎜⎝

X p 0 0 A p −A∗
p

0 X p− Q 0 B p C∗
p

0 0 X p+ Q C p B∗
p

A∗
p B∗

p C∗
p V p 0

−A p C p B p 0 V p

⎞
⎟⎟⎟⎟⎟⎟⎠

(B20)

and

G p =

⎛
⎜⎜⎜⎜⎜⎜⎝

Y p 0 0 −A p A∗
p

0 Y p− Q 0 C∗
− p B− p

0 0 Y p+ Q B∗
− p C− p

−A− p B∗
p C∗

p 0 W p

A∗
− p C p B p W− p 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B21)

Note the reversed order of C∗
− p, B∗

− p and C∗
p, B∗

p along column
and row, because we must only reverse the sign of p (and not
the sign of Q) when going from column to row. The same
applies to the pair (B± p, C± p). We have defined the (triangular
lattice) functions [78]

X p = 1

2
JttS

(
1 + ν p

2

)
, (B22)

Y p = −3

4
JttSν p (B23)

and the (honeycomb lattice) functions

V p = 3
2JhhS, (B24)

W p = 1
2JhhSη p. (B25)

The functions that appear in the off-diagonal entries coupling
different sublattices depend on the relative angles α and β and
are given by

A p = 1
4JthSη p sin β, (B26)

B p = 1
8JthSη pe

iα(1 + cos β), (B27)

C p = 1
8JthSη pe

−iα(1 − cos β). (B28)

To obtain the spin-wave spectrum via Bogoliubov transfor-
mation, we first have to symmetrize the matrices F p and G p

with respect to adding a wave vector ± Q. We thus work with
a matrix of dimension d = 18. To avoid double counting,
the sum over wave vectors p is restricted to the magnetic

Brillouin zone (MBZ), which is spanned by the vectors Q and
Q̃ = 4π√

3
( 1√

3
,1) and covers 1/3 of the first Brillouin zone.

Per wave vector p, there are three degrees of freedom
{c p,a p,b p}. As usual for Bogoliubov transformations, we
symmetrize with respect to p → − p and we obtain twice
as many bands. Thus we should only sample over one half
of the magnetic Brillouin zone, i.e., 1/6 of the first Brillouin
zone.

We find the spin-wave spectrum by diagonalizing the
matrix [79]

L = gH =
( F p G p

−G− p −F− p

)
, (B29)

where g = (1 0
0 −1). In diagonal form, the complete Hamilto-

nian H = Htt + Hhh + Hth takes the form

H =
(

−3

2
JttNL − 3JhhNL

)
S2 −

(
3

2
JttNL − 3JhhNL

)
S

+
∑

p∈MBZ

9∑
j=1

Ej, p(α,β)

2
(1 + 2B

†
j, pBj, p), (B30)

where Bj, p denote the Bogoliubov mode operators. The
spin-wave spectrum for Jth = 0 and Jth = 0.4J̄ is shown in
Fig. 8(b). It exhibits different degeneracies: for Jth = 0 there
is a degeneracy between a p and b p as well as a p± Q and b p± Q .
As a result, from a total of nine bands there are at most six
different energies at a given wave vector p for Jth = 0. Some
of the degeneracies are lifted for Jth �= 0; we observe band
mixing that leads to avoided crossings. There are always five
zero modes around p = 0; the three zero modes stemming
from the triangular lattice are also zero modes at p = ± Q.
The additional zero modes at p = Q occur since we have
symmetrized the Hamiltonian with respect to a p → a p± Q and
b p → b p± Q .

The angle dependent fluctuation correction to the free
energy δF (Jth,α,β) = F (Jth) − F (Jth = 0) follows from the
diagonal Hamiltonian in Eq. (B30) as

δF (Jth,α,β) = T
∑

p∈MBZ

9∑
j=1

ln

[
sinh (Ej, p(Jth)/2T )
sinh (Ej, p(0)/2T )

]
.

(B31)

This result is given in Eq. (14) and shown in Fig. 3 of the main
text.

APPENDIX C: DERIVATION OF RG EQUATIONS
IN UNCOUPLED REGIME

In this Appendix, we explicitly derive the RG equations for
the spin stiffnesses K(l) and Ki(l) in the uncoupled sublattice
regime at high temperatures Tcp < T < J̄ . In Sec. C 1, we
present the derivation of the one-loop result using the method
of Wilson-Polyakov scaling for uniaxial O(3)/O(2) order on
the honeycomb lattice. In Sec. C 2, we use the same method
to derive the flow for the biaxial SO(3) order on the triangular
lattice. In Sec. C 3, we use Friedan scaling to calculate the RG
equations for both cases up to two-loop order. In Ref. [54], we
provide a MATHEMATICA file that includes the calculation of
the RG equations via Friedan scaling.
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1. Wilson-Polyakov scaling for honeycomb lattice

The O(3)/O(2) NLSM action in d = 2 + ε dimensions is
given by

S = 1

2

∫
x

K(∂μn)2 , (C1)

where
∫
x

= ∫
ddx and the normalized field n(x) with |n(x)| =

1 is the fluctuating order parameter of an uniaxial magnet. An
order parameter configuration n(x) is uniquely described by
two Euler angle fields θ (x) and φ(x). Instead of the vectorial
expression in Eq. (C1), we use a matrix form of the action in
the following. To this end, we introduce a local orthonormal
triad, which we combine into a matrix h = (n,h2,h3) ∈ SO(3).
Defining the NLSM matrix field

Qh = hKhh
−1 (C2)

with coupling matrix Kh = √
Kdiag(1,0,0), the action (C1)

becomes

S = 1

4

∫
x

Tr[(∂μQh)T (∂μQh)]. (C3)

It is useful to define the matrix Qh, because it is constant
Qh = Kh, if the order parameter field h(x) commutes with
the coupling matrix [Kh,h(x)] = 0. A functional integral
over the field Qh thus automatically runs over elements
of the coset space O(3)/O(2). Physically, this corresponds
to the fact that two configurations of the order parameter
h (or n) that only differ by a local rotation around the
n axis are identical. Note that Eq. (C3) is in fact equal
to S = 1

2

∫
x
K{(∂μn)2 − [n · (∂μn)]2}. The additional second

term vanishes due to the constraint that n(x) is a normalized
field |n(x)| = 1.

We now express the matrix in terms of Euler angles as

h = e−iφτ2e−iθτ3e−iψτ1 , (C4)

where the matrices (τa)bc = iεbac fulfill the SU(2) algebra
[τa,τb] = iεabcτc. Note that the angle ψ is purely a gauge
degree of freedom as it describes rotations around the local n
axis and drops out in Eq. (C3).

We then decompose the Euler angle fields in Fourier space
into slow and fast modes, and write

h = h<h> (C5)

as a product of matrices h< and h>, where h< contains only
slow Fourier components |q| ∈ [0,�/b] and h> only fast ones
(|q| ∈ [�/b,�]). Here, � ∼ 1/a0 is a momentum cutoff due
to the lattice, and b > 1. That this can be done follows most
clearly by writing the rotation matrix as h = exp(−iφ · τ ),
where τ = (τx,τy,τz) and φ defines the axis and angle of
rotation.

The decoupling into slow and fast modes can be performed
in two ways: either as h = h>h<, which corresponds to
decoupling in the body frame of the magnet, or as h = h<h>,
which corresponds to decoupling in the laboratory frame (see
Ref. [16] for details). The form of Qh = hKhh

−1 suggests to
use the laboratory frame decoupling h = h<h>, because the
Euler angle ψ then drops out immediately because [Kh,τ1] =
0. Inserting this decoupling

h = h<h> (C6)

into the action in Eq. (C3) yields

S = 1

2

∫
x

Tr

[
1

2
(∂μQ>)2 − Q2

>�2
μ + Q>�μQ>�μ

+ Q>(∂μQ>)�μ − (∂μQ>)Q>�μ

]
, (C7)

where the Einstein summation for μ = x,y is used. We have
defined Q> = h>Khh

−1
> and

�μ = h−1
< (∂μh<) , (C8)

which is the slow angular velocity (matrix) along direction μ

in the laboratory frame.
In terms of Euler angles h< = e−iφ<τ2e−iθ<τ3e−iψ<τ1 , the

different components of the angular velocity

�μ = −i

3∑
j=1

�j
μτj (C9)

are given by

�1
μ = ∂μψ< + ∂μφ< sin θ<, (C10)

�2
μ = ∂μφ< cos θ< cos ψ< + ∂μθ< sin ψ<, (C11)

�3
μ = ∂μθ< cos ψ< − ∂μφ< cos θ< sin ψ<. (C12)

Next, we expand the action to second order in the fast fields

h> = e−iφ>τ2e−iθ>τ3e−iψ>τ1 , (C13)

which yields

Q> = h>Khh
−1
> =

⎛
⎝1 − θ2

> − φ2
> θ> −φ>

θ> θ2
> −θ>φ>

−φ> −φ>θ> φ2
>

⎞
⎠ .

(C14)

Since we express slow fields in terms of the angular velocity
�μ, let us drop the subscript (>) from the Euler angles in what
follows. The action then reads

S = K

2

∫
x

{
[(∂μθ )2 + (∂μφ)2] + [(

�2
μ

)2 + (
�3

μ

)2]
+ 2

[
(∂μθ )�3

μ + (∂μφ)�2
μ − �1

μ

(
θ�2

μ − φ�3
μ

)]
+ [

2�1
μ(φ(∂μθ ) − θ (∂μφ)) + (

�1
μ

)2
(θ2 + φ2)

− θ2
(
�2

μ

)2 − φ2
(
�3

μ

)2 + 2θφ�2
μ�3

μ

]}
. (C15)

The combination (�2
μ)2 + (�3

μ)2 is independent of the angle
ψ< as required. The component (�1

μ), which depends on ∂μψ<,
however, appears in the term coupling slow and fast fields.
This dependence will cancel after the integration over the fast
variables. The integration over the fast variables yields

Z =
∫

D
[
�j

μ,φ>,θ>

]
e−S<−S0>−Sc

=
∫

D
[
�j

μ

]
e−S<−δS< =

∫
D
[
�′j

μ

]
e−S ′

. (C16)
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In the last step, the slow fields have been rescaled �
j
μ → �

′j
μ . Calculating δS< gives

e−δS< =
∫

D[φ>,θ>] exp

(
−1

2

∫ >

p,p′
�T

pMpp′�p′ −
∫ >

p

BT
p �p

)
= exp

[
−1

2

∫ >

p,p′
BT

p (M−1)pp′Bp − 1

2
Tr(ln M)

]
, (C17)

where �T
p = (θp,φp) and

∫ >

p
= 1

(2π)2

∫ �

�/b
pdp

∫ 2π

0 dϕ is an integral over the fast variables. We have defined Mpp′ = (G−1)pp′ +
Cpp′ with

(G−1)pp′ = Kp2δp,−p′

(
1 0
0 1

)
(C18)

Cpp′ = K

⎛
⎝

[(
�1

μ

)2 − (
�2

μ

)2]
−p−p′ i(p′

μ − pμ)
(
�1

μ

)
−p−p′ + (

�2
μ�3

μ

)
−p−p′

−i(p′
μ − pμ)

(
�1

μ

)
−p−p′ + (

�2
μ�3

μ

)
−p−p′

[(
�1

μ

)2 − (
�3

μ

)2]
−p−p′

⎞
⎠ (C19)

and the linear coupling term

BT
p = K

[−(�1
μ�2

μ

)
−p

,−(�1
μ�3

μ

)
−p

]
. (C20)

In Eq. (C20), we have dropped terms by using that
pμ(�a

μ)−p = 0 for fast momenta |p| ∈ [�/b,�], since �a
μ

only contains slow Fourier components.
Let us analyze the first term in the final expression of

Eq. (C17). Since Bp ∼ (�a
μ)2, it follows that all terms in

BpM−1Bp contain at least four derivatives in the slow fields,
which makes them irrelevant in the RG sense. We expand
the second term in the final expression of Eq. (C17) as
ln M = ln G−1 + (GC − 1

2GCGC + · · · ). All higher-order
terms contain more than two derivatives of slow fields. The
first-order contribution reads

Tr(GC) =
2∑

i,j=1

∫ >

p,p′
G

ij

pp′C
ji

p′p =
∑

j

∫ >

p

G
jj
p,−pC

jj
−p,p

= ln b

2π

[
2
(
�1

μ

)2 − (
�2

μ

)2 − (
�3

μ

)2]
, (C21)

where we have used that
∫
p

p−2 = 1
2π

∫ �

�/b

dp

p
= ln b

2π
. For

brevity, we write (�j
μ)2 ≡ ∫ <

q
(�j

μ)q(�j
μ)−q = ∫

x
(�j

μ)x(�j
μ)x .

In real space, the action remains local. In the second-order
contribution, we only need to keep the part in Cpp′ that contains
a single slow derivative, i.e., that is linear in �

j
μ. We find

− 1

2
TrGCGC = −

∫ >

p,p′

(pμ + p′
μ)(pν + p′

ν)

p2p′2

× (
�1

μ

)
p′−p

(
�1

ν

)
p−p′

= −
∫ <

q

ln b

2π
2
(
�1

μ

)
q

(
�1

μ

)
−q

. (C22)

Here, we have used that p′ − p = q is a slow momentum
variable, and we can approximate p ± q ≈ p. We can evaluate
the momentum integrals in d = 2 dimensions, because we only
keep terms up toO(ε). This yields

∫
p

pμpν

p4 = δμν
ln b
2πd

= δμν
ln b
4π

.
To obtain the final result, we add S< to δS< [see Eqs. (C21)

and (C22)]. Then, we rescale length x ′ = x/b and fields
(�′j

μ )x ′ = b(�j
μ)x ′ , which yields the renormalized action after

one RG step:

S ′ = 1

2

∫
x ′

bd−2

(
K − ln b

2π

) [(
�′2

μ

)2
x ′ + (

�′3
μ

)2
x ′
]
. (C23)

With b = el and running cutoff �(l) = �0e
−l , we arrive

at the flow equation of the O(3)/O(2) NLSM in d = 2 + ε

dimensions:

d

dl
K = − 1

2π
+ εK . (C24)

In terms of the small expansion parameter g = 1/K , it
becomes

d

dl
g = −εg + g2

2π
. (C25)

2. Wilson-Polyakov scaling for triangular lattice

In this section, we derive the RG flow equations for the
SO(3) NLSM using Wilson-Polyakov scaling. The action of
the SO(3) NLSM reads

S = 1

2

∫
x

Tr[Kt (∂μt−1)(∂μt)] (C26)

with matrix field t(x) ∈ SO(3) and spin stiffness matrix Kt =
diag(K1,K2,K3). We decompose t into slow and fast modes
using the laboratory frame decoupling t = t<t>, which yields

S = −1

2

∫
x

Tr[Kt (�
>
μ + t−1

> �<
μt>)2]. (C27)

Here, �<
μ = t−1

< (∂μt<) and �>
μ = t−1

> (∂μt>) denote slow and
fast angular velocities, respectively. We parametrize the fast
fluctuations using Euler angles as

t> = e−iφ>τ2e−iθ>τ3e−iψ>τ1 , (C28)

and expand the action to quadratic order in the fast fields:

e−δS< =
∫

D[θ>,φ>,ψ>]e−S0>−Sc

=
∫

D[θ>,φ>,ψ>]

× exp

(
−1

2

∫
p,p′

�T
pMp,p′�p′ −

∫
p

BT
p �p

)
.

(C29)
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We combine the three Euler angles into the vector �T
p = (θ>p,φ>p,ψ>p). The quadratic part M = (G)−1 + C consists of the

inverse free propagator

(G−1)p,p′ = δp,−p′ p2

⎛
⎝K1 + K2 0 0

0 K1 + K3 0
0 0 K2 + K3

⎞
⎠ (C30)

and the coupling matrix

Cp,p′ =

⎛
⎜⎜⎝

K−
12

[(
�1

μ

)2 − (
�2

μ

)2] −i�1
μ[K+

21p1,μ + K−
21p2,μ] −i�2

μ[K+
32p2,μ + K−

32p1,μ]

−i�1
μ[K+

21p2,μ + K−
21p1,μ] K−

13

[(
�1

μ

)2 − (
�3

μ

)2] −i�3
μ[−K+

32p2,μ + K−
32p1,μ]

−i�2
μ[K+

32p1,μ + K−
32p2,μ] −i�3

μ[−K+
32p1,μ + K−

32p2,μ] K−
23

[(
�2

μ

)2 − (
�3

μ

)2]
⎞
⎟⎟⎠. (C31)

We have dropped the subscript (<) on the �
j
μ, and have defined K±

ij = Ki ± Kj . The slow fields are evaluated at momentum

(−p − p′), i.e., (�j
μ)2

−p−p′ = ∫ <

q
(�j

μ)−p−p′+q(�j
μ)−q . The coupling matrix fulfills the relation C

ji

p,p′ = C
ij

p′,p. In the off-diagonals

of C
ij

p,p′ , we kept only first-order terms in �
j
μ, because higher-order terms become higher order gradient terms in the slow action

and such terms are RG irrelevant. The terms BT
p �p that are linear in the fast fields do not contribute to the flow equation: they

either vanish since a slow field is evaluated at a fast momentum or are of quadratic order in the slow fields. This is analogous to
the uniaxial case [see discussion below Eq. (C20)].

As in Sec. C 1, we now integrate over the fast modes and perform a (derivative) expansion in the slow fields of the resulting
Tr[ln(1 + GC)] term. The first-order result is given by

Tr(GC) =
3∑

j=1

∫ >

p

(G)jjp C
jj
−p,p = ln b

2π

[(
K−

12

K+
12

+ K−
13

K+
13

) (
�1

μ

)2 +
(

K−
23

K+
23

− K−
12

K+
12

) (
�2

μ

)2 −
(

K−
23

K+
23

+ K−
13

K+
13

) (
�3

μ

)2
]

. (C32)

The second-order contribution reads − 1
2 TrGCGC = − 1

2

∫ >

p,p′
∑3

i,j=1 Gii
pC

ij

−p,p′G
jj

p′ C
ji

−p′,p. Let us evaluate one of the three terms
explicitly (i = 1,j = 2):

−1

2

∫ >

p,p′
2G11

p C12
−p,p′G

22
p′ C

21
−p′,p = −

∫ <

q

(
�1

μ

)
q

(
�1

ν

)
−q

K+
12K

+
13

(K+
21 − K−

21)2
∫ >

p

pμpν

p4
= −

∫ <

q

ln b

2π

2K2
1

(
�1

μ

)2

K+
12K

+
13

. (C33)

The other two terms (i = 1,j = 3) and (i = 2,j = 3) are obtained in the same way. We combine first- and second-order terms,
rescale fields, and momenta to arrive at the renormalized action in d = 2 + ε dimension:

S ′ = 1

2

∫
x ′

bd−2

{(
�1

μ

)2
[
K+

23 + ln b

2π

(
K−

12

K+
12

+ K−
13

K+
13

− 2K2
1

K+
12K

+
13

)]
+ (

�2
μ

)2
[
K+

13 + ln b

2π

(
K−

23

K+
23

− K−
12

K+
12

− 2K2
2

K+
12K

+
23

)]
(C34)

+(�3
μ

)2
[
K+

12 + ln b

2π

(
−K−

23

K+
23

− K−
13

K+
13

− 2K2
3

K+
13K

+
23

)]}
. (C35)

We can now read-off the RG flow equations. First, we note that
in case of K1 = K and K2 = K3 = 0, we recover the previous
O(3)/O(2) result of Eq. (C24). If at least two stiffnesses are
nonzero, we find

d

dl
Ia = −2KbKc

2πIbIc

= −−I 2
a + (Ib − Ic)2

4πIbIc

, (C36)

where we have defined

Ia = Kb + Kc (C37)

with a �= b �= c. On the triangular lattice, two of the stiffnesses
are initially identical K1 = K2. This equality is preserved
during the RG flow, and we find

dK1

dl
= − 1

2π

K2
1

(K1 + K3)2
, (C38)

dK3

dl
= 1

2π

K2
1 − K3(K1 + K3)

(K1 + K3)2
. (C39)

Clearly, a nonzero value of K3 is generated during the flow. If
we define the stiffness anisotropy

η = K1 − K3

K1 + K3
, (C40)

the flow equations take the form [see Eqs. (48) and (49)]

dK1

dl
= − (1 + η)2

8π
, (C41)

dη

dl
= −η(1 + η)2

4πK1
. (C42)

The anisotropy flows to zero and the system approaches an
isotropic fixed point with all stiffnesses being equal K1 =
K2 = K3.

3. O(3)/O(2) and SO(3) scaling from Ricci flow

The RG equations for the O(3)/O(2) and the SO(3) NLSM
can also be derived using Friedan scaling via the Ricci
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flow of the stiffness metric tensor. We provide as electronic
Supplementary Material a MATHEMATICA file that includes
this calculation [54]. To find the metric tensor gij , we
write the NLSM action in Eq. (4) in covariant form. First,
we write

S0 = 1

2

∫
x

{
K
[(

�2
μ

)2 + (
�3

μ

)2]+
3∑

a=1

Ia

(
�̃a

μ

)2

}
, (C43)

where �
j
μ and �̃

j
μ denote components of the angular velocities

�μ = h−1(∂μh) = −i�a
μτa and �̃μ = t−1(∂μt) = −i�̃a

μτa ,
and the Ia are defined in Eq. (C37). Note the analogy
of Eq. (C43) to the Hamiltonian of a spinning top with
moments of inertia Ia along the three principal axes. For
the honeycomb lattice, only rotations around the h2 and
h3 axes have a finite moment of inertia and thus Ih

1 = 0,
Ih

2 = Ih
3 = K .

In covariant form Eq. (C43) reads

S0 = 1

2

∫
x

2∑
i,j=1

gh
ij (∂μXi)(∂μXj )

+ 1

2

∫
x

3∑
i,j=1

gt
ij (∂μY i)(∂μY j ) , (C44)

where the coordinate vectors Xi,Y i contain the Euler angles
for the spins on the honeycomb lattice X = (φh,θh) and on
the triangular lattice Y = (φt ,θt ,ψt ). We use the Euler angle
convention:

h = e−iφhτ2e−iθhτ3e−iψhτ1 , (C45)

t = e−iφt τ3e−iθt τ1e−iψt τ3 . (C46)

This is the Euler angle convention for t that we also employ in
the coplanar regime. The resulting RG equations are of course
independent of the choice of Euler angles. The covariant
metric tensors read

g
(h)
ij = K

(
cos2 θh 0

0 1

)
, (C47)

g
(t)
ij =

⎛
⎝I3 cos2 θt + sin2 θt (I1 sin2 ψt + I2 cos2 ψt ) (I1 − I2) sin θt sin ψt cos ψt I3 cos θt

(I1 − I2) sin θt sin ψt cos ψt I1 cos2 ψt + I2 sin2 ψt 0
I3 cos θt 0 I3

⎞
⎠. (C48)

The contravariant tensors g(h);ij and g(t);ij are given by the inverse of gh
ij and gt

ij due to gh;ij gh
jk = δi

k and gt ;ij gt
jk = δi

k .

Following Friedan [41,42], the renormalization group flow of the spin stiffnesses up to the order of two loops is given by the
Ricci flow of the metric tensor

dgij

dl
= − 1

2π
Rij − 1

8π2
Ri

klmRjklm . (C49)

The Riemann tensor Rk
lij is determined by the Christoffel symbols

�i
jk = 1

2gil(gjl,k + gkl,j − gjk,l) (C50)

as

Rk
lij = �k

lj,i − �k
li,j + �k

ni�
n
lj − �k

nj�
n
li . (C51)

We use the common notation gij,k = ∂gij

∂Xk . The first loop contribution of the RG flow is determined by the Ricci tensor Rij , which
is a contraction of the Riemann tensor

Rij = Rk
ikj . (C52)

The Ricci tensor for the honeycomb metric reads explicitly

R
(h)
ij =

(
cos2 θh 0

0 1

)
. (C53)

In the most general case of I1 �= I2 �= I3, the Ricci tensor is rather lengthy. For the triangular lattice magnet, where K1 = K2 and
thus I1 = I2, it reads

R
(t)
ij =

⎛
⎜⎜⎝

I3

2I 2
1
c2
θt

+ (
1 − I3

2I1

)
s2
θt

0 I 2
3

2I 2
1
c2
θt

0 1 − I3
2I1

0
I 2

3

2I 2
1
c2
θt

0 I 2
3

2I 2
1

⎞
⎟⎟⎠, (C54)

where cY j = cos Y j and sY j = sin Y j . Note that all entries appear with the same prefactor in the corresponding entries of the
covariant metric tensor gt

ij in Eq. (C48). The contraction of the Riemann tensor that appears at two-loop order is given for the
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honeycomb lattice by

R
(h)
i

klmR
(h)
jklm = 2

Kh

(
cos2 θh 0

0 1

)
, (C55)

and for the triangular lattice by

R
(t)
i

klmR
(t)
jklm = 1

4I 4
1

⎛
⎜⎝

I1
(
8I 2

1 − 12I1I3 + 5I 2
3

)
sin θt + I 3

3 cos θt 0 I 3
3 cos θt

0 I1
(
8I 2

1 − 12I1I3 + 5I 2
3

)
0

I 2
3 cos θt 0 I 3

3

⎞
⎟⎠. (C56)

According to Eq. (C49), a comparison with the covariant metric tensor allows to read-off the RG flow equation up to two loops
as

dK

dl
= − 1

2π
− 1

4π2K
, (C57)

dI1

dl
= −I 2

1 + (I2 − I3)2

4πI2I3
− 1

32π2I1I
2
2 I 2

3

{
I 4

1 + (I2 − I3)2
[
5
(
I 2

2 + I 2
3

)+ 2I 2
1 + 6I2I3 − 8(I2 + I3)I1

]}
, (C58)

dI2

dl
= −I 2

2 + (I1 − I3)2

4πI1I3
− 1

32π2I 2
1 I2I

2
3

{
I 4

2 + (I1 − I3)2
[
5
(
I 2

1 + I 2
3

)+ 2I 2
2 + 6I1I3 − 8(I1 + I3)I2

]}
, (C59)

dI3

dl
= −I 2

3 + (I1 − I2)2

4πI1I2
− 1

32π2I 2
1 I 2

2 I3

{
I 4

3 + (I1 − I2)2
[
5
(
I 2

1 + I 2
2

)+ 2I 2
3 + 6I1I2 − 8(I1 + I2)I3

]}
. (C60)

The one loop result agrees with Wilson-Polyakov scaling [see Eqs. (C24), (C38), and (C39)].

APPENDIX D: DERIVATION OF RG EQUATIONS
IN COPLANAR REGIME

In this section, we compute the renormalization group flow
of the coplanar action [see Eq. (60)]

S = 1

2

∫
x

[
I1
(
�1

μ

)2 + I2
(
�2

μ

)2 + I3
(
�3

μ

)2 + Iα(∂μα)2

+ κ

2
(∂μα)�3

μ + λ

4
cos(6α)

]
, (D1)

where I1 = K2 + K3, I2 = K + K1 + K3, I3 = K + K1 +
K2, Iα = K1 + K2, and κ = 2(K1 + K2). The angular veloc-
ity �μ = h−1(∂μh) = −i�a

μτa with SU(2) matrices (τa)bc =
iεbac describes the locally fluctuating SO(3) magnetic order
parameter. The U(1) phase angle α is coupled only to the com-
ponent �3

μ, since we choose the local axis that is perpendicular
to the common plane of triangular and honeycomb spins to be
the τ3 direction. It holds that t = hU with U = exp(−iατ3).

We derive the scaling of the spin stiffnesses Ij and Iα

as well as the SO(3)× U(1) coupling constant κ first using
Wilson-Polyakov scaling in Sec. D 1 and then using the Friedan
approach in Sec. D 2. The flow of the sixfold potential λ is
calculated in Sec. D 3. The effect of the potential term λ on the
scaling of Ij and κ is small and thus neglected in the following.
In contrast, the flow of λ is strongly affected by Iα .

1. Coplanar flow from Wilson-Polyakov scaling

In this section, we derive the flow equations for {Ij ,Iα,κ}
using Wilson-Polyakov scaling. We employ the Euler angle
parametrization

h = e−iφτ2e−iθτ3e−iψτ1 . (D2)

This choice ensures that the Euler angle ψ drops out of the
O(3)/O(2) NLSM action immediately since [K,τ1] = 0, and
the fast propagator G−1 (defined below) can be inverted. We
will use a different Euler angle parametrization in the Friedan
approach in Sec. D 2, since it allows for an easier identification
of decoupling criteria of the SO(3) and U(1) sectors. The result
for the RG equations is, of course, independent of the choice
of Euler angle parametrization.

We first separate h and U = exp(−iατ3) into slow and fast
modes h = h<h> and U = U<U>. This yields

�μ = h−1(∂μh) = h−1
> �<

μh> + �>
μ (D3)

with �<
μ = h−1

< (∂μh<) and �>
μ = h−1

> (∂μh>), as well as
Uμ = −i(∂μα)τ3 = −iτ3[(∂μα<) + (∂μα>)]. Expanding to
quadratic order in the fast fields and performing the functional
integration gives the correction to the slow action

e−δS< =
∫

D[φ>,θ>,ψ>,α>]e−S0>−Sc

=
∫

D[φ>,θ>,ψ>,α>]

× exp

(
−1

2

∫
p,p′

�T
pMp,p′�p′ −

∫
p

BT
p �p

)
(D4)

with �T
p = (φ>,θ>,ψ>,α>)p. The quadratic part M = G−1 +

C contains the inverse free propagator

(G−1)p,p′ = δp,−p′ p2

⎛
⎜⎝

I2 0 0 0
0 I3 0 κ/2
0 0 I1 0
0 κ/2 0 Iα

⎞
⎟⎠. (D5)
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For the propagator, one finds

Gp,p′ = δp,−p′

p2

⎛
⎜⎜⎝

I−1
2 0 0 0
0 1

I3−κ2/4Iα
0 2κ

κ2−4IαI3

0 0 I−1
1 0

0 2κ
κ2−4IαI3

0 1
Iα−κ2/4I3

⎞
⎟⎟⎠. (D6)

It also contains the coupling matrix

Cp,p′ =

⎛
⎜⎜⎜⎜⎜⎝

I31
[(

�1
μ

)2 − (
�3

μ

)2]− κ
2 �3

μ(∂μα<) −i�1
μ[I12p + I3p

′] i�3
μ[I32p + I1p

′] − iκ
2 p′�1

μ

−i�1
μ[I12p

′ + I3p] −I12
[(

�1
μ

)2 − (�2
μ)2

] −i�2
μ[I23p + I1p

′] 0

i�3
μ[I32p

′ + I1p] −i�2
μ[I23p

′ + I1p] I32
[(

�2
μ

)2 − (
�3

μ

)2]− κ
2 �3

μ(∂μα<) iκ
2 p′�2

μ

− iκ
2 p�1

μ 0 iκ
2 p�2

μ 0

⎞
⎟⎟⎟⎟⎟⎠,

(D7)

where Iij = Ii − Ij . We have dropped the index (<) on �μ. The linear coupling term BT
p contains terms that are linear and

quadratic in the slow fields: the linear terms vanish in Fourier space because they involve evaluating a slow fields at a fast
momentum. The terms quadratic in the slow fields lead after functional integration to irrelevant operators [see discussion below
Eq. (C20)]. We thus do not give BT

p explicitly here.
To find the renormalization of Ij ,Iα,κ , we integrate over the fast fields [see Eq. (C17)] and expand Tr[ln(1 + GC)] to second

order in C. We then rescale momenta and fields. From the expressions of the renormalized parameters, we extract the one-loop
RG flow equations as

d

dl
I1 = −I 2

1 + (I2 − I3)2

4πI2I3
−

(
I 2

1 − I 2
2

)
κ2

16πI2I
2
3 (Iα − κ2/4I3)

, (D8)

d

dl
I2 = −I 2

2 + (I1 − I3)2

4πI1I3
+

(
I 2

1 − I 2
2

)
κ2

16πI1I
2
3 (Iα − κ2/4I3)

, (D9)

d

dl
I3 = −I 2

3 + (I1 − I2)2

4πI1I2
, (D10)

d

dl
κ = − I3κ

4πI1I2
, (D11)

d

dl
Iα = − κ2

16πI1I2
. (D12)

Changing variables to r = κ/2I3 and I ′
α = Iα − κ2/4I3 yields the RG equations (75)–(80) given in the main text.

2. Coplanar RG equations from Ricci flow

In this section, we derive the flow equations using the Ricci flow. In the electronic Supplementary Material [54], we provide
a MATHEMATICA file that includes this calculation. Besides being technically more straightforward to implement, the main
advantage of this approach is that it provides us with clear decoupling criteria of the SO(3) and U(1) sectors.

In the coplanar regime, the order parameter triad on the triangular lattice is related to the one on the honeycomb lattice by a
simple rotation around the common t3 axis as

t = hU = h exp(−iατ3). (D13)

Here, we employ the Euler angle parametrization

h = e−iφτ3e−iθτ1e−iψτ3 , (D14)

since it allows for a transparent derivation of decoupling criteria between the SO(3) and U(1) sectors. This arises from the fact
that for this choice of Euler angles, the relative angle α adds to the Euler angle ψ via hU = e−iφτ3e−iθτ1e−i(ψ+α)τ3 .

To derive the RG equations as the Ricci flow of a metric tensor gij (X), we first need to write the gradient part of the action in
Eq. (D1) in covariant form as

S0 = 1

2

∫
x

4∑
i,j=1

gij (∂μXi)(∂μXj ) , (D15)
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where we have combined the Euler angles and the relative angle α into the coordinate vector X = (φ,θ,ψ,α). The covariant
metric tensor is given by

gij =
(

gSO(3) KT

K Iα

)
=

⎛
⎜⎜⎝

I3 cos2 θ + sin2 θ (I1 sin2 ψ + I2 cos2 ψ) (I1 − I2) sin θ sin ψ cos ψ I3 cos θ κ
2 cos θ

(I1 − I2) sin θ sin ψ cos ψ I1 cos2 ψ + I2 sin2 ψ 0 0
I3 cos θ 0 I3

κ
2

κ
2 cos θ 0 κ

2 Iα

⎞
⎟⎟⎠ .

(D16)

Here, the block matrix g
SO(3)
ij is identical to the metric tensor of the isolated SO(3) magnet in Eq. (C48). Note, however, that

I1 �= I2 in the coplanar case. The SO(3) and U(1) sectors are coupled via the off-diagonal elements

K = κ

2
(cos θ,0,1) . (D17)

As described in the main text below Eq. (71), these off-diagonal elements can be formally eliminated by a shift of the Euler
angle ψ → ψ ′ = ψ + rα with r = κ/2I3. While K now vanishes, the SO(3) metric g

SO(3)
ij implicitly depends on the relative

angle α via ψ ′(α). The U(1) stiffness changes to Iα → I ′
α = Iα − κ2/2I3. This transformation provides us with two transparent

decoupling criteria: either |I1 − I2| 
 √
I1I2 such that g

SO(3)
ij becomes independent of Euler angle ψ ′ (and thus of α) or r 
 1

such that the shift of ψ is negligible.
Following Friedan, the flow of Ij , I ′

α and r is given by the Ricci flow of the metric tensor [see Eq. (27)]. This allows us to
confirm that the system flows towards a decoupled regime at longer lengthscales. In the coplanar regime, the Ricci tensor takes
the form

Rij =

⎛
⎜⎜⎜⎜⎜⎜⎝

R11
(I1−I2){4Iα[(I1+I2)2−I 2

3 ]+I3κ
2} sin θ sin 2ψ

4I1I2(4I3Iα−κ2)
(I 2

3 −(I1−I2)2) cos θ

2I1I2

κI3 cos θ

4I1I2

(I1−I2){4Iα[(I1+I2)2−I 2
3 ]+I3κ

2} sin θ sin 2ψ

4I1I2(4I3Iα−κ2) R22 0 0

(I 2
3 −(I1−I2)2) cos θ

2I1I2
0 I 2

3 −(I1−I2)2

2I1I2

κI3
4I1I2

I3κ cos θ

4I1I2
0 I3κ

4I1I2

κ2

8I1I2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (D18)

where

R11 = I 2
3 − (I1 − I2)2

2I1I2
cos2 θ + sin2 θ

{
cos2 ψ

I2
[
4Iα

(
I 2

2 − (I1 − I3)2
)+ κ2(I3 − 2I1)

]
8I1I2I3(Iα − κ2/4I3)

+ sin2 ψ
I1
[
4Iα

(
I 2

1 − (I2 − I3)2
)+ κ2(I3 − 2I2)

]
8I1I2I3(Iα − κ2/4I3)

}
, (D19)

R22 = cos2 ψ
{−8I1Iα

[−I 2
1 + (I2 − I3)2

]+ 2I1κ
2(I3 − 2I2)

}
16I1I2I3(Iα − κ2/4I3)

+ sin2 ψ
{−8I2Iα

[−I 2
2 + (I1 − I3)2

]+ 2I2κ
2(I3 − 2I1)

}
16I1I2I3(Iα − κ2/4I3)

. (D20)

The contraction of the Riemann tensor that corresponds to the two loop result is a lengthy expression that is straightforwardly
computed. It allows to extract the two-loop RG equations

d

dl
I1 = −I 2

1 + (I2 − I3)2

4πI2I3
−

(
I 2

1 − I 2
2

)
κ2

16πI2I
2
3 (Iα − κ2/4I3)

− 1

4I 2
1 I2

[
4I1I2 + 4I 2

2 − 4I1I3 − 8I2I3 + 5I 2
3

+ (I1 − I2)2

Iα − κ2/4I3

{[
4I 2

1 + (I1 + I2)2
]
I 2
α

I3
− 2(2I2 + I3)Iα

}]
, (D21)

d

dl
I2 = −I 2

2 + (I1 − I3)2

4πI1I3
−

(
I 2

2 − I 2
1

)
κ2

16πI1I
2
3 (Iα − κ2/4I3)

− 1

4I1I
2
2

[
4I1I2 + 4I 2

1 − 4I2I3 − 8I1I3 + 5I 2
3

+ (I1 − I2)2

Iα − κ2/4I3

{[
4I 2

2 + (I1 + I2)2
]
I 2
α

I3
− 2(2I1 + I3)Iα

}]
, (D22)

d

dl
I3 = −I 2

3 + (I1 − I2)2

4πI1I2
− 1

32π2I 2
1 I 2

2 I3(Iα − κ2/4I3)

{
Iα

[
(I1 − I2)2

(
5I 2

1 + 6I1I2 + 5I 2
2

)
− 8(I1 − I2)2(I1 + I2)I3 + 2(I1 − I2)2I 2

3 + I 4
3

]+ κ2
[
(I1 − I2)2(I1 + I2 + I3/4) + I 2

3

/
4
]}

, (D23)
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d

dl
κ = − κI3

4πI1I2
− I 3

3 + I3(I1 − I2)2 − 2(I1 + I2)(I1 − I2)2

16π2I 2
1 I 2

2 I3(Iα − κ2/4I3)
, (D24)

d

dl
Iα = − κ2

16πI1I2
−
[
(I1 − I2)2 + I 2

3

]
Iακ2 − I3κ

4/4

128π2I 2
1 I 2

2 I3(Iα − κ2/4I3)
. (D25)

The one-loop contribution agrees with the result in Eqs. (D8)–(D12) obtained from Wilson-Polyakov scaling.

3. Flow of sixfold potential λ

Let us derive the flow of the sixfold potential λ in the coplanar regime. Rewriting the action in Eq. (D1) in terms of r = κ/2I3

and I ′
α = Iα − κ2/4I3, one finds

S = 1

2

∫
x

{
I1
[(

�1
μ

)2 + (
�2

μ

)2]+ I3
(
�3

μ

)2 + (I2 − I1)[sin(ψ − rα)(∂μθ ) + cos θ cos(ψ − rα)(∂μφ)2]2

+ I ′
α(∂μα)2 + λ

4
cos(6α)

}
. (D26)

The potential λ is renormalized by spin waves in the phase angle α. We decompose α = α< + α> into fast modes α> and slow
modes α<, and keep only those parts of the action that are relevant to the renormalization of λ to arrive at

SZ6 =
∫

x

[
I ′
α

2
(∂μα<)2 + I ′

α

2
(∂μα>)2 + λ

4
cos(pα< + pα>)

]
. (D27)

Here, we have generalized to a potential with Zp symmetry, where p = 6 in our case. For the renormalization of λ, we can focus
on the derivative terms (∂μα)2 and neglect the terms proportional to (I2 − I1) in Eq. (D26). Expanding to quadratic order in the
fast fields, we find

SZ6 =
∫

x

[
I ′
α

2
(∂μα<)2 + λ cos(pα<) + I ′

α

2
(∂μα>)2 − λp2

2
α2

> cos(pα<) − pα> sin(pα<)

]
. (D28)

In momentum space, this becomes

SZ6 = S<
Z6

+
∫ >

k,k′
α>(k)α>(k′)

[
I ′
α

2
k2δ(k + k′) − λp2

2
cos(pα<)k+k′

]
, (D29)

where S<
Z6

= ∫
x
[ I ′

α

2 (∂μα<)2 + λ cos(pα<)] contains only slow modes and
∫ >

k
= 1

(2π)2

∫ �

�/b
dkk

∫ 2π

0 dφ. We have disregarded the
last term in Eq. (D28) because it involves a function of slow modes f (α<) evaluated at a fast momentum |k| ∈ [�/b,�], where
this function vanishes.

The next step is to perform the functional integration over the fast modes α>, which yields

SZ6 = S<
Z6

+ 1
2 Tr ln

(
G−1

k,k′ − Ck,k′
) = S<

Z6
+ 1

2 Tr ln
(
G−1

k,k

)− 1
2 Tr(Gk,k′Ck′,k) + O(C2) (D30)

with inverse propagator G−1
k,k′ = I ′

αk2δ(k + k′), propagator Gk,k′ = [I ′
αk2]−1δ(k + k′), and potential term Ck,k′ =

λp2 cos(pα<)k+k′ . Evaluating the trace in Eq. (D30) gives

1

2
Tr(Gk,k′Ck′,k) = 1

2

∫ >

k

1

I ′
αk2

λp2 cos(pα<)0 = ln b

4πI ′
α

λp2 cos(pα<)0. (D31)

Finally, we rescale momenta k′ = bk and fields α′(k′) = α<(bk) to obtain the renormalized value λ′ = b2λ − ln b
4πI ′

α
λp2. The

resulting flow equation for the p-fold potential is thus given by

d

dl
λ =

(
2 − p2

4πI ′
α

)
λ, (D32)

which for p = 6 results in Eq. (80).
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[38] J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,
Phys. Rev. B 16, 1217 (1977).

[39] G. Ortiz, E. Cobanera, and Z. Nussinov, Nucl. Phys. B 854, 780
(2012).

[40] P. P. Orth, P. Chandra, P. Coleman, and J. Schmalian, Phys. Rev.
Lett. 109, 237205 (2012).

[41] D. Friedan, Phys. Rev. Lett. 45, 1057 (1980).
[42] D. H. Friedan, Ann. Phys. 163, 318 (1985).
[43] A. M. Polyakov, Phys. Lett. B 59, 79 (1975).
[44] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
[45] K. G. Wilson, Rev. Mod. Phys. 55, 583 (1983).
[46] A. M. Polyakov, Gauge fields and strings, Contemporary

Concepts in Physics Vol. 3 (Harwood Academic Publishers,
Chur, Switzerland, 1987).

[47] D. Blankschtein, M. Ma, A. N. Berker, G. S. Grest, and C. M.
Soukoulis, Phys. Rev. B 29, 5250 (1984).

[48] S. V. Isakov and R. Moessner, Phys. Rev. B 68, 104409
(2003).

[49] S.-Z. Lin, Y. Kamiya, G.-W. Chern, and C. D. Batista,
arXiv:1310.3468.

[50] B. Zwiebach, A First Course in String Theory (Cambridge
University Press, Cambridge, UK, 2009).

[51] J. Polchinski, String Theory (Cambridge University Press,
Cambridge, UK, 1998).

[52] M. Gell-Mann and B. Zwiebach, Phys. Lett. B 141, 333
(1984).

[53] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).
[54] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.89.094417 for a MATHEMATICA file that
contains calculation of RG equations using the Friedan scaling
approach.

[55] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
[56] T. Dombre and N. Read, Phys. Rev. B 39, 6797 (1989).
[57] S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. B

39, 2344 (1989).
[58] B. Jeevanesan, P. P. Orth, P. Chandra, P. Coleman, and

J. Schmalian (unpublished).
[59] P. W. Anderson and G. Yuval, Phys. Rev. Lett. 23, 89

(1969).
[60] G. Yuval and P. W. Anderson, Phys. Rev. B 1, 1522 (1970).
[61] J. Cardy, Scaling and Renormalization in Statistical Physics

(Cambridge University Press, Cambridge, UK, 1996).
[62] P. Azaria, B. Delamotte, and T. Jolicoeur, Phys. Rev. Lett. 64,

3175 (1990).
[63] J. M. Fellows, S. T. Carr, C. A. Hooley, and J. Schmalian, Phys.

Rev. Lett. 109, 155703 (2012).
[64] V. L. Berezinskii, Sov. Phys. JETP 34, 610 (1972).
[65] J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid St. Phys.

6, 1181 (1973).
[66] J. M. Kosterlitz, J. Phys. C: Solid St. Phys. 7, 1046 (1974).
[67] H. C. Manoharan, C. P. Lutz, and D. M. Eigler, Nature (London)

403, 512 (2000).
[68] K. K. Gomes, W. Mar, Ko W., F. Guinea, and H. C. Manoharan,

Nature (London) 483, 306 (2012).

094417-27

http://dx.doi.org/10.1103/PhysRevB.81.214419
http://dx.doi.org/10.1103/PhysRevB.81.214419
http://dx.doi.org/10.1103/PhysRevB.81.214419
http://dx.doi.org/10.1103/PhysRevB.81.214419
http://dx.doi.org/10.1103/PhysRevB.78.094423
http://dx.doi.org/10.1103/PhysRevB.78.094423
http://dx.doi.org/10.1103/PhysRevB.78.094423
http://dx.doi.org/10.1103/PhysRevB.78.094423
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104138
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104138
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104138
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104138
http://dx.doi.org/10.1103/PhysRevLett.110.077201
http://dx.doi.org/10.1103/PhysRevLett.110.077201
http://dx.doi.org/10.1103/PhysRevLett.110.077201
http://dx.doi.org/10.1103/PhysRevLett.110.077201
http://dx.doi.org/10.1103/PhysRevB.87.104402
http://dx.doi.org/10.1103/PhysRevB.87.104402
http://dx.doi.org/10.1103/PhysRevB.87.104402
http://dx.doi.org/10.1103/PhysRevB.87.104402
http://dx.doi.org/10.1051/jphys:01977003804038500
http://dx.doi.org/10.1051/jphys:01977003804038500
http://dx.doi.org/10.1051/jphys:01977003804038500
http://dx.doi.org/10.1051/jphys:01977003804038500
http://dx.doi.org/10.1051/jphys:0198000410110126300
http://dx.doi.org/10.1051/jphys:0198000410110126300
http://dx.doi.org/10.1051/jphys:0198000410110126300
http://dx.doi.org/10.1051/jphys:0198000410110126300
http://dx.doi.org/10.1209/0295-5075/7/1/014
http://dx.doi.org/10.1209/0295-5075/7/1/014
http://dx.doi.org/10.1209/0295-5075/7/1/014
http://dx.doi.org/10.1209/0295-5075/7/1/014
http://dx.doi.org/10.1103/PhysRevLett.62.2056
http://dx.doi.org/10.1103/PhysRevLett.62.2056
http://dx.doi.org/10.1103/PhysRevLett.62.2056
http://dx.doi.org/10.1103/PhysRevLett.62.2056
http://dx.doi.org/10.1103/PhysRevLett.68.855
http://dx.doi.org/10.1103/PhysRevLett.68.855
http://dx.doi.org/10.1103/PhysRevLett.68.855
http://dx.doi.org/10.1103/PhysRevLett.68.855
http://dx.doi.org/10.1103/PhysRevB.58.12049
http://dx.doi.org/10.1103/PhysRevB.58.12049
http://dx.doi.org/10.1103/PhysRevB.58.12049
http://dx.doi.org/10.1103/PhysRevB.58.12049
http://dx.doi.org/10.1103/PhysRevB.77.224509
http://dx.doi.org/10.1103/PhysRevB.77.224509
http://dx.doi.org/10.1103/PhysRevB.77.224509
http://dx.doi.org/10.1103/PhysRevB.77.224509
http://dx.doi.org/10.1103/PhysRevB.78.020501
http://dx.doi.org/10.1103/PhysRevB.78.020501
http://dx.doi.org/10.1103/PhysRevB.78.020501
http://dx.doi.org/10.1103/PhysRevB.78.020501
http://dx.doi.org/10.1103/PhysRevLett.105.157003
http://dx.doi.org/10.1103/PhysRevLett.105.157003
http://dx.doi.org/10.1103/PhysRevLett.105.157003
http://dx.doi.org/10.1103/PhysRevLett.105.157003
http://dx.doi.org/10.1088/0953-2048/25/8/084005
http://dx.doi.org/10.1088/0953-2048/25/8/084005
http://dx.doi.org/10.1088/0953-2048/25/8/084005
http://dx.doi.org/10.1088/0953-2048/25/8/084005
http://dx.doi.org/10.1103/PhysRevB.85.024534
http://dx.doi.org/10.1103/PhysRevB.85.024534
http://dx.doi.org/10.1103/PhysRevB.85.024534
http://dx.doi.org/10.1103/PhysRevB.85.024534
http://dx.doi.org/10.1103/PhysRevB.86.115443
http://dx.doi.org/10.1103/PhysRevB.86.115443
http://dx.doi.org/10.1103/PhysRevB.86.115443
http://dx.doi.org/10.1103/PhysRevB.86.115443
http://dx.doi.org/10.1103/PhysRevLett.106.207202
http://dx.doi.org/10.1103/PhysRevLett.106.207202
http://dx.doi.org/10.1103/PhysRevLett.106.207202
http://dx.doi.org/10.1103/PhysRevLett.106.207202
http://dx.doi.org/10.1126/science.1134796
http://dx.doi.org/10.1126/science.1134796
http://dx.doi.org/10.1126/science.1134796
http://dx.doi.org/10.1126/science.1134796
http://dx.doi.org/10.1103/PhysRevLett.108.167603
http://dx.doi.org/10.1103/PhysRevLett.108.167603
http://dx.doi.org/10.1103/PhysRevLett.108.167603
http://dx.doi.org/10.1103/PhysRevLett.108.167603
http://dx.doi.org/10.1038/nmat3786
http://dx.doi.org/10.1038/nmat3786
http://dx.doi.org/10.1038/nmat3786
http://dx.doi.org/10.1038/nmat3786
http://dx.doi.org/10.1038/ncomms2545
http://dx.doi.org/10.1038/ncomms2545
http://dx.doi.org/10.1038/ncomms2545
http://dx.doi.org/10.1038/ncomms2545
http://dx.doi.org/10.1103/PhysRevLett.109.187201
http://dx.doi.org/10.1103/PhysRevLett.109.187201
http://dx.doi.org/10.1103/PhysRevLett.109.187201
http://dx.doi.org/10.1103/PhysRevLett.109.187201
http://dx.doi.org/10.1103/PhysRevB.88.024410
http://dx.doi.org/10.1103/PhysRevB.88.024410
http://dx.doi.org/10.1103/PhysRevB.88.024410
http://dx.doi.org/10.1103/PhysRevB.88.024410
http://dx.doi.org/10.1103/PhysRevLett.108.127203
http://dx.doi.org/10.1103/PhysRevLett.108.127203
http://dx.doi.org/10.1103/PhysRevLett.108.127203
http://dx.doi.org/10.1103/PhysRevLett.108.127203
http://dx.doi.org/10.1103/PhysRevLett.108.127204
http://dx.doi.org/10.1103/PhysRevLett.108.127204
http://dx.doi.org/10.1103/PhysRevLett.108.127204
http://dx.doi.org/10.1103/PhysRevLett.108.127204
http://dx.doi.org/10.1103/PhysRevLett.109.077204
http://dx.doi.org/10.1103/PhysRevLett.109.077204
http://dx.doi.org/10.1103/PhysRevLett.109.077204
http://dx.doi.org/10.1103/PhysRevLett.109.077204
http://dx.doi.org/10.1103/PhysRevLett.109.167201
http://dx.doi.org/10.1103/PhysRevLett.109.167201
http://dx.doi.org/10.1103/PhysRevLett.109.167201
http://dx.doi.org/10.1103/PhysRevLett.109.167201
http://dx.doi.org/10.1103/PhysRevB.16.1217
http://dx.doi.org/10.1103/PhysRevB.16.1217
http://dx.doi.org/10.1103/PhysRevB.16.1217
http://dx.doi.org/10.1103/PhysRevB.16.1217
http://dx.doi.org/10.1016/j.nuclphysb.2011.09.012
http://dx.doi.org/10.1016/j.nuclphysb.2011.09.012
http://dx.doi.org/10.1016/j.nuclphysb.2011.09.012
http://dx.doi.org/10.1016/j.nuclphysb.2011.09.012
http://dx.doi.org/10.1103/PhysRevLett.109.237205
http://dx.doi.org/10.1103/PhysRevLett.109.237205
http://dx.doi.org/10.1103/PhysRevLett.109.237205
http://dx.doi.org/10.1103/PhysRevLett.109.237205
http://dx.doi.org/10.1103/PhysRevLett.45.1057
http://dx.doi.org/10.1103/PhysRevLett.45.1057
http://dx.doi.org/10.1103/PhysRevLett.45.1057
http://dx.doi.org/10.1103/PhysRevLett.45.1057
http://dx.doi.org/10.1016/0003-4916(85)90384-7
http://dx.doi.org/10.1016/0003-4916(85)90384-7
http://dx.doi.org/10.1016/0003-4916(85)90384-7
http://dx.doi.org/10.1016/0003-4916(85)90384-7
http://dx.doi.org/10.1016/0370-2693(75)90161-6
http://dx.doi.org/10.1016/0370-2693(75)90161-6
http://dx.doi.org/10.1016/0370-2693(75)90161-6
http://dx.doi.org/10.1016/0370-2693(75)90161-6
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.55.583
http://dx.doi.org/10.1103/RevModPhys.55.583
http://dx.doi.org/10.1103/RevModPhys.55.583
http://dx.doi.org/10.1103/RevModPhys.55.583
http://dx.doi.org/10.1103/PhysRevB.29.5250
http://dx.doi.org/10.1103/PhysRevB.29.5250
http://dx.doi.org/10.1103/PhysRevB.29.5250
http://dx.doi.org/10.1103/PhysRevB.29.5250
http://dx.doi.org/10.1103/PhysRevB.68.104409
http://dx.doi.org/10.1103/PhysRevB.68.104409
http://dx.doi.org/10.1103/PhysRevB.68.104409
http://dx.doi.org/10.1103/PhysRevB.68.104409
http://arxiv.org/abs/arXiv:1310.3468
http://dx.doi.org/10.1016/0370-2693(84)90256-9
http://dx.doi.org/10.1016/0370-2693(84)90256-9
http://dx.doi.org/10.1016/0370-2693(84)90256-9
http://dx.doi.org/10.1016/0370-2693(84)90256-9
http://dx.doi.org/10.1103/PhysRevLett.83.4690
http://dx.doi.org/10.1103/PhysRevLett.83.4690
http://dx.doi.org/10.1103/PhysRevLett.83.4690
http://dx.doi.org/10.1103/PhysRevLett.83.4690
http://link.aps.org/supplemental/10.1103/PhysRevB.89.094417
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/10.1103/PhysRevB.39.6797
http://dx.doi.org/10.1103/PhysRevB.39.6797
http://dx.doi.org/10.1103/PhysRevB.39.6797
http://dx.doi.org/10.1103/PhysRevB.39.6797
http://dx.doi.org/10.1103/PhysRevB.39.2344
http://dx.doi.org/10.1103/PhysRevB.39.2344
http://dx.doi.org/10.1103/PhysRevB.39.2344
http://dx.doi.org/10.1103/PhysRevB.39.2344
http://dx.doi.org/10.1103/PhysRevLett.23.89
http://dx.doi.org/10.1103/PhysRevLett.23.89
http://dx.doi.org/10.1103/PhysRevLett.23.89
http://dx.doi.org/10.1103/PhysRevLett.23.89
http://dx.doi.org/10.1103/PhysRevB.1.1522
http://dx.doi.org/10.1103/PhysRevB.1.1522
http://dx.doi.org/10.1103/PhysRevB.1.1522
http://dx.doi.org/10.1103/PhysRevB.1.1522
http://dx.doi.org/10.1103/PhysRevLett.64.3175
http://dx.doi.org/10.1103/PhysRevLett.64.3175
http://dx.doi.org/10.1103/PhysRevLett.64.3175
http://dx.doi.org/10.1103/PhysRevLett.64.3175
http://dx.doi.org/10.1103/PhysRevLett.109.155703
http://dx.doi.org/10.1103/PhysRevLett.109.155703
http://dx.doi.org/10.1103/PhysRevLett.109.155703
http://dx.doi.org/10.1103/PhysRevLett.109.155703
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/7/6/005
http://dx.doi.org/10.1088/0022-3719/7/6/005
http://dx.doi.org/10.1088/0022-3719/7/6/005
http://dx.doi.org/10.1088/0022-3719/7/6/005
http://dx.doi.org/10.1038/35000508
http://dx.doi.org/10.1038/35000508
http://dx.doi.org/10.1038/35000508
http://dx.doi.org/10.1038/35000508
http://dx.doi.org/10.1038/nature10941
http://dx.doi.org/10.1038/nature10941
http://dx.doi.org/10.1038/nature10941
http://dx.doi.org/10.1038/nature10941


ORTH, CHANDRA, COLEMAN, AND SCHMALIAN PHYSICAL REVIEW B 89, 094417 (2014)

[69] C. L. Gao, W. Wulfhekel, and J. Kirschner, Phys. Rev. Lett. 101,
267205 (2008).
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