Quantum Mechanics and Atomic Physics

Lecture 9:

The Uncertainty Principle and Commutators
http://www.physics.rutgers.edu/ugrad/361 Prof. Sean Oh

Announcement

■ Quiz in next class (Oct. 5): will cover Reed Chapter 3 and 4 (up to today's lecture).

- Next HW due on Monday Oct. $10^{\text {th }}$

Summary of last time

- Operators: does something to a function and returns a result.

$$
\begin{array}{ll}
x_{o p}=x & K \bar{E}_{\Delta p}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \\
\vec{P}_{0 p}=-i \hbar \vec{\nabla} & P E_{o p}=V(x) \\
E_{o p}=i \hbar \frac{\partial}{\partial t} & H_{o p}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(x) \\
& (\text { Hamiltonian })
\end{array}
$$

- In general:

$$
\begin{aligned}
\overline{f(x)}=\langle f(x)\rangle & =\int \psi^{*}\left[Q_{0 p}(f(x)) \psi\right] d x \\
& =\langle\psi| f(x)|\psi\rangle
\end{aligned}
$$

Summary: Hamiltonian

- Ψ both space and time dependent:
* both space in time-dependent

$$
\begin{aligned}
& \psi \text { both space } \\
& H_{o p} \equiv i k \frac{\partial}{\partial t} \quad \text { Hamiltonian operator. } \\
& H_{o p}=-\frac{t^{2}}{2 m} \nabla^{2}+V \text { spatial form }
\end{aligned}
$$

Hamilotonian operator is special, because it provides the Schrodinger equation

$$
\frac{\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V\right)}{H \text { ispatial }} \Vdash\left(x_{1}+\right)=\frac{i \hbar \frac{\partial}{\partial t} \Psi\left(x_{i} t\right)}{H \text { time }}
$$

Momentum expectation value for infinite square well

$$
\begin{aligned}
& \bar{P}=\int_{0}^{L} \psi_{n}^{*}\left[\left(P_{x}\right)_{0 p} \psi_{n}\right] d x=\int_{0}^{L} \psi_{n}^{*}\left[-i \hbar \frac{d}{d x} \psi_{L}\right] d x \\
& =\int_{0}^{L} \sqrt{\frac{\alpha}{L}} \sin \frac{n \pi x}{L}\left(-i \hbar\left[\frac{2}{L} \frac{d}{d x} \sin \frac{n \pi x}{L}\right) d x\right. \\
& =-\frac{2 i \hbar(n \pi n)}{L} \int_{0}^{L} \sin \frac{n \pi x}{L} \cos \frac{n \pi x}{L} d x \\
& =-\frac{i \hbar}{L}\left[\sin ^{2} \frac{n \pi x}{L}\right]_{0}^{L}=0!
\end{aligned}
$$

$$
\text { See appendix } \mathrm{C} \text { in }
$$

Reed for useful integrals

- Again is not surprising.
- The well is symmetric so the particle should have no preference for traveling one way or the other.

$$
\begin{aligned}
& \text { Expectation value of Energy } \\
& \bar{E} \cdot \int_{0}^{L} \psi_{n}^{*}\left[H_{0 p} \psi_{n}\right] d x=\int_{0}^{L} \psi^{*}\left[-\frac{\hbar^{2}}{\partial m} \frac{d^{2}}{d x^{2}} \psi_{n}\right] d x \\
& =\int_{0}^{L} \sqrt{\frac{\varepsilon}{L}} \sin \frac{n \pi x}{L}\left(\frac{\pi^{2}}{\partial m} \frac{n^{2} \frac{\pi}{L^{2}}}{L^{2}} \sin \frac{\operatorname{six}}{L}\right) d x \\
& =\frac{\hbar^{2}}{m} \frac{n^{2} \pi^{2}}{L^{3}} \int_{0}^{L} \sin ^{2} \frac{n \pi x}{L}=\frac{\hbar^{2} n^{2} \pi^{2}}{m L^{3}}\left(\frac{x}{2}-\left(\sin \frac{2 n \pi x}{L}\right) \frac{2 L}{4 n \pi}\right]_{0}^{L} \\
& =\frac{\hbar^{2} n^{2} \pi^{2}}{2 m L^{2}}=E_{n} \quad \text { Asexpected! }
\end{aligned}
$$

- The expectation value of the energy for the infinite square well state n is just the eigenvalue of that state!

Expectation value of \mathbf{p}^{2}
The need for this will become clear later (next time).

$$
\begin{aligned}
P_{x}^{2} & =\left(P_{x}\right)\left(P_{x}\right)=\left(-i \hbar \frac{\partial}{\partial x}\right)\left(-i \hbar \frac{\partial}{\partial x}\right) \\
& =-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}}=2 m(K E)
\end{aligned}
$$

Not a surprise.
So for infinite square well:

$$
\overline{p^{2}}=2 m \overline{K E}=2 m\left(\frac{\hbar^{2} \pi^{2} n^{2}}{2 m L^{2}}\right)=\frac{\hbar^{2} \pi^{2} n^{2}}{L^{2}}
$$

Expectation value of x^{2}

- Again, this is something that we will find useful later.

$$
\begin{aligned}
& \overline{x^{2}}=\int_{0}^{L} \psi_{n}^{*}\left[x^{2} \psi_{n}\right] d x=\frac{2}{L} \int_{0}^{L} x^{2} \sin ^{2} \frac{n \pi x}{L} d x \\
& =\frac{2}{L}\left[\frac{x^{3}}{6}-\left(\frac{L}{4 n \pi}-\frac{L^{3}}{8 n^{3} \pi^{3}}\right) \sin \frac{2 n \pi x}{L}-\frac{L^{2}}{4 n^{2} \pi^{2}} x \cos \frac{2 n \pi x}{L}\right]_{0}^{L} \\
& =\frac{2}{L}\left[\frac{L^{3}}{6}-\frac{L^{3}}{4 n^{2} \pi^{2}}\right]=\frac{L^{2}}{3}\left[1-\frac{3}{2 n^{2} \pi^{2}}\right]
\end{aligned}
$$

- Note: $<\mathrm{x}^{2}>$ is not equal to $<\mathrm{x}>^{2}$

Summary: expectation values for inf. Square well

For infinite square well:

$$
\begin{aligned}
& \psi_{n}(x, t)=\sqrt{\frac{\partial}{L}} \sin \frac{n \pi x}{L} e^{-i E_{n} t / \hbar} \\
& \bar{x}=\langle x\rangle=\frac{L}{2} \\
& \bar{p}=\langle p\rangle=0 \\
& \bar{E}=\langle E\rangle=E_{n}=\frac{\hbar^{2} n^{2} \pi^{2}}{2 m L^{2}} \\
& \overline{p^{2}}=\left\langle p^{2}\right\rangle=\frac{\hbar^{2} \pi^{2} n^{2}}{L^{2}} \\
& \overline{x^{2}}=\left\langle x^{2}\right\rangle=\frac{L^{2}}{3}\left[1-\frac{3}{2 n^{2} \pi^{2}}\right]
\end{aligned}
$$

Dirac Notation

- It is easier to adapt a shorthand notation called Dirac notation or Dirac bracket notation:

Expectation value of $f(x)$:

$$
\begin{aligned}
\overline{f(x)} & =\int \psi^{*}(x)\left[Q_{\odot r}[f(x)] \psi(x)\right] d x \\
& \equiv\langle\psi(x)| f(x)|\psi(x)\rangle \text { : Error in the book }
\end{aligned}
$$

$Q_{p p}(f(x))$ is operator corresponding to $f(x)$
Further simplify:

$$
\langle f(x)\rangle
$$

- Overlap integral or inner product of Ψ_{1} and Ψ_{2} :

$$
\begin{aligned}
& \left\langle\psi_{1} \mid \psi_{2}\right\rangle=\int_{\text {Roe }} \psi_{1}^{*}(x) \psi_{2}(x) d x \text { : Called inner product }
\end{aligned}
$$

Error in the Rood book!

Example

- Reed, Problem 4-2:
- Prove that for the infinite potential well wavefunctions:

$$
\begin{aligned}
& \langle\mathbf{x p}\rangle=-\langle\mathbf{p x}\rangle=\mathbf{i} / 2 \\
& \left.\langle x p\rangle=\overline{x p}=\int_{0}^{L} \sqrt{\frac{2}{L} \sin \frac{n \pi x}{L} x\left[\sqrt{\frac{2}{L}}\left(-\frac{i \hbar \partial \sin n \pi x}{\partial x}\right)\right] d x} \begin{array}{l}
\quad-\frac{2 i \hbar n \pi}{L^{2}} \int_{0}^{L} x \sin \frac{n \pi x}{L} \cos \frac{n \pi x}{L} d x \\
=-\frac{i \hbar n \pi}{L^{2}} \int_{0}^{L} x \sin \frac{2 n \pi x}{L} d x=-\frac{i \hbar n \pi}{L^{2}}\left[\frac{\sin \frac{2 n \pi x}{L}}{4 n^{2} L^{2}}-\frac{L x}{2 n \pi} \cos 2 n \pi x\right. \\
L
\end{array}\right]_{0}^{L} \\
& =-\frac{i \hbar n \pi}{L^{2}}\left(-\frac{L^{2}}{2 n \pi}\right)=\frac{i \hbar}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \langle p x\rangle=\overline{p x}=-\frac{2 i \hbar}{L} \int_{0}^{L} \sin \frac{n \pi x}{L}\left[\frac{\partial}{\partial x}\left(x \sin \frac{n \pi x}{L}\right)\right] d x \\
& =-\frac{2 i \hbar}{L}\left[\int_{0}^{L} \sin ^{2} \frac{n \pi x}{L} d x+\frac{n \pi}{2 L} \int_{0}^{L} x \sin \frac{2 n \pi x}{L} d x\right] \\
& =-\frac{2 i \hbar}{L}\left[\frac{L}{2}-\frac{L}{4}\right]=-\frac{i \hbar}{2}
\end{aligned}
$$

So,

$$
\langle x p\rangle=-\langle p x\rangle=\frac{i \hbar}{2}
$$

Heisenberg Uncertainty Principle

- Werner Heisenberg (1927) Gedanken (thought) experiments.
- Single-slit diffraction of electrons, of wavelength λ
- $\mathrm{w}=$ slit spacing
- Diffraction first minimum θ at $(\mathrm{w} \sin \theta=\lambda)$
- Uncertainty in position $\Delta \mathrm{x}=\mathrm{w}$
- Uncertainty in $\mathrm{p}_{\mathrm{x}} \approx$ momentum needed to send electron to first minimum.

So $\Delta \mathrm{p}_{\mathrm{x}} \geq \mathrm{p} \cdot \sin \theta=\left(\frac{h}{\lambda}\right)\left(\frac{\lambda}{w}\right)=\frac{h}{w}=\frac{h}{\Delta x}$
$\Rightarrow \Delta \mathrm{p}_{\mathrm{x}} \cdot \Delta x \geq h$
More sophisticated analysis:
$\Delta \mathrm{p}_{\mathrm{x}} \cdot \Delta x \geq \frac{h}{4 \pi}$
Define: $\hbar=\frac{\mathrm{h}}{2 \pi}$ then $\Delta \mathrm{p}_{\mathrm{x}} \cdot \Delta x \geq \frac{\hbar}{2}$

The Uncertainty Principle

- In QM, is it possible to specify the positions of particles precisely?
- No, particles possess a wave nature!
- Heisenberg's Uncertainty principle:

$$
\Delta x \Delta p \geq \hbar / 2
$$

- If we measure the particle's position more and more precisely, that comes with the expense of the particle's momentum becoming less and less well known.
- And vice-versa.

Commutators

- How can we know if two observable quantities will obey the uncertainty relation?
- Generalized uncertainty relation: see the reference in Reed for the proof:

$$
\begin{aligned}
& (\Delta A)(\Delta B) \geqslant \frac{1}{2} \sqrt{-[A, B]^{2}} \\
& {[A, B]=A_{0 p} B_{\Delta p}-B_{o p} A_{o p}}
\end{aligned}
$$

- $[\mathrm{A}, \mathrm{B}]$ is an operator and is known as the commutator of operators A and B
- If a wavefunction is an eigenfunction of both A and B, then the order does not matter and $[\mathrm{A}, \mathrm{B}]=0$, and eigenvalues of A and B will be measurable simultaneously.

Let's verify the uncertain principle
Verity wi $\quad x_{0,}=x$ and $P_{0 p}=-i \hbar \frac{d}{d x}$

$$
\begin{aligned}
{\left[x_{\Delta p}, P_{o p}\right] \psi } & =\left(x_{o p} P_{o p}-p_{\Delta p} x_{\nu p}\right) \psi \\
& =x\left(-i \hbar \frac{d}{d x} \psi\right)+i \hbar \frac{d}{d x}(x \psi) \\
& =i \hbar\left(-x \frac{d \psi}{d x}+\psi+x \frac{d \psi}{d x}\right) \\
& =i \hbar \psi
\end{aligned}
$$

So,

$$
\begin{aligned}
& {\left[x_{o p}, P_{o r}\right] \equiv i \hbar} \\
& \Rightarrow(\Delta x)(\Delta P) \geqslant \frac{1}{2} \sqrt{-(i \hbar)^{2}} \\
& \quad(\Delta x)(\Delta P) \geqslant \frac{1}{2} \hbar
\end{aligned}
$$

Example

- In an atomic nucleus, a proton is confined to $\Delta x \approx 10^{-15} \mathrm{~m}$. Find its minimum kinetic energy. $\left(m_{p}=938 \mathrm{MeV} / \mathrm{c}^{2}\right)$

$$
\begin{aligned}
\Delta P_{x} \geqslant \frac{\hbar}{2 \Delta x} & =100 \frac{\mu_{e V}}{\mathrm{c}} \text { for } \Delta x=10^{-15} \mathrm{~m} \\
\text { So } P_{\min } & \approx 100 \frac{\mathrm{MeV}}{\mathrm{c}} \\
\text { So, } E_{\min } & =\sqrt{(100)^{2}+(938)^{2}} \\
& =943 \mathrm{MeV} \\
\text { So } K_{\min } & =E_{\min }-E_{0}=943-938=5 \mathrm{MeV}
\end{aligned}
$$

- So nuclear binding energies must be at least 5 MeV ! Recall hydrogen atom's binding energy is 13.6 eV .

Example, con't
Now suppose there were electrons in nuclei...

But $E_{\text {min }}=\sqrt{(100)^{2}+(0.511)^{2}} \approx 100 \mathrm{MeV}$
and

$$
\begin{aligned}
K_{\min }=E_{\min }-E_{0} & =100-0.511 \\
& \sim 100 \mathrm{MeV}
\end{aligned}
$$

$\approx 100 \mathrm{Mev}$

Uncertainty Principle

- Uncertainty in x and p are the standard deviations:

$$
\begin{aligned}
& \Delta x^{2}=\frac{1}{N} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{N} \sum\left(x_{i}^{2}-2 \bar{x} x_{i}+\bar{x}^{2}\right) \\
& =\overline{x^{2}}-2 \bar{x} \frac{1}{N} \sum x_{i}+\frac{1}{N} \sum \bar{x}^{2} \\
& =\overline{x^{2}}-2 \bar{x}^{2}+\bar{x}^{2}=\overline{x^{2}}-\bar{x}^{2} \\
& \Delta x^{2}=\overline{x^{2}}-\bar{x}^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2} \\
& \quad \text { or } \\
& \Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}
\end{aligned}
$$

$$
\Delta p=\sqrt{\left\langle p^{2}\right\rangle-\langle p\rangle^{2}}
$$

For infinite square well
■ Let's use the expectation values we already evaluated...

$$
\begin{aligned}
& \Delta x=\sqrt{\frac{L^{2}}{3}\left[1-\frac{3}{2 n^{2} \pi^{2}}\right]-\frac{L^{2}}{4}} \\
&=L \sqrt{\frac{1}{12}-\frac{1}{2 n^{2} \pi^{2}}} \\
& \Delta \rho=\sqrt{\frac{\hbar^{2} \pi^{2} n^{2}}{L^{2}}-0}=\frac{\hbar \pi n}{L} \\
& \Delta x \Delta P=\sqrt{\frac{n^{2} \pi^{2}}{12}-\frac{1}{2}} \hbar
\end{aligned}
$$

Infinite square well, con't

- The minimum value is for $\mathrm{n}=1$:

$$
\begin{aligned}
& \text { For } n=1 \quad(\text { min value }): \\
& \begin{aligned}
& \Delta x \Delta p=\sqrt{\frac{\pi^{2}}{12}-\frac{1}{2}} \hbar \\
&=0.568 \hbar \\
& \geqslant 0.5 \hbar \\
& \text { How about } n \rightarrow \infty \text { ? }
\end{aligned}
\end{aligned}
$$

The potential
that gives the minimum

$$
\text { possible value of } \Delta \mathrm{x} \Delta \mathrm{p}
$$

is for a simple harmonic
oscillator.

More on this next time.
But now an example ...

Example: Harmonic Oscillator
The potential for a harmonic oscillator (like the motion of a spring!):

$$
V(x)=\frac{k x^{2}}{2} \quad-\infty \leq x \leq \infty
$$

$V(x)$ is symmetric about o so

$$
\begin{aligned}
& \langle x\rangle=\langle p\rangle=0 \\
& E=\frac{p^{2}}{2 m}+v(x)=\frac{p^{2}}{2 m}+\frac{k x^{2}}{2} \\
& \langle E\rangle=\frac{\left\langle p^{2}\right\rangle}{2 m}+\frac{k}{2}\left\langle x^{2}\right\rangle \\
& \Delta x=\sqrt{\left\langle X^{2}\right\rangle-\langle x\rangle^{2}}=\sqrt{\left\langle x^{2}\right\rangle} \\
& \Delta p=\sqrt{\left\langle p^{2}\right\rangle-\langle p\rangle^{2}}=\sqrt{\left\langle p^{2}\right\rangle}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\langle E\rangle=\frac{(\Delta p)^{2}}{2 m}+\frac{\hbar}{2}(\Delta x)^{2} \\
& \text { use } \Delta p \geqslant \frac{\hbar}{2 \Delta x} \\
& \Rightarrow\langle E\rangle \geqslant \frac{\hbar^{2}}{8 m(\Delta x)^{2}}+\frac{\hbar}{2}(\Delta x)^{2} \\
& \frac{d\langle E\rangle}{d(\Delta x)}=0=-\frac{\hbar^{2}}{4 m} \frac{1}{(\Delta x)^{3}}+k(\Delta x) \\
& (\Delta x)^{4}=\frac{\hbar^{2}}{4 m \hbar} \\
& \Rightarrow\langle E\rangle_{\min }=\frac{\hbar}{4} \sqrt{\frac{k}{m}}+\frac{\hbar}{4} \sqrt{\frac{k}{m}} \\
& \langle E\rangle_{\min }=\frac{\hbar}{2} \sqrt{\frac{k}{m}}=\frac{\hbar \omega}{2}
\end{aligned}
$$

where $\omega=\sqrt{k} \quad \omega$ is angular frequency of the oscillator

Summary/Announcements

- Uncertainty principle $\Delta x \Delta p \geq \hbar / 2$
- Next Time: Orthogonality, superposition, and time dependent wave functions plus Ehrenfest and Virial theorems
- Quiz in next class (Oct. 5): covers Reed Chapter 3 and 4 (up to today's lecture).
- Next HW due on Monday Oct. $10^{\text {th }}$

