Quantum Mechanics and
Atomic Physics
Lecture 19:
Quantized Angular Momentum and Electron Spin

http:/ /www.physics.rutgers.edu/ugrad /361
Prof. Sean Oh



Last time

m Raising/Lowering angular momentum
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m [.. and L. raise or lower the state of the z
component of angular momentum of Y, by one
unit in terms of hbar.

m And they have no effect on ¢ or the total angular

momentum L
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Recall: Energy level dlagram

For historical reasons, all states
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m In Schrodinger theory, different ¢ states for same n have same energy
m Called ¢-degeneracy

m  Energy level diagram omits different m, states - independent of m,due to
spherical symmetry of the atom.

m This 1s for no external magnetic field! - Today we will learn what happens
when we apply an external B field



Hydrogen atom in external B field
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Magnetic behavior
is similar to that of
bar magnet
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Electron in circular orbit constitutes a current loop.

Time it takes to make one orbit = 27r/v
Current 1 = charge/time for one orbit

So,
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Area of the current loop A= mr?



Magnetic moment

The magnetic moment i = (current)(area)
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But angular momentum
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Magnetic moment
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m u/L is called the gyromagnetic ratio

m o is called the “g-factor” (first letter of
gyromagnetic)



Energy splitting

m Any magnetic moment placed in an external
magnetic field produces an interaction potential

energy: (Refer to your E&M book.)

AE = -8
m [t arises from the torque T that B exerts to align
L along direction of B.
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Energy splitting, con’t
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m In an external magnetic field, hydrogen energy levels

should split.

m Define Bobhr magneton
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Energy splitting con’t
Mg = ot t% . 2 0
There are (2¢+1) values of m, for

any ¢.

Each energy level in hydrogen
should split into (2¢+1) sublevels.

L can precess about B which is =

along the z-axis.

. . _?
L 1s anti-parallel to L, so W also L A
precesses about B 1

m This is called Larmor precession.



Energy level diagram, revisited



Compare B field on/off

m For B=0, adjacent energy levels are typically a few eV
apart.

m For example:
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m For B 70, magnetic sublevel splittings are:
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m And adjacent sublevels have Am~1

m Typical B=0.2T. So,
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m Clearly, the diagram on previous page 1s exaggerated.



Radiative Transitions (B=0)

m An atom radiates a photon 1f it make a transition from one state
to another of lower n.

m Schrodinger theory provides selection rules for “allowed”
transitions:

A=t BAMg= o1

(“forbidden” transitions do occur but much less often)

m Allowed transitions for B=0;
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Radiative Transitions (B #0)

B Sclection Rules: Al = t1  Dmy= o,

m [ et’s consider the Balmer series line (3d— 2p) in
an external magnetic field.

m Allowed transitions are:
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m Photon energies are:

T (Eiem,’* ’ﬁ‘-:*:) - ({‘:Fi'ua.ff A& )

[E;ﬂmf" E#Eqw /] t mﬁ;jh"}‘l—s : mfﬁamﬁﬁ



What’s happening?

m When B#0, each Bohr model photon line
should split into exactly 3 equally spaced lines

m This is called the (normal) Zeeman Effect
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(Normal) Zeeman Effect

In an external B field, every Bohr model photon line
should split into exactly 3 equally spaced lines:

AE=gn:B with g=1
Experimental results:

m Zeeman effect does occur, and in some atoms it i1s “normal”
(i.e. AE=gL;B)

m [n many atoms (including Hydrogen) splitting is not
AE=1 pzB. AE had right order of magnitude but g71.
Zeeman effect 1s “anomalous” due to spin contribution.

m Photon lines often split into more than 3 in an external B field

m More on this next time



Question

m Can a Hydrogen atom 1n ,,, 1n a magnetic field
emit a photon and end in the following state?
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Electron Spin Angular
Momentum

m Flectron must have a spin (or intrinsic) angular momentum:

Figore 8.8 A spinning chasge § may be
st a4 5 collectian af charge elemenls
Ag orbiting 2 Bred line, the axis of rota-
thon. The C Moments eompany -
ing these ing charge slements ae
summed o give total magnetsc mo-
ment of rotation, or spin moment, of the

charge 3.



Space quantization
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Figure 88 The spim angular mo-
mentum also exhibits space qeanti.
zation. This Bgure shows the wo al-
levwed orientations af the spin wectar
5 for a spin § particle, soch s the
electron.

If m, = +1/2 we say electron is “spin up”
If m = -1/2 we say electron is “spin down”
m, is called the magnetic spin quantum number

s 1s called the spin quantum number



Consequences of electron spin

m Electron spin creates a spin magnetic moment.

m Electron’s orbital motion creates an zuternal magnetic
field in an atom

m The two interact to cause a splitting of energy levels
even if B =0

B More on this next time
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Four quantum numbers

To understand the H atom we need these four
quantum numbers:

n: expresses quantization of energy
¢: quantizes magnitude of L
m,: quantizes dzrection of L

m : quantizes direction of S

s 1s left out because it has the single value of s=1/2.

m [t quantizes the magnitude of S



Stern-Gerlach Experiment (1922)

Showed the quantization of electron spin into two orientations

Electron spin was unknown at the time!

m They wanted to demonstrate the space quantization associated with
electrons in atoms

Used a beam of silver atoms from a hot oven directed into a region of non-
uniform magnetic field

The silver atoms allowed Stern and Gerlach to study the magnetic properties
of a single electron

m a single outer electron: 47 protons of the nucleus shielded by the 46 inner
electrons: Electron configuration of Ag: [Kr]*¢4d!95s!

m Expected 2¢+1 splittings from space quantization of orbital moments
(classically it would be a continuous distribution)

m Also note: this electron (ground state) has zero orbital angular momentum

m Therefore, expect there to be no interaction with an external magnetic

field.



Schematic of experiment

Field Spin can take
Zerofield  on anly teg orentations
peitern - Classical expeciation
E

o Experimental result



What they expected/saw

| FGURE 85 Possible oriestations of L for £ = 2, L] = &k

| I -
m Expected 2¢+1, which is always an odd number, splittings fro
space quantization of orbital moments

m (lassically one would expect all possible orientations of the
dipoles so that a continuous smear would be produced on the
photographic plate. Even quantum mechanically, they expected
odd number of splittings, 1f at all.

m They found that the field separated the beam into two distinct
parts, indicating just two possible orientations of the magnetic
moment of the electron!



4 In egternal B-field ...
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m A magnetic dipole moment will experience a force proportional to the field gradient

since the two "poles" will be subject to different fields.



m [n inhomogeneous B field,
m_, = +1/2 is deflected up and
m_ =-1/2 is deflected down.
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Goudsmit and Uhlenbeck
postulate

m How does the electron obtain a magnetic moment if it
has zero angular momentum and therefore produces no
"current loop" to produce a magnetic moment?

m [n 1925, Goudsmit and Uhlenbeck postulated that the
electron had an zntrinsic angular momentum, independent
of its orbital characteristics.

m [.ed to the use of "electron spin" to describe the
intrinsic angular momentum.



Interactive simulation

m http://phet.colorado.edu/simulations/sims.php
rsim=SternGerlach Experiment




Summary of electron states

Reed: chapter 8
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Summary/Announcements

Next time: Beyond simple Hydrogen model and Pauli
exclusion principle

m [’ covering more details in lecture on atomic structure than is in
your book. If you are interested, refer to:

® "Quantum Physics of Atoms, Molecules, Solids, Nuclei, and
Particles" by R. Eisberg and R. Resnick (John Wiley and
Sons, 2nd Edition), Chapters 8-10.



