Quantum Mechanics and Atomic Physics

Lecture 17:

Hydrogen Atom Probability Distribution http://www.physics.rutgers.edu/ugrad/361
Prof. Sean Oh

Last time

■ We solved S.E. for the Coulomb Potential!

- We found the Hydrogen Atom wavefunctions to be:

$$
\psi_{n \ell m_{l}}(r, \theta, \varphi)=R(r) \theta(\theta) \Phi(\varphi)
$$

Table 72 Hydrogen Atom Wavefunctions $\psi_{\text {atm }}(r, \theta, \phi)$.

$$
\begin{aligned}
& \phi_{n}=\frac{1}{\sqrt{\pi} \pi \theta_{0}^{3 / 2}} e^{-\pi / \alpha} \quad \psi \geqslant 00=\frac{1}{4 \sqrt{2 \pi} a_{0}^{3 / 2}}\left(2-r / a_{0}\right) e^{-r / 2 a_{0}} \\
& \psi_{20}=\frac{1}{4 \sqrt{2 \pi} \beta_{0}^{3 / 2}}\left(r / a_{0}\right) e^{-r / \alpha_{\alpha}} \cos \theta \quad \psi_{2141}=\frac{1}{8 \sqrt{\pi} a_{o}^{3 / 2}}\left(r / a_{o}\right) e^{-r / \alpha_{0}} \sin \theta e^{t=\omega} \\
& \psi_{m}=\frac{1}{81 \sqrt{3 \pi} \alpha_{0}^{10}}\left[27-18 \frac{r}{\alpha_{0}}+2 \frac{r^{2}}{\alpha_{0}^{2}}\right] e^{\rightarrow r / \alpha_{n}} \quad \psi_{310}=\frac{\sqrt{2}}{81 \sqrt{\pi} a_{o}^{3 / 2}}\left(r / a_{0}\right)\left(6-r / a_{o}\right) e^{-r / a_{0}} \cos \theta \\
& \psi_{n i 1}=\frac{1}{\sin \sqrt{\pi} a_{0}^{2}}\left(r / a_{*}\right)\left(6-r i a_{0}\right) e^{-r)\left(\alpha_{0}\right.} \sin \theta e^{t \rightarrow t} \\
& \phi_{1 \infty}=\frac{1}{81 \sqrt{6 \pi \alpha_{0}^{2}}}\left(\operatorname{cic}_{\alpha_{0}}\right)^{2} e^{-n \theta_{2}\left(3 \cos ^{2} \theta-1\right)}
\end{aligned}
$$

Last time

- We found that the probability of finding the electron in a volume of space dV

$$
\begin{gathered}
\text { Probability }=\psi^{*} \psi d V=\psi^{*} \psi r^{2} \sin \theta d r d \theta d p \\
\text { Probabilitydensity }=\psi^{*} \psi
\end{gathered}
$$

- We also found that the probability of finding the ground state electron at a distance $\mathrm{r}<\mathrm{a}_{0}, \mathrm{r}<2 \mathrm{a}_{0}, \mathrm{r}<3 \mathrm{a}_{0}$ was increasing....

We have an electron cloud around the nucleus.

Cumulative Probability Density

- For the ground state $(1,0,0)$ of Hydrogen:
- As $\mathrm{r} \rightarrow \infty, \mathrm{P}(\leq \mathrm{r}) \rightarrow 1$

Reed Chapter 7

I FIGURE 7.5 Cumulative Probability Density for the $[1,0,00$ State of Hydrogen.

- The probability of finding the electron beyond 10 Bohr radii is about 0.003 , in other words, very small!

Ground State of Hydrogen

- Wave function of the ground state $(1,0,0)$

$$
\psi_{100}=\frac{1}{\sqrt{\pi} q_{0}^{3 / 2}} e^{-r / a_{0}}
$$

- Probability density is:

- What is the position of the highest probability density?
- $\mathrm{r}=0$
- What about the most likely radius?
- Recall that for an infinite spherical well the expectation value of r was $<\mathrm{r}>=\mathrm{a} / 2$

Radial Probability

- To determine probability of finding the electron within a shell of radius r
- Imagine the nucleus is surrounded with concentric spherical shells each of thickness $\Delta \mathrm{r}$
- Volume of each shell is $4 \pi r^{2} \Delta r$
- So,

$P($ election in shell@ radiusr $)=P_{\text {pos }}($ volume of shell $)$

$$
=\frac{4}{a_{0}^{3}}\left(r^{2} e^{-2 r / 40}\right) \Delta r
$$

Most Probable Radius

- In what shell are we most likely to find the electron?
- Maximize P with respect to r :

$$
\begin{aligned}
& \left(\frac{d p}{d r}\right)_{r=r_{m p}}=0 \\
& \frac{d}{d r}\left(r^{2} e^{-2 r / a_{0}}\right)=\alpha r e^{2 r / a_{0}}-\left(\frac{2}{a_{0}}\right) r^{2} e^{-2 r / a_{0}}=0 \\
& \quad \Rightarrow 1=\frac{1}{a_{0}} r_{m p} \Rightarrow r_{m p}=a_{0}
\end{aligned}
$$

- $r_{m p}$ in the ground state of Hydrogen is exactly one Bohr radius!
- We will check if:

Is $\left(r_{m i}\right)_{\text {merss }}=n^{2} a_{0}$?

Radial Probability Distribution

- The probability of finding an electron in the ground state at radius r is proportional to:
- And more generally: $P(r)=4 \pi r^{2} R_{n e}^{2}(r)$ Reed is confused be tween probability and probability
- $\mathrm{P}(\mathrm{r})$ vs. r :

Reed Chapter 7

Expectation value $<\mathrm{r}_{100}>$

- We found the most probable radius so now let's find the expectation value of r in ground state:

Useful integral (or look in Appendix of your book):

$$
\int_{0}^{\infty} e^{-a x} x^{n} d x=\frac{n!}{a^{n+1}}
$$

$$
\Rightarrow\left(r_{100}\right)=\frac{4}{a_{0}^{3}} \frac{3!}{\left(2 / a_{0}\right)^{4}}=\frac{24 a_{0}}{16}=\underline{\frac{3}{2} a_{0}}
$$

Does this make sense?

■ So, $<\mathrm{r} \gg \mathrm{r}_{\mathrm{mp}}$

- The average value of observations of the radial positions of electons in many ground state Hydrogen atoms would be $3 \mathrm{a}_{0} / 2$ from the nucleus.

The "first excited state" $(2,0,0)$

- The wavefunction is:

$$
\psi_{200}=\frac{1}{\sqrt{32 \pi} a_{0}^{3 / 2}}\left(2-r_{120}\right) e^{-r / 2 a_{0}}
$$

- Let's test the hypothesis that:

$$
\text { Is } \quad r_{\text {mp }}=n^{2} a_{0}=4 a_{0} \text { ? }
$$

- We do this by maximizing $4 \pi \mathrm{r}^{2} \mathrm{R}^{2}{ }_{200}$

$$
\begin{aligned}
& \Rightarrow \frac{d}{d r}\left(r^{2}\left(2-r / a_{0}\right)^{2} e^{-r / a_{0}}\right)=0 \\
& 2 r\left(2-\frac{r}{a_{0}}\right)^{2} e^{r / a_{0}}-\frac{2 r^{2}\left(2-r / a_{0}\right) e^{-r / a_{0}}}{a_{0}}-\frac{r^{2}}{a_{0}}\left(2-\frac{r}{a_{0}}\right)^{2} e^{-r / a_{0}}=0 \\
& \text { Divide by } r\left(2-r / a_{0}\right) e^{-r / a_{0}} \\
& \Rightarrow 2\left(2-r / a_{0}\right)-\frac{2 r}{a_{0}}-\frac{r}{a_{0}}\left(2-r / a_{0}\right)=0 \\
& 4-\frac{2 r}{u_{0}}-\frac{2 r}{u_{0}}-\frac{2 r}{a_{0}}+\frac{r^{2}}{a_{0}^{2}}=0 \\
&\left(\frac{r}{a_{0}}\right)^{2} a-\frac{6 r}{a_{0}}+4=0
\end{aligned}
$$

Quadratic equation gives two solutions:

$$
\begin{aligned}
r= & 2\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) a_{0} \\
& 2\left(\frac{3}{2}-\frac{\sqrt{3}}{2}\right) a_{0}
\end{aligned}
$$

Reed Chapter 7

I FGURE 7.6 Radial Probability Distribution for the (2, 0, थ1 State of Hydrogen.

$$
\begin{aligned}
& \Rightarrow\left(r_{m p}\right)_{200}=0.764 a_{0} \\
& \Rightarrow s_{0}, r_{m p} \neq n^{2} a_{0}
\end{aligned}
$$

- Solution that maximizes the probability density is:

$$
\left(r_{m p}\right)_{200}=5.236 a 0
$$

- Turns out:

$$
r_{m p}=n^{2} a_{0} \text { only for } e=n-1
$$

Other Hydrogen States

- $\mathrm{P}(\mathrm{r})$ for (n, ℓ) states $\left(\mathrm{m}_{\ell}\right.$ does not affect these functions)
- There are a number of radii where $\mathrm{P}(\mathrm{r})$ is zero
- Nodes - where we never expect to find the electron
- Number of nodes is $n-\ell-1$
- $\mathrm{R}_{\mathrm{nc}}(0)=0$ for $\ell \neq 0$
- $\mathrm{R}_{\mathrm{n} \ell}(0) \neq 0$ for $\ell=0$
- Electron will reside closest to the nucleus when $\ell=\mathrm{n}-1$, for a given n.

I FIGURE 7.7 Hydrogen Radial Probability Distributions for (a) $n=2$ and (b) $n=3$.

Reed Chapter 7

- More on this later.

Plotting $|\Psi|$

- $\Psi_{\text {neme }}$ also have an angular dependence
- Plot $|\Psi|$ in a plane cutting through the nucleus
- Usually taken to be $\phi=0$ plane or the xzplane
- Remember $|\Psi|$ is rotationally

I FIGURE 6.4 Spherical coordinates.
Reed Chapter 6

- Since we are representing something that is in 3D onto a 2D surface, think of the figures rotating about the z -axis

Wave-

functions

(a)

No radial node one angular node

(c)

FGURE $78(\mathrm{a})|\boldsymbol{\|}|$ Surface for $(\mathrm{n}, \ell, m)=(1,0,0)$ (b) $|\omega|$ Surface for $(n, \ell, m)=(2,0,0)$ (b) $|\phi|$ Surface for $(n, \ell, m)=(2,0,0)$
(c) $|\psi|$ Surface for $(n, \ell, m)=(2,1,1)$ (d) $|\psi|$ Surface for $(\boldsymbol{n}, \ell, m)=(4,1,1)$. (e) $|\psi|$ Surface for $(n, \ell, m)=(5,3,1)$

Reed Chapter 7

(b)

(d)

One radial node excluding

(e)

This table is a little confusing. See the examples in the next slide.
Do not include the origin ($\mathrm{r}=0$) when counting radial nodes; it is confusing.

Probability Densities

 \# of radial nodes
in Blue (expanding $r=0$)

$=n-l-1$
\# of an gular nodes

$=\left\{\begin{array}{c}=m+1, i f m \neq 0 \\ l, i f m=0\end{array}\right.$

FIGURE 7.10 (a) Grayscale Representations of $|\psi|(x, z)$ for Hydrogen states to $n=4$. (b) Grayscale Representations of $|\psi|$
(x, z) for Hydrogen $n=5$ states. $1(x, z)$ for Hydrogen $n=5$ states.

- http://phet.colorado.edu/simulations/sims.php?sim=Quantum_Bound_States
- http://phet.colorado.edu/simulations/sims.php?sim=Models_of the_Hydrogen_Atom

FGUURE 7.18 (continuod]

Try to count the number of radial and angular nodes yourself on these figures and find the relationship with $n, 1, m$ values

More figures

(a)

(c)

Mpure 7-10 An artist's conception of the three-dimensional appearance of several one-electron atom probability density functions. For each of the drawings a line represents the z axis. If all the probability densities for a given n and t are combined, the result is spherically symmetrical.

The Effective Potential

- Recall the radial equation with the Coulomb Potential:

$$
\begin{aligned}
& \quad \frac{\hbar^{2}}{2 \mu} \frac{d^{2} U(r)}{d r^{2}}+\left(E-V(r)-\frac{e(l+1) \hbar^{2}}{2 \mu r^{2}}\right) U(r)=0 \\
& \omega^{i(t h} V_{e f f}(r) \equiv V(r)+\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}} \\
& \Rightarrow \frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}} U(r)+\left(E-V_{\text {eff }}(r)\right) U(r)=0 \\
& \text { or } \left.-\frac{\hbar^{2}}{2 \mu} \frac{d^{2} U(r)}{d r^{2}}+V_{\text {eff }}(r) U(r)=E U(r)\right\rfloor
\end{aligned}
$$

- This looks like the 1D S.E.!

$\mathbf{V}_{\text {eff }}$

- $V_{\text {eff }}$ vs. ρ, where $\rho=r / a_{0}$
- Striking difference between $\ell=0$ and $\ell \neq 0$
- When $\ell \neq 0$ the combination of the two terms in the effective potential leads to potential wells with infinite walls as $r \rightarrow 0$ (see that the wavefuncion is zero for $\ell \neq 0$ in Fig. 7.10)
- $\mathrm{V}_{\text {eff }}=0$ as $\mathrm{r} \rightarrow \infty$
- Bohr energy levels get closer together as $n \rightarrow \infty$

Reed Chapter 7

I AGURE 7.11 Effective Potential Curves for the Coulomb Potential.

Centrifugal term

$$
V_{\text {eff }}(r)=-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{F}+\frac{l(l+t) \hbar^{2}}{2 \mu r^{2}}
$$

- The $\ell(\ell+1) / \mathrm{r}^{2}$ term is known as the "centrifugal" term
- Contributes a repulsive potential - drives the electron away from the nucleus
- Stronger repulsion as ℓ increases and we expect to find the electron further from the nucleus.

Summary/Announcements

■ Next time:
Angular Momentum Raising and Lowering Operators

- Time for Quiz.

