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Lecture 17:
Hydrogen Atom Probability Distribution
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Last time

m We solved S.E. for the Coulomb Potential!

m We found the Hydrogen Atom wavefunctions to be:
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Last time
m We found that the probability of finding

the electron in a volume of space dV
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m We also found that the probability of
finding the ground state electron at a
distance r < a,, r<2a,, r<3a,was
increasing....

We have an electron cloud
around the nucleus.



Cumulative Probability Density

m For the ground state (1,0,0) of Hydrogen:
m Asr—0 P(=r) > 1
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| AGURE 75 Cumulatre Probability Density for the (1, 0, 0] State of Hydmgen

m The probability of finding the electron beyond 10 Bohr
radii 1s about 0.003, in other words, very small!



Ground State of Hydrogen

m Wave function of the ground state (1,0,0)
m Probability density i1s:

m What 1s the position of the highest probability density?

m =0
m What about the most /ikely radius?

m Recall that for an infinite spherical well the expectation value
of r was <r> =123/2



Radial Probability

m To determine probability of finding the electron
within a shell of radius 1

m Imagine the nucleus is surrounded with concentric

spherical shells each of thickness Ar
m Volume of each shell is 4mr?Ar

m So,




Most Probable Radius

m [n what shell are we most likely to find the electron?

m Maximize P with respect to t:

m 1, 10 the ground state of Hydrogen is exactly one Boht

radius!

m We will check if:



Radial Probability Distribution
m The probability of finding an electron in the

ground state at radius r is proportional to:
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Expectation value <t,,>

m We found the most probable radius so now let’s
find the expectation value of r in ground state:

Useful integral (or look in
Appendix of your book):



Does this make sense?

m S0, <t>>1,

/’*\ *

]
. »

m The average value of observations of the radial
positions of electons in many ground state Hydrogen
atoms would be 3a,/2 from the nucleus.



The “first excited state” (2,0,0)

m The wavefunction is:

m | et’s test the hypothesis that:

m We do this by maximizing 4mt*R?,,



®m Quadratic equation gives two solutions:
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m Solution that maximizes the probability density is:

m Turns out: a—— only 5.



Other Hydrogen States

P( 1) for (n,) states (m, does not
affect these functions)

—(2,0,0) =2, 1,0

There are a number of radii
where P( 1) is zero

m Nodes - where we never expect to
find the electron
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®m More on this later.



Plotting ||

m YV, also have an angular
dependence -
m Plot |¥| in a plane cutting through D
the nucleus L
m Usually taken to be ¢=0 plane or the xz- N
| AGURE 64 Sphencal coondrates
plane
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m Remember |¥| is rotationally
symmetric about the z-axis.
m Since we are representing something
that 1s in 3D onto a 2D surface, think
of the figures rotating about the z-axis
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This table is a little confusing, See the examples in the next slide.
Do not include the origin (r=0) when counting radial nodes; it is confusing;
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Try to count the number of radial and angular nodes yourself on these
figures and find the relationship with n, 1, m values
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The Effective Potential

m Recall the radial equation with the Coulomb Potential:
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m This looks like the 1D S.E.!



Veff

m V_.vs. p,where p = t/a,

m Striking difference between ¢=0 and ¢7 0

m When ¢+ 0 the combination of the two terms in the effective

potential leads to potential wells with infinite walls as + — 0
(see that the wavefuncion is zero for ¢ 0 in Fig. 7.10)
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m Bohr energy levels get closer together as n — ©
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AGURE 7.1 Effective Potantial Curves for the Coulomb Patential.
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Centrifugal term
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m The ((¢+1)/r* term is known as the “centrifugal” term

m Contributes a repulsive potential - drives the electron
away from the nucleus

m Stronger repulsion as ¢ increases and we expect to find
the electron further from the nucleus.



Summary/Announcements
m Next time:

Angular Momentum Raising and Lowering
Operators

m Time for Quiz.



