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We propose a new strategy for Monte Carlo (MC) optimization on rugged multidimensional landscapes.

The strategy is based on querying the statistical properties of the landscape in order to find the temperature

at which the mean first passage time across the current region of the landscape is minimized. Thus, in

contrast to other algorithms such as simulated annealing, we explicitly match the temperature schedule to

the statistics of landscape irregularities. In cases where these statistics are approximately the same over the

entire landscape or where nonlocal moves couple distant parts of the landscape, a single-temperature MC

scheme outperforms any other MC algorithm with the same move set. We also find that in strongly

anisotropic Coulomb spin glass and traveling salesman problems, the only relevant statistics (which we

use to assign a single MC temperature) are those of irregularities in low-energy funnels. Our results may

explain why protein folding is efficient at constant temperature.
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Numerous problems in science and technology such as
protein structure prediction, evolution on fitness land-
scapes, stochastic dynamics of complex systems, and ma-
chine learning require efficient global optimization of
multivariate objective functions or ‘‘energies.’’ The objec-
tive function Uð ~xÞ can be viewed as a multidimensional
landscape in which a certain quantity (potential energy,
free energy, cost function, likelihood of a model) is as-
signed to every configuration ~x of an arbitrary number D
of discrete or continuous state variables. The optimization
task is then to find a global minimum (or maximum) on
arbitrary landscapes as efficiently as possible. Since exact
global optimization methods are not available, various
empirical approaches have been devised. A popular class
of algorithms is based on the Metropolis Monte Carlo
(MC) scheme [1]. This class includes the simulated anneal-
ing (SA) algorithm [2], as well as simulated tempering [3],
parallel tempering [4], replica exchange [5], ensemble MC
schemes [6,7], and multicanonical MC schemes [8].
Non-Metropolis schemes for global optimization, such as
random cost [9] and genetic algorithms [10], have also
been developed. Another class of algorithms enables
more efficient exploration of the novel regions of the
configuration space by making adaptive changes to the
landscape [11–14].

Unfortunately, the empirical nature of these algorithms
makes it impossible to predict which approach would
perform best on a given problem. In addition, most algo-
rithms depend on ad hoc adjustable parameters such as the
SA cooling schedule. Here, we address these concerns by
proposing a universal guiding principle for analyzing
global optimization problems. Our interest is not only in
developing efficient, parameter-free global optimization
schemes, but also in understanding how stochastic simula-
tions run by nature (such as protein folding driven by

thermal fluctuations at constant temperature) appear to be
so much simpler than corresponding human-designed
algorithms.
Our intuition is based on the notion of the global (nega-

tive) gradient that leads towards good solutions [Fig. 1(a),
upper panel]. Landscapes without such a gradient are of the
golf-course type or even the ‘‘misleading’’ type in which
the negative gradient leads away from the global minimum
[Fig. 1(a), middle and lower panels]. In the golf-course and

misleading scenarios it is necessary to sample OðNDÞ
possible states, where N is the number of distinct values
adopted by (discretized) state variables. In contrast, global
gradients define funnels on the landscape that can in prin-
ciple be traversed in OðNÞ steps, making efficient optimi-
zation possible. A famous problem of this kind is protein
folding [15], but any landscape in which gradual improve-
ments lead toward a good solution will have the funnel

FIG. 1 (color online). (a) Top to bottom: Examples of funnel,
golf-course, and misleading landscapes. (b) h�ti as a function of T
for U0ðxÞ ¼ x and U1 ¼ N ð0; 1Þ. Black (solid) curve: diffusion
in U0 þU1, T

? ¼ ffiffiffi
2

p
. Red (dashed) curve: diffusion in U0,

T? ¼ 0. Blue (dash-dotted) curve: diffusion in U1, T
? ¼ 1.

Note that we have set b� x ¼ DF, �t0ðx; 0Þ ¼ 1 for simplicity.
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structure. However, in realistic problems the global gra-
dient will be weak and obscured by the local ‘‘noise’’ or
irregularities in the objective function (after all, in the
absence of such noise any local optimizer would be suc-
cessful). As a result, the global gradient will be invisible at
the smallest scale of a single MC step and can only be
detected from the average over a macroscopic local region.
If this region is still relatively small, the global gradient
will be approximately constant over it. Furthermore, in
strongly anisotropic problems the gradient may not be
present everywhere but only in narrow low-energy valleys,
whereas the high plateaus surrounding the valleys will be
of the golf-course or misleading type.

Thus the global optimization problem can be formulated
as diffusion (i.e., Metropolis MC sampling) in a potential
which consists of random fluctuations with arbitrary mag-
nitude and correlation length superimposed onto a weak,
approximately linear term. Note that global optimization is
different from computing thermodynamic properties,
which requires at least partial equilibration and detailed
balance. In contrast, global optimization is a strongly
nonequilibrium process, with diffusion at any point in the
simulation affected only by the landscape features in its
immediate neighborhood.

In the absence of random fluctuations, diffusion in a

local region L subject to the constant force ~F ¼
�@U=@~x is described by the Fokker-Planck (FP) equation
in D dimensions

@�

@t
¼ D

@2�

@~x2
� ~v

@�

@~x
; (1)

where �ð ~x; tÞ is the probability distribution, D is the dif-

fusion constant, and ~v ¼ D�~F is the drift velocity (� ¼
1=T is the inverse temperature). We choose a coordinate

system in which one of the axes (x) is parallel to ~F. In this
system, Eq. (1) factorizes into a one-dimensional (1D) FP
equation with a linear potential and D� 1 FP equations
describing free diffusion. We place an absorbing boundary

? ~F and focus on the 1D FP equation with the linear
potential.

The speed of propagation along ~F is characterized by the
mean first passage time (MFPT) �tðx; �Þ, defined as the
mean time required for a particle starting at x to reach
the absorbing boundary b for the first time. With a reflect-
ing boundary at a (a < x < b), the MFPT is given by
[16,17]

�tðx; �Þ ¼ 1

D

Z b

x
dx0e�Uðx0Þ Z x0

a
dx00e��Uðx00Þ; (2)

where UðxÞ is the 1D potential (objective function) in the

direction of ~F. For a linear potential in the absence of

noise, U0ðxÞ ¼ Fðb� xÞ, where F � j ~Fj> 0, we obtain

�t 0ðx; �Þ ¼ 1

D�F

�
ðb� xÞ þ 1

�F
ðe��Fðb�aÞ

� e��Fðx�aÞÞ
�
: (3)

In the� ! 0 (or F ! 0) limit the free-diffusion expression
is recovered [16]: �t0ðx; 0Þ ¼ ð1=2DÞ½ðb� aÞ2 þ ðx� aÞ2�.
However, for finite � and F we can always set a so that the
exponential terms on the right-hand side of Eq. (3) are
vanishingly small, eliminating the effect of the reflecting
boundary on the diffusion process (formally, we take the
a ! �1 limit)

�t 0ðx; �Þ ¼ b� x

vx

; (4)

where vx ¼ D�F. Now, assuming that the potential con-
sists of the regular part and the irregular part, UðxÞ ¼
U0ðxÞ þU1ðxÞ, and that the characteristic length scale of
U1, lc, is much smaller than the size L of the 1D region
over which U0 is approximately linear, we take a spatial
average over the irregular part [18]

h�tðx; �Þi ¼ 1

D

Z b

x
dx0

Z x0

�1
dx00e�Fðx00�x0Þ

�
Z x0þL=2

x0�L=2
dx1e

�U1ðx1Þ
Z x00þL=2

x00�L=2
dx2e

��U1ðx2Þ;

(5)

where lc � L � L. Under these conditions and the addi-
tional assumption that U1 statistics does not change over
L, the two spatial averages are independent of each other
and of x0, x00, yielding

h�tðx; �Þi ¼ Hð�Þ�t0ðx; �Þ; (6)

where Hð�Þ ¼ R1
�1 dU0

1PðU0
1Þe�U0

1

R1
�1 dU00

1PðU00
1 Þe��U00

1

[we have switched from x1 and x2 to U0
1 � U1ðx1Þ and

U00
1 � U1ðx2Þ in the spatial averages]. Furthermore,

Hð�Þ ¼ R1
�1 d�Pð�Þe��, where Pð�Þ is the distribution

of � ¼ U0
1 �U00

1 for x1, x2 constrained by jx1 � x2j � lc.
The last condition guarantees that Pð�Þ is independent of
jx1 � x2j.
Clearly, if MFPT along ~F is minimized for all local

regionsLwith the constant gradient, the total time to reach
a good solution will also be minimized. The inverse tem-
perature �? that minimizes MFPT is given by

dHð�Þ
d�

���������?
¼ Hð�?Þ

�? : (7)

Note that �? is independent of F. Equation (7) can be used
to find �? numerically for arbitrary Pð�Þ. If PðU1Þ ¼
N ð0; �2Þ, Pð�Þ ¼ N ð0; 2�2Þ and Hð�Þ ¼ e�

2�2
, yield-

ing T? ¼ ffiffiffi
2

p
�. With T � T? the diffusing particle gets

stuck in local minima (h�ti � Te�
2=T2

), while for T � T?

the diffusion is no longer optimally along the gradient of
U0 and h�ti � T [Fig. 1(b)]. h�tðx; �?Þi � �=F, indicating
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that diffusion is impeded by noise and aided by the gra-
dient. If U1 ¼ 0 everywhere, Pð�Þ ¼ �ð�Þ and T? ¼ 0.
Thus, as expected, the optimal solution in the absence of
noise is to roll down the potential at zero temperature.
However, �t0ðx;1Þ ¼ 0 since Eq. (2) does not accurately
describe ballistic dynamics or strong forces. Finally,

if F ! 0, h�ti � e�
2=T2

then T? ¼ 1 [although any

T >
ffiffiffi
2

p
� will work almost as well, Fig. 1(b)], yielding

h�tðx; 0Þi ¼ t0ðx; 0Þ.
In order to find the best MC temperature T?, we need to

estimate Pð�Þ by sampling. Let us consider Pð~�Þ, where
~� ¼ Uð ~xþ � ~xÞ �Uð ~xÞ and � ~x is a single MC step of
constant length. j� ~xj can be made so small that the con-
tribution from U0 is negligible. With uncorrelated noise

(j� ~xj> lc), Pð~�Þ ¼ Pð�Þ and Eq. (7) can be applied
immediately. However, if j� ~xj< lc, U1 is smooth at the

scale of a single MC step, and Pð~�Þ and T? will depend on

the move set. Indeed, T? � j� ~xj if the MC steps are so fine
that U1ð ~xþ� ~xÞ �U1ð ~xÞ is approximately linear.
Nonetheless, we find that for complex landscapes where

Uð ~xÞ is a sum of many independent terms, Pð~�Þ quickly
adopts a Gaussian shape if the sampling is over a region

� lc. Since MC walks are memoryless, T? ¼ ffiffiffi
2

p
� still

holds but now � depends on the move set. As j� ~xj in-
creases beyond lc, � converges to a universal value.
We have tested our approach on a set of standard func-

tions often used to check performance of global optimiza-

tion algorithms [19] (Fig. 2, Table I). To estimate Pð~�Þ,
we use a single trajectory with 103 (G), 5� 104 (R), and
5� 102 (A) random steps (all steps are accepted). These

parameters ensure thatPð~�Þ is close to a Gaussian, with the
rate of convergence dependent on the long-range order in
the landscape and on the complexity of the potential func-
tion. The histograms yield accurate predictions of T?

(Table I) despite the fact that the landscapes are correlated
and anisotropic and the gradient is not guaranteed to be
weak.
To compare our approach with SA, we have carried out

two additional sets of runs with Ntrials ¼ 5� 102 and
Niter ¼ 5� 104, 1:5� 104, 5� 103 for G, R, and A func-
tions, respectively. In one set theMC temperature was fixed
atT?

comp, while in the other SAwas employedwith the initial

temperature Ti ¼ 2:0, 8.0, 2.5 (G, R, A) and the final tem-
perature Tf ¼ 0. Ti was chosen as the difference between

the maximum and the minimum values of the noise term in
each test function. If the global minimum is reached Nsuc

times in a given set of runs, � � NtrialsNiter=Nsuc gives the
average number of iterations per success (if Nsuc ¼ 0, a
lower bound ofNtrialsNiter is obtained). We find that T? runs
are superior to SA in all cases (Table I).
Next, we turn to two more challenging global optimiza-

tion problems: the Coulomb spin glass (CSG) [6] and the
traveling salesman (TS) problem [2]. With CSG, we place
N ¼ 50 charges randomly within a 3D unit cube: Uð~sÞ ¼P

N
i¼1;i�j

P
N
j¼1 sisj=j~ri � ~rjj, where si ¼ �1 and the

charge positions are fixed. A move involves flipping all
signs in a randomly chosen subset of charges. The CSG

T
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FIG. 2 (color online). Distribution of best predicted energies as
a function of temperature for the 4D Griewank function
(Table I). For each T, Ntrials independent trajectories with Niter

MC steps each (both accepted and rejected) were created by
Metropolis MC sampling. The lowest energy Ubest from each
trajectory is shown as a gray open circle. Red filled circles are
the average of Ubest at a given T. Inset: Histogram of energy
differences from a random sample of the landscape with a
Gaussian fit (blue solid curve).

TABLE I. Predicted and computed optimal temperatures for standard test functions [19]: the 4D Griewank (G) function (Uð ~xÞ ¼
1þ 1

4000

P
4
i¼1 x

2
i �

Q
4
i¼1 cosðxiffiffiip Þ, xi 2 ½�600; 600�, 8 i), the 4D Rastrigin (R) function (Uð ~xÞ ¼ 4þP

4
i¼1½x2i � cosð18xiÞ�, xi 2

½�5; 5�, 8 i), and the 4D Ackley (A) function (Uð ~xÞ ¼ 20þ e� 20 expð�0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4

P
4
i¼1 x

2
i

q
Þ � exp½14

P
4
i¼1 cosð2�xiÞ�, xi 2

½�32:8; 32:8�, 8 i). All three functions have multiple local minima and a single global minimum located at ~x ¼ 0 [Uð0Þ ¼ 0].
Each MC step is taken in a random direction and has a constant length of 1.0 (G), 0.05 (R), and 0.3 (A). T?

pred is based on a Gaussian fit

to the histogram of ~�. T?
comp is the temperature at which the average Ubest is at minimum. Ubest distribution at each T is based on Ntrials

Metropolis MC runs with Niter steps each. �ðT?Þ and �ðSAÞ are the average number of iterations required to find the global minimum
using MC sampling with T?

comp and SA, respectively.

Function Niter Ntrials T?
pred T?

comp �ðT?Þ �ðSAÞ
G 1:5� 104 102 0.22 0.22 4:2� 106 >2:5� 107

R 5� 103 102 0.85 0.90 3:1� 105 2:5� 106

A 5� 103 102 0.40 0.45 6:1� 103 1:9� 104
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problem is characterized by the separation of scales: Pð~�Þ
estimated using unconstrained random walks (as was done
for the test functions) yields a very high temperature since
most of the landscape consists of high-energy plateaus that
are either flat or have gradients pointing in random direc-
tions [Fig. 3(a), upper panel]. MC runs at this temperature
would not be able to utilize the global gradient informa-
tion, which is restricted to low-energy funnels. We there-

fore focus on the funnels to estimate Pð~�Þ: from the current
position with Ucur, up to Nm (2� 104 for CSG) random
moves are attempted. If the new state is found withUnew 	
Ucur, the loop terminates and the new state becomes the
current state. Otherwise, the lowest energy among Nm new

energies is chosen. For CSG, Pð~�Þ is based on 103 ac-
cepted states, which required 
 1:3� 107 iterations. The
resulting histogram [Fig. 3(a), lower panel] correctly
predicts the optimal temperature seen in Fig. 3(b), even

though the moves are no longer of constant length. Its

Gaussian shape suggests that the ~� distribution is isotropic
in the funnels. Surprisingly, even T ¼ 0 simulations yield
reasonable results, indicating that some deep funnels are
smooth.
In the TS problem, one is given a list of cities and their

locations, and the goal is to find the shortest possible tour
that visits each city exactly once. We considered N ¼ 180

cities randomly distributed within a N1=2 � N1=2 square so
that the average distance between neighboring cities is
independent of N [2]. We use Euclidean distances to
compute U=N and employ nonlocal moves in which a
segment of the trajectory is chosen at random and the
direction in which all cities within that segment are trav-
ersed is inverted [2]. To reduce the degeneracy of low-
scoring solutions, we start all trajectories from the same
city. The TS landscape has a complex multifunnel structure
[Fig. 3(c)] with high plateaus that dominate the landscape

so that only ~� statistics within the funnels are relevant.
As in CSG, we use the funnel-sampling algorithm (with
Nm ¼ 2� 103 and 104 accepted states) to obtain � ¼
7:6� 10�4. This value is consistent with Fig. 3(d).
Additional fixed-T sampling (T? ¼ 7� 10�4, Ntrials ¼
103, Niter ¼ 5� 105) has found 32 solutions with

Ubest=N 	 0:755. In contrast, SA runs (Ti ¼ 1=
ffiffiffiffi
N

p
,

Tf ¼ 0) [2] with the same Ntrials and Niter have not found

any solutions with Ubest=N 	 0:9.
Throughout this Letter, we have focused on minimizing

MFPT. Instead, one may want to maximize the fraction of
runs with Ubest below a certain cutoff. The tail of the Ubest

distribution at a given T is affected by both its mean and
standard deviation �0, making it possible that the tempera-
ture with the best mean is not the same as the temperature
optimized for yielding extremely low-energy solutions.
However, Figs. 2, 3(b), and 3(d) show that �0 varies with
T rather slowly. As a result, the MFPT-based T? remains
valid, although in some cases the interplay between the
mean and �0 may make temperatures in a small range
around T? equally acceptable.
If U1 statistics is approximately constant and isotropic

either throughout the landscape or in the low-energy fun-
nels, there is a unique MC temperature T? for the most
efficient optimization of the objective function (the aniso-
tropic case will be presented elsewhere). However, if the
nature of irregularities changes across the landscape, two
scenarios are possible: First, if PðU1Þ stays approximately
the same in regions � L, the best temperature can be
found for each such region but needs to be updated peri-
odically as the landscape is traversed. Mixing statistics
from multiple regions will yield a single T? that will not
be the absolute best solution but may still be a good
approximate one. Second, it is possible that different scales
are mixed in a region � L, e.g., due to anisotropy. In this

case Pð~�Þ will be non-Gaussian but Eq. (7) still applies,
yielding a single T?. Using a single temperature works

FIG. 3 (color). (a) Pð~�Þ estimated with unconstrained random
walks (102 trials with 104 steps each) (upper panel) and with the
funnel-sampling algorithm (lower panel). (b) Distribution of
Ubest (gray open circles) as a function of temperature for CSG
(Ntrials ¼ 2� 102, Niter ¼ 5� 105). Red filled circles are the
average of Ubest at each T. The dashed horizontal line is the
lowest energy found in all runs. This energy has been reached
two, six, and five times at T ¼ 0, 1, 2, respectively, yielding
�ðT? ¼ 2Þ ¼ 2� 107 iterations. SA runs (Ti ¼ 200, Tf ¼ 0)

with Ntrials ¼ 2� 102 and Niter ¼ 1� 106 have failed to find the
lowest energy, yielding �SA > 2� 108 iterations.
(c) Multifunnel structure of the TS landscape. U=N is the
average distance between neighboring cities in a given trajectory.
One hundred best minima were chosen from (d), and for each
minimum the funnel was mapped out using 10 random walks
with 2� 104 local steps each and plotted in a distinct color.
Local steps involve exchanging two randomly picked neighbor-
ing cities. The rms deviation (RMSD) is computed with respect
to the best solution in (d). (d) Distribution of Ubest=N as a
function of temperature for the TS problem (Ntrials ¼ 102,
Niter ¼ 2:5� 105).
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especially well with nonlocal steps such as those employed
in the TS problem, which can traverse a sizable part of the
landscape in a single leap. Indeed, we find that even a
multiscale TS problem, in which cities are clustered rather
than randomly distributed [2], is characterized by a unique
best temperature with nonlocal steps.

Since MFPT has a unique global minimum at T ¼ T?

[Fig. 1(b)], all other schemes such as SA will yield sub-
optimal performance, as confirmed by our comparisons
between SA and fixed-T runs. In fact, if the amplitude of
U1 gradually increases with decreasing U0, our prescrip-
tion calls for increasing the temperature as the simulation
progresses—the exact opposite of the SA cooling schedule.
The SA algorithm assumes a priori that all scales are
present in the problem. Querying some of the landscape
statistics allows us to substantially improve on this ‘‘one
size fits all’’ SA technique by matching a given landscape
and move set to the appropriate temperature(s). We look
forward to applying our approach to protein structure
prediction and other global optimization challenges.
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