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ABSTRACT

Motivation: Regulation of gene expression by a transcription factor

requires physical interaction between the factor and the DNA, which

can be described by a statistical mechanical model. Based on this

model, we developed the MatrixREDUCE algorithm, which uses

genome-wide occupancy data for a transcription factor (e.g. ChIP-

chip) and associated nucleotide sequences to discover the sequence-

specific binding affinity of the transcription factor. Advantages of our

approach are that the information for all probes on the microarray is

efficiently utilized because there is no need to delineate ‘‘bound’’ and

‘‘unbound’’ sequences, and that, unlike information content-based

methods, it does not require a background sequence model.

Results:We validated the performance of MatrixREDUCE by inferring

the sequence-specific binding affinities for several transcription factors

inS. cerevisiae and comparing the results with three other independent

sources of transcription factor sequence-specific affinity information:

(i) experimental measurement of transcription factor binding affinities

for specificoligonucleotides, (ii) reportergeneassays forpromoterswith

systematically mutated binding sites, and (iii) relative binding affinities

obtained by modeling transcription factor-DNA interactions based on

co-crystal structures of transcription factors bound to DNA substrates.

We show that transcription factor binding affinities inferred by

MatrixREDUCE are in good agreement with all three validating

methods.

Availability: MatrixREDUCE source code is freely available for

non-commercial use at http://www.bussemakerlab.org/. The software

runs on Linux, Unix, and Mac OS X.

Contact: Harmen.Bussemaker@columbia.edu

1 INTRODUCTION

The sequence-specific regulatory activity of a transcription factor

(TF) is the result of energetically favorable interactions between the

amino acids exposed in the DNA binding domain and portions of

nucleic acid bases exposed in the grooves of the DNA. A compu-

tational method for discovering the binding specificity of a TF

cannot provide a quantitative description of TF binding unless it

considers the physical underpinnings of the TF-DNA interaction.

Most physically motivated computational methods discover over-

represented patterns in a set of nucleotide sequences that are con-

sidered to be bound by the TF (for review see Stormo, 2000). These

methods use the information content of nucleotide patterns as a

proxy for the free energy contributions of the bases found in the

TF binding site (Berg and von Hippel, 1987; Stormo and Fields,

1998). Other computational methods infer physically-based TF

binding specificities from measured TF binding affinities for a

small set of oligonucleotides (Liu and Clarke, 2002) or from struc-

tural modeling of protein-DNA interaction (Paillard and Lavery,

2004; Endres et al., 2004; Morozov et al., 2005). However, genome-

scale, quantitative measurements of TF occupancies of intergenic

regions are now available due to the advent of in vivo chromatin

immunoprecipitation microarrays (Ren et al., 2000; Iyer et al.,
2001; Lieb et al., 2001; Simon et al., 2001; Lee et al., 2002;
Harbison et al., 2004), in vitro protein binding microarrays

(PBM; Mukherjee et al., 2004), and DNA immunoprecipitation

microarrays (DIP-chip; Liu et al., 2005). Thus, it is no longer

necessary to rely on small data sets, availability of protein-DNA

structures, or the analogy between information content and statis-

tical mechanics to infer free energy representations of transcription

factor binding sites.

We have developed a method, implemented as the program

MatrixREDUCE (Foat et al., 2005), that infers the sequence spe-

cificity of a TF directly and accurately from genome-wide TF occu-

pancy data by fitting a statistical mechanical model for TF-DNA

interaction (Figure 1). The sequence specificity of the TF’s DNA-

binding domain is modeled using a position-specific affinity matrix

(PSAM), representing the change in the binding affinity (Kd) when-

ever a specific position within a reference binding sequence is

mutated. To validate the physical model of MatrixREDUCE, we

discovered the PSAMs for several TFs in S. cerevisiae and com-

pared the results with three other independent sources of TF

sequence-specific affinity information: (i) experimentally measured

Kd’s as determined by in vitro methods (Gailus-Durner et al., 1996;
Liu and Clarke, 2002; Pierce et al., 2003), (ii) lacZ reporter assays

for promoters with systematically mutated binding sites (Gailus-

Durner et al., 1996; Pierce et al., 2003), and (iii) relative Kd’s

obtained by using a physical model of protein-DNA interaction

that makes binding affinity predictions starting from a co-crystal

structure of the protein-DNA complex (Morozov et al., 2005). We

find a surprising level of agreement between MatrixREDUCE-

predicted TF binding affinities, experimental measurements, and

structural predictions, suggesting that MatrixREDUCE is a�To whom correspondence should be addressed.
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powerful and accurate tool for the elucidation of physically accurate

TF sequence-specific binding affinities.

2 RELATED WORK

In contrast to information theory-based methods of defining

nucleotide-binding protein specificities, MatrixREDUCE belongs

to a small but growing class of methods that infer binding affinities

by directly fitting a physical model to experimental data. The first

such method was introduced by Stormo et al. (1986) who noted,

‘‘When quantitative data are known for many sequences one can

solve for the matrix elements that give the best fit between the

sequences and those data.’’ For Stormo et al. (1986) the quantitative

data were b-galactosidase activities for genes containing mutated

binding sites of the E. coli su2 amber stop codon suppressor. A

similar type of analysis was performed by Liu and Clarke (2002)

who fit a physical model for transcription factor binding to elec-

trophoretic mobility shift assay (EMSA) data measuring affinity of

the S. cerevisiae Leu3 TF for several oligonucleotides. The physical

model behind MatrixREDUCE is the same as that employed by

Stormo et al. (1986) and Liu and Clarke (2002). However, our

‘‘quantitative data’’ are microarray probe intensities, which mea-

sure TF occupancy over long chromosomal regions with unknown

binding site locations. Thus, the MatrixREDUCE model integrates

the binding signal over the entire length of the sequence. The

GOMER method of Granek and Clarke (2005) performs a similar

Fig. 1. The flow of data. A microarray measurement of TF occupancies (ChIP-chip, PBM, DIP-chip, or differential mRNA expression data) and relevant

nucleotide sequences for each microarray feature are used as input to MatrixREDUCE. MatrixREDUCE performs a least-squares fit to a statistical-mechanical

model of TF-DNA interaction to discover the relative contributions to the free energy of binding for each nucleotide at each position in the generalized TF binding

site. These contributions are represented as a position specific affinity matrix (PSAM) containing the relative equilibrium constants of the TF-DNA interaction,

with the highest affinity nucleotide at each position scaled to a value of one (DDG ¼ 0). The PSAM can be converted into an affinity logo that graphically

represents theDDG’s for each nucleotide at each position relative to the averageDDG at the respective positions. The PSAMcan also be used to predict the relative

TF occupancy of any nucleotide sequence, allowing the PSAMs inferred by MatrixREDUCE to be compared with experimental measurements of TF binding

affinities for particular oligonucleotides.
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integration of signal over long regulatory sequences relevant to

measured microarray intensities. However, GOMER was only

used to test hypotheses about the regulatory mechanisms of TFs

for which a binding site weight matrix had already been defined by

other methods. Granek and Clarke (2005) did not attempt to fit the

GOMER model directly to experimental data to infer the binding

affinities of TFs. Finally, also of note are the QPMEME algorithm of

Djordjevic et al. (2003) and the work of Djordjevic and Sengupta

(2006) which use maximum likelihood procedures to infer PSAMs

by fitting physical models to known TF binding sites and SELEX

data, respectively, but rely on the prior delineation of ‘‘bound’’

sequences.

3 METHODS

3.1 Modeling TF-DNA interaction

We will develop the statistical-mechanical model used by MatrixREDUCE

starting with a transcription factor P that binds to a DNA sequence S to form

the TF-DNA complex PS:

kon
Pþ S � PS

koff

ð1Þ

The affinity of the TF for the sequence can be expressed in terms of its

equilibrium dissociation constant KdðSÞ:

KdðSÞ ¼
½P�½S�
½PS� ¼ koff

kon
¼ eDG/RT‚ ð2Þ

which is directly related to DG, the Gibbs free energy of binding per mole

(R is the gas constant and T is temperature). The occupancy N(S) of sequence

S by transcription factor P can be expressed as the concentration of TF-DNA

complex divided by the total concentration of DNA (bound or unbound):

NðSÞ ¼ ½PS�
½PS� þ ½S� ¼

½P�
½P� þ KdðSÞ

: ð3Þ

For simplicity, we will assume that the TF concentration [P] is much smaller

than KdðSÞ. This assumption seems physiologically plausible because in this

regime, the highest affinity binding sites in the genome will be the most

responsive to a change in the nuclear concentration of active TF. Thus, the

occupancy becomes:

NðSÞ � ½P�
KdðSÞ

¼ ½P�KaðSÞ‚ ð4Þ

where

KaðSÞ � K�1
d ðSÞ: ð5Þ

Consider a single point mutation from the original reference sequence Sref
to base b at position j resulting in the mutated sequence Smut. Such a mutation

will give rise to an additive change DDG in the free energy of binding or,

equivalently, a multiplicative change wjb in KaðSrefÞ:

wjb ¼
KaðSmutÞ
KaðSrefÞ

¼ eDDG/RT ‚ ð6Þ

where

DDG ¼ DGðSrefÞ � DGðSmutÞ: ð7Þ

To be able to generalize the binding of transcription factor P to a sequence

Smut with more than one point mutation, we assume that the free energy

contributions for each position in the binding site are independent (Benos

et al., 2002) and therefore additive. Equivalently, we can multiply the wjb’s

for any nucleotide sequence to obtain the overall KaðSmutÞ/KaðSrefÞ ratio.

Thus, the occupancy of a particular binding site Smut of length Lw with

nucleotide sequence Smutð1‚2‚ . . . ‚LwÞ ¼ ðb1‚b2‚ . . . ‚bLw Þ is:

NðSmutÞ ¼ ½P�KaðSrefÞ
YLw
j¼1

wjSmutðjÞ: ð8Þ

The occupancy NðUgÞ for the entire promoter regionUg of gene g equals the
sum of occupancies for each binding site window of length Lw at each

position i over the length Lg of the sequence Ug:

NðUgÞ ¼ ½P�KaðSrefÞ
XLg�Lwþ1

i¼1

YLw
j¼1

wjUgðiþ j� 1Þ‚ ð9Þ

where UgðiÞ is the base at position i in sequence Ug.

3.2 Modeling genome-wide TF occupancy data

Recent technologies such as ChIP-chip (Ren et al., 2000; Iyer et al., 2001;

Lieb et al., 2001; Simon et al., 2001; Lee et al., 2002; Harbison et al., 2004),
PBM (Mukherjee et al., 2004), and DIP-chip (Liu et al., 2005) provide

indirect but quantitative information about the TF occupancy of large

genomic regions. For each segment of DNA there are two microarray inten-

sities. The test intensity Itestg is equal to a background intensity atest plus a

term that, to first approximation, is proportional (g) to the occupancy NðUgÞ
by the TF, either because the amount of TF bound to the probe contributes

directly to the signal intensity (PBM) or because it determines the proportion

at which an immunoprecipitated TF-DNA fragment is present in the sample

(ChIP-chip or DIP-chip). The control intensity Icontrolg is only the result of

background signal acontrol. Allowing for experimental noise eg, we obtain:

Itestg

Icontrolg

¼ gNðUgÞ þ atest

acontrol
þ eg � bNðUgÞ þ Cþ eg ð10Þ

Using Equation 9 for the occupancy NðUgÞ, we obtain:

Itestg

Icontrolg

¼ F
XLg�Lwþ1
i¼1

YLw
j¼1

wjUgðiþ j� 1Þ þ Cþ eg‚ ð11Þ

where

F ¼ b½P�KaðSrefÞ: ð12Þ

Note that b, [P], and KaðSrefÞ cannot be determined separately without

additional information such as the real protein concentration or KaðSrefÞ.
MatrixREDUCE discovers the set of wjb elements as well as F and C by

performing a least squares fit to the measured intensity ratios:

ðC‚F‚fwjbgÞ ¼ argmin
C‚F‚fwjbg

X
g

Itestg

Icontrolg

�F
XLg�Lwþ1

i¼1

YLw
j¼1

wjUgðiþ j� 1Þ�C

 !2

: ð13Þ

The 4 · Lw matrix of Ka ratios wjb (3Lw parameters plus Lw reference

nucleotide values) for all nucleotides at all positions in the binding site is

referred to as the position specific affinity matrix (PSAM). Each position j in

the PSAM is rescaled such that the largest wjb is equal to unity, without loss

of generality.

Differential mRNA expression microarray data, which measures the

change in mRNA concentrations in cells from two different experimental

conditions, can be used in place of genome-wide TF occupancy data.

This substitution is reasonable since, to first approximation, the transcrip-

tion rate of genes is proportional to the total TF occupancy along the asso-

ciated promoter regions. Genome-wide occupancy data is preferable,

however, since it is a more direct measure of TF-DNA interaction and

since the design of the experiments provides the TF identities for the

discovered PSAMs.

3.3 MatrixREDUCE implementation and

parameters

MatrixREDUCE was implemented in Perl and C as outlined above and as

previously described (Foat et al., 2005) with some modifications.

Briefly, MatrixREDUCE takes microarray intensities and corresponding
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nucleotide sequence data as input. It first finds a gapped dyadmotif (e.g.Leu3:
CCG-4nt-CGG), out of all possible dyad motifs of a fixed number of

nucleotides and a range of gap sizes, whose occurrences best correlate

with the measured intensities for the same sequences. The best dyad motif

is then converted into a seed matrix by filling in the gap with N’s and

extending out a user defined number of flanking N’s on either side of the

best-scoring dyad. In the 4 · Lw seed matrix, acceptable nucleotides (all

nucleotides for N’s, a single specific nucleotide at positions within the top

scoring motif) are given Ka ratios of one and unacceptable nucleotides are

given a very small Ka ratio wmin. This seed matrix serves as the starting point

for a quasi-Newton numericalminimization of Equation 13 to find the optimal

PSAM. The new version of MatrixREDUCE uses a k-fold cross-validation to
determine the significance of each discovered PSAM. After converging on a

PSAM, the input data is split into k random subsets of array features with

associated sequences. The optimal PSAM is then used to seed each of k re--

optimizations of the PSAM. A t-value (Pearson correlation) for the goodness
of fit is calculated for the optimal PSAM of each subset. Finally, the P-value

corresponding to the average t-value for the k re-optimizations is used to test

whether the originally optimized PSAM should be kept. This procedure does

not test the significance of the optimal PSAM itself, but rather it tests whether

the data containswidely distributed, explainable variance. Thus, false PSAMs

due to a few outliers are prevented. While not relevant to the current study,

MatrixREDUCE can iteratively build a linear model of multiple PSAMs that

best explain a particular data set (see Foat et al., 2005).

The parameters for the runs of MatrixREDUCE were as follows: For

all runs, the length of each of the two dyads of the seed motifs was three,

the length of the addedflanks on each side of the dyadwas three, theminimum

gapwas zero, the k cross-validationswere two, andwmin was 10
�5. For all runs

on ChIP-chip and PBM data, the maximum acceptable P-value was 10�3 and

the maximum dyad gap was twenty. For all runs on DIP-chip data, the

maximum acceptable P-value was 10�6 and the maximum dyad gap was

ten. For all runs on differential mRNA expression data, the maximum accept-

able P-value was 10�3 and the maximum dyad gap was eleven.

3.4 Microarray and sequence data

All microarray data was gathered from publication supplements. We chose

specific TFs to analyze based on the availability of experimental Kd data or

crystal structure data. PSAMs were inferred by MatrixREDUCE for chro-

matin immunoprecipitation microarrays (ChIP-chip) using the microarray

data and microarray feature sequences from Harbison et al. (2004). These

ChIP-chip experiments were performed under a variety of culture conditions,

including rich media (YPD); sulfometuron methyl (SM), an inhibitor of

amino acid biosynthesis; and treatment with rapamycin (RAPA). PSAMs

were inferred for PBM experiments using the microarray data fromMukher-

jee et al. (2004) and the feature sequence data from Harbison et al. (2004) as

the two studies used the same array features. PSAMs were inferred for Leu3

using the DIP-chip microarray data and feature sequences from Liu et al.

(2005). Liu et al. (2005) performedDIP-chip experiments using two different

concentrations of Leu3, 4nM and 40nM, and PSAMs were inferred for each

concentration. The PSAM for Ndt80 was inferred from differential mRNA

expression microarray data measuring the sporulation response in a ndt80

deletion strain versus a wild-type strain (Chu et al., 1998). The sequence data

for the Ndt80 PSAM inference was the 800 bp upstream of every yeast gene,

retrieved from the Saccharomyces Genome Database (Issel-Tarver et al.,

2002) and purged of redundant sequences as previously described (Foat

et al., 2005). All microarray intensities were analyzed as the ratio of the

experimental sample intensity to the control sample intensity with the excep-

tion of the ndt80 deletion data, which was analyzed as the log2-ratio. All

microarray data was purged of extreme outliers before being analyzed by

MatrixREDUCE (Grubbs’ test, P-value ¼ 10�10; Grubbs, 1969).

3.5 Gel shift and lacZ expression data

While prone to their own inaccuracies, experimentally measured in vitro

binding affinities and changes in lacZ expression served as our ‘‘gold

standards’’ to assess the validity of our MatrixREDUCE model. The

electrophoretic mobility shift assay (EMSA) is able to provide direct

estimates of Kd’s for a TF binding to particular oligonucleotides (Fried

and Crothers, 1981). The ratio of the EMSA-measured Kd of a reference

oligonucleotide Sref to the Kd of one of the other tested oligonucleotides Smut

provides the same information as the product across the MatrixREDUCE

PSAM over the same sequence for the same TF. In the simplifying scenario

where the length of the oligonucleotides is the same as the length Lw of the

PSAM, we have

KdðSrefÞ
KdðSmutÞ

¼
YLw
j¼1

wjSmutðjÞ: ð14Þ

While the biological processes involved are considerably more complex,

lacZ expression data can be employed to the same end. If we assume that

b-galactosidase activity, concentration of b-galactosidase, the amount of

mRNA expressed, the specific recruitment of RNA polymerase to the

promoter, and the promoter occupancy by the TF are all proportional to

each other, then relative Kd’s are reflected in the ratio of b-galactosidase

activities between the assay using the reference binding site and another

assay using a different binding site. Thus, we used lacZ reporter expression

assay data in a similar manner to EMSA-derived Kd data to confirm the

results of MatrixREDUCE.

Experimentally determined in vitro binding affinities and lacZ reporter

expression activity data were gathered from publications. The Kd data and

lacZ expression data for Abf1 are from Gailus-Durner et al. (1996); Kd data

for Leu3 are from Liu and Clarke (2002); and Kd data and lacZ expression

data for Ndt80 and Sum1 are from Pierce et al. (2003).

To compare the experimental Kd measurements with MatrixREDUCE

PSAMs, all experimental Kd and lacZ expression data was first converted to

Ka ratios by normalizing with respect to the value of the highest affinity

oligonucleotide. The Ka ratios were then log-transformed to obtain the DDG
values. MatrixREDUCE PSAMs for each TF were converted to DDG’s
relative to the highest affinity oligonucleotide from the respective

experiment. The sum of the DDG values was calculated for the best

PSAM-matching window in each of the experimentally tested sequences.

If a sequence was shorter than the PSAM, the sum was taken over only the

best matching positions within the PSAM. All experimental DDG’s were

then compared to the PSAM DDG’s by plotting and by calculating Pearson

correlations.

BioProspector (Liu et al., 2001) andMDscan (Liu et al., 2002) are popular

information theory-based methods for determination of TF binding speci-

ficities. To compare the quality of the results from these methods with

MatrixREDUCE results, position-specific scoring matrices (PSSMs) were

derived from BioProspector and MDscan outputs by calculating the frequen-

cies of each base at each position in the putative binding sites and then

dividing by a background frequency for each respective base. Two different

background frequencies were tested: equal nucleotide probabilities and nuc-

leotide probabilities for intergenic sequences in S. cerevisiae. Once the

PSSMs had been created, they were tested against experimental EMSA

and lacZ data in the same manner as the MatrixREDUCE PSAMs above.

3.6 Structural modeling

DNA binding affinities and specificities of TFs are determined by the forces

of electrostatics, solvation, the hydrogen bonding patterns, and shape

complementarity at the binding interface. The magnitude of these contribu-

tions to the binding free energy can in principle be calculated given a

structure of the protein bound to its cognate DNA site. Therefore, it should

be possible to predict PSAMs starting from the experimentally available

structure of the protein-DNA complex (solved by either X-ray diffraction or

NMR), or, in the absence of the exact structure, from a suitably constructed

homology model. Under the assumption that the base pair energies

contribute approximately independently to the total binding affinity

(Benos et al., 2002), all one-point base pair mutations are introduced

into the DNA binding site. Protein-DNA binding energies DG ¼

B.C.Foat et al.
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Gprot�dna � Gprot � Gdna are then evaluated for each mutation. Mutations in

the reference binding site result in changes of protein-DNA binding energies

(DDG; Equation 7). A table of DDG values can be used to construct a PSAM

that is directly comparable with MatrixREDUCE predictions.

We have previously developed two alternative approaches for predicting

TF binding affinities and specificities starting from the protein-DNA

structure (Morozov et al., 2005). In one approach, the ‘‘all atom model’’

(which builds on the ROSETTA protein-nucleic acid interaction model of

Havranek et al., 2004), both direct and indirect readout mechanisms con-

tribute to the recognition of the DNA binding site:

DG ¼ DGdirect þ DGindirect. Direct readout is mediated by protein amino

acid-DNA base interactions, while indirect readout is encoded in the

shape of the DNA site imparted by the bound protein, primarily through

non-specific amino acid-DNA phosphate backbone contacts. Direct protein-

DNA interactions are modeled as a linear combination of the repulsive and

attractive parts of the Lennard-Jones potential, the orientation-dependent

hydrogen bonding potential (Kortemme et al., 2003), and the Generalized

Born electrostatics and solvation model (Onufriev et al., 2004):

DGdirect ¼ wLJrepELJrep þ wLJattrELJattr

þ whbEhb þ welGel‚
ð15Þ

where each term is a sum over all protein-DNA and protein-protein atomic

pairs, and {w} is a set of fitting weights. Indirect readout is modeled using an

effective harmonic representation of the DNA conformational energy (Olson

et al., 1998):

DGindirect ¼ wdna�bp

X
bp

Eab
dna�bp þ wdna�bs

X
bs

Eab
dna�bs‚ ð16Þ

where the first sum is over all base pairs in the DNA site (a, b denote bases in

a base pair), and the second sum is over all consecutively stacked base pair

steps (a, b denote base pairs in a base step). Base pairs and base steps are

counted once in the 50 to 30 direction. The first term penalizes deviations

from canonical base pairing, while the second term captures base stacking

energies. The quadratic energy terms are given by:

Eab
dna�bs/dna�bp ¼

1

2

X6
i¼1

X6
j¼1

f abij d�ai d�
b
j ‚ ð17Þ

where the sums run over six geometric degrees of freedom �i (Twist, Tilt,

Roll, Shift, Slide and Rise for base pair steps; Opening, Buckle, Propeller,

Shear, Stretch and Stagger for base pairs; Lu and Olson, 2003). The DNA

potential is a quadratic expansion in d�i (deviations of the degrees of free-

dom �i from their average values computed using a set of non-homologous

protein-DNA complexes). The force constants f ij are evaluated by inverting

the covariance matrix of d�i obtained with the same protein-DNA dataset:

f�1
ij ¼ hd�id�ji. All six weights are simultaneously fit to experimental DDG
data using a generalized linear model (implemented in the statistical soft-

ware package R): ðwLJrep‚wLJattr‚whb‚wel‚wdna�bp‚wdna�bsÞ ¼
ð0:00‚0:46‚0:77‚0:27‚ 0:03‚0:03Þ. No conformational flexibility is allowed

at the protein-DNA interface. Further details on the fitting procedure and

comprehensive tests of the all-atom free energy function can be found in

Morozov et al. (2005).

In another approach, we developed a ‘‘contact model’’ that exploits the

structure of the protein-DNA complex bound to a high affinity reference

DNA sequence but does not require detailed predictions of protein-DNA

interaction energies. In the contact model each mutated base in the PSAM

column i incurs equal energy cost relative to the consensus base from the

reference sequence:

DDGiðNÞ ¼
Emax ½f 1ðNmaxÞ log ð1 � N/NmaxÞ
� f 2ðNmaxÞ log ð1þ 3N/NmaxÞ� ðN < NmaxÞ
Emax ðN � NmaxÞ

8<
: ð18Þ

Here, N is the number of protein amino acid-DNA base atomic contacts

summed over the base pair i (atomic contact is defined by a distance of less

than 4.5 s; hydrogen atoms are excluded from the counts), and Nmax is the

number of contacts above which the maximum energy penalty Emax is

imposed. f 1ðNmaxÞ and f 2ðNmaxÞ are fixed prefactors defined in Morozov

et al. (2005). Emax together with Nmax constitute the free parameters of the

contact model and are adjusted simultaneously to maximize the fraction of

correct predictions and minimize the average error over the DDG data set

identical to that used in fitting the all-atom model. The fraction of correct

predictions is based on a binary function: a prediction is considered to be

correct if both computational and experimental DDG’s are less than 1.0 kcal/
mol, or greater than 1.0 kcal/mol, or else separated by less than 0.3 kcal/mol.

The global minimum for the fit is found by exhaustive search; the best fit is

obtained with Nmax ¼ 15, Emax ¼ 3:0 kcal/mol.

3.7 Affinity logos

Information content-based weight matrices are usually displayed as

sequence logos (Schneider and Stephens, 1990) However, MatrixREDUCE

weight matrices are discovered without a background sequence model. Thus,

an appropriate logo should display the actual relative free energies of binding

for each nucleotide at each position rather than information content. There-

fore, we created affinity logos, which are constructed as follows: For each

position in the PSAM, the average DDG is calculated. Then, the difference

between each individual DDG and the average DDG at that position is

computed; the absolute value of this difference is the height of the character

representing that nucleotide. If the difference is positive (more favorable

than average), the letter is placed above a horizontal black line through the

center of the logo. If the difference is negative (less favorable than average)

the letter is placed below the black line. Larger letters are stacked on smaller

letters moving outward from the black line. The height of the letter can be

interpreted as free energy difference from the average in units of RT. Thus,

an intuitive high amplitude is given to the nucleotide positions that most

contribute to the sequence specificity of the TF. To highlight that the

characters representing the high affinity nucleotides are above the black

line, the characters representing the low affinity nucleotides are made

partially transparent. However, maintaining the representation of the poor

affinity nucleotides below the center line allows the viewer to immediately

see which nucleotide substitutions are most unfavorable to binding.

3.8 PSAM to PSAM alignments and correlations

By inspection of affinity logos, one can make qualitative observations about

the similarity between any two PSAMs. However, a quantitative measure of

similarity allows for more objective comparisons. Before two PSAMs can be

compared, they must first be aligned. Pearson correlations were calculated

between the DDG values for each nucleotide at each position for every

possible overlap of the two PSAMs for both the forward and the reverse

complement alignments. After the best overlap position and strand was

determined from the best correlation P-value, the DDG’s of the two

PSAMs were recentered relative to a common reference consensus

sequence. Finally, the P-value for the Pearson correlation between the

two optimally aligned and transformed PSAMs was calculated and subjected

to a Bonferroni correction for the number of alignments that were tested.

4 RESULTS

4.1 PSAMs inferred by MatrixREDUCE agree well

with experimental measurements of TF binding

affinity

We discovered the position specific affinity matrices (PSAMs)

for the Saccharomyces cerevisiae TFs Rap1, Ndt80, Gcn4,

Leu3, Abf1, and Sum1 by applying MatrixREDUCE to genome-

wide TF occupancy data and, in the case of Ndt80, differential

mRNA expression microarray data (Figure 2A). Experimental

measurements of relative Kd’s (EMSA or lacZ expression) for

specific oligonucleotides were available for Abf1, Leu3, Ndt80,

and Sum1. EMSA has long been employed to determine the
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DNA-binding affinities of TFs in vitro. Likewise, the lacZ reporter

assay has long been used to measure the difference in activities

of TF binding sites. We claim that a PSAM inferred by

MatrixREDUCE from genome-wide TF occupancy data can be

used to predict the relative binding affinities of the measured TF

to any sequence. Therefore, EMSA and lacZ expression data pro-

vide nearly ideal data sets for validation of the MatrixREDUCE

approach. For each combination of experimentally tested sequence,

experimental method (EMSA or lacZ), and TF, we compared the

experimental DDG with the DDG predicted from a PSAM for the

same TF (Figure 3). In every case, the experimental DDG values

strongly correlated with the PSAM-predicted DDG values, with R2’s

ranging from 0.36 to 0.88. Thus, PSAMs inferred by MatrixRE-

DUCE seem to be good models of the true relative DNA binding

affinities of the corresponding TFs. Unexpectedly, all of the regres-

sions of experimental DDG’s on MatrixREDUCE DDG’s have

Fig. 2. Comparison of PSAMs—affinity logos and correlations. (A) The PSAMs represented in the columnswith blue headerswere inferred byMatrix-REDUCE

fromChIP-chip, PBM,DIP-chip, or mRNAdifferential expressionmicroarray data. YPD (richmedia), SM (sulfometuronmethyl), and RAPA (rapamycin) refer

to the environmental conditions to which the test sample was exposed before the ChIP-chip experiment. The DIP-chip experiments were performed with two

different concentrations of Leu3, 4nM and 40nM. An ndt80 deletion (ndt80D) versus wild-type mRNA expression experiment (mRNA) was used to obtain the

Ndt80 PSAM.The PSAMs represented in the columns green headerswere inferred bymodelingTF-DNA interactions based on crystal structures of the TFs using

two different methods, a contact-only model and an all atom model. (B) All PSAMs for each TF were aligned pairwise and the Pearson correlation between the

DDG values of both PSAMs for the best alignment was calculated. The P-value for this correlation is a measure of similarity between the PSAMs. Again, blue

labels indicate PSAMs inferred by MatrixREDUCE PSAMs and green labels indicate structurally inferred PSAMs.
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slopes less than one (range: 0.31 to 0.94). It seems that MatrixRE-

DUCE produces a slightly larger range of predicted DDG’s than is

realized in experiments. Nonetheless, the MatrixREDUCE PSAM-

predicted DDG’s are close to the experimentally inferred DDG’s in
most cases, especially among the highest affinity sequences.

4.2 PSAMs inferred by MatrixREDUCE agree well

with PSAMs inferred by structural models

Both genome-wide TF occupancy data and crystal structures of

protein-DNA complexes are available for Ndt80, Gcn4, and

Rap1. Thus, we were able to compare MatrixREDUCE PSAMs

with those based on ab initio structural models (see Methods;

Figure 2A). The structurally inferred PSAMs for Ndt80 were

obtained from its co-crystal structure bound to a high affinity

GACACAAAA site, solved at 1.4 s resolution (Lamoureux

et al., 2002). Figure 2A shows a reasonable agreement between

DDG predictions carried out with MatrixREDUCE and structural

models. The close correspondence with the contact model, which is

a function of the number of protein side chains in contact with DNA

base pairs, is especially remarkable, showing that the Matrix-

REDUCE approach is capable of reproducing structural details

of the binding interface based only on the genomic sequence and

genome-wide TF occupancy data.

Gcn4 is a TF of the bZIP class. It is a homodimer with the basic

region mediating sequence specific DNA binding and the leucine

zipper region required for dimerization (O’Shea et al., 1991). For
deriving the Gcn4 structural PSAMs, we used a 2.9 s crystal

structure of the TF bound to the ATGAGTCAT site (Ellenberger

et al., 1992). The symmetry of the binding site (two reverse

complement 4 bp half-sites separated by G in the middle) is a

reflection of the homodimeric binding and is captured well in

MatrixREDUCE predictions. While contact model and Matrix-

REDUCE predictions are similar, the all-atom model is less

successful, probably due to the low resolution of the crystal struc-

ture, which leads to considerable uncertainty in side chain positions

with respect to the neighboring DNA bases.

Finally, Rap1 binds DNA as a homodimer in a way that makes its

DNA site a tandem repeat. The crystal structure of the Rap1 homod-

imer in complex with a telomeric DNA site has been solved to

2.25 s resolution (Konig et al., 1996). Comparison of Matrix-

REDUCE PSAMs and structural PSAMs reveals good agreement

with the all atom model. The contact model overpredicts binding

specificity at the intermediate positions in the binding site (located

Fig. 3. Comparison of experimentally measured DDG’s with MatrixREDUCE PSAM-predicted DDG’s. Experimental measurements of DDG’s were derived
fromEMSA (A) and lacZ reporter assays (B). The experimentalDDG values are plotted along the vertical axes. PredictedDDG’s were calculated from the PSAM

for each tested TF for the same oligonucleotide sequences that were measured in each experiment. TheMatrixREDUCE-predicted DDG values are plotted along

the horizontal axes. In this representation, the higher affinity oligonucleotides havemore positiveDDG’s. The diagonal dashed line represents experimentalDDG
equal to MatrixREDUCE DDG. DDG’s are in units of RT, where R is the gas constant and T is the temperature. The R2 and P-values for the Pearson correlations

between the experimental and predicted DDG’s are presented for each PSAM-experimental data pair.
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between tandem repeats), likely because it assigns similar

specificities to protein-DNA contacts in the loop region and in

the DNA binding domains.

4.3 PSAM to PSAM correlations

Upon visual inspection of Figure 2A, the similarities are immedi-

ately apparent between affinity logos for the same factor inferred

using different experimental and computational methods. However,

a quantitative measure of these similarities can be obtained by

aligning the PSAMs (see Methods) and calculating the correlation

of their DDG values. The P-value for this correlation between two

PSAMs serves as our similarity metric (Figure 2B). Overall, the

similarity between the PSAMs from MatrixREDUCE are the most

significant. There is extreme similarity between the Rap1 PSAMs

inferred from ChIP-chip and PBM data. The PSAMs inferred for

Gcn4 for three different ChIP-chip conditions are all very similar as

well. The Leu3 PSAMs inferred from the DIP-chip data are much

more similar to each other than they are to the Leu3 PSAM inferred

from the ChIP-chip data, but they are still both significantly similar

(P-value < 0.01) to the ChIP-chip Leu3 PSAM. The significance of

the correlations between MatrixREDUCE PSAMs and structurally

inferred PSAMs is more variable. Both the all atom model PSAM

and the contact model PSAM for Rap1 and Ndt80 have significant

similarities with the respective MatrixREDUCE PSAMs (P-value <
0.01). However for Gcn4, while the contact model PSAM has strong

similarities with all of the other PSAMs, the all atom PSAM has

insignificant similarities with all other PSAMs.

4.4 How good is the information theory

approximation?

In the original papers describing the ChIP-chip (Harbison et al.,
2004), PBM (Mukherjee et al., 2004), and DIP-chip (Liu et al.,
2005) data, the authors used BioProspector (Liu et al., 2001) or
MDscan (Liu et al., 2002) to define weight matrix representations of

TF binding sites. These two methods use the set of sequences that

the experimenters label as ‘‘bound’’ to produce a list of potential

binding sites. When interpreted through information theory, the

nucleotide frequencies at each individual position in the binding

sites divided by the ‘‘background’’ frequencies for the respective

bases provide an estimate of a PSAM in the form of a position-

specific scoring matrix (PSSM). Since we had already compiled the

EMSA and lacZ expression data, we had the opportunity to experi-

mentally verify the results of these PSSMs.

We gathered the BioProspector and MDscan results from the

original, published analyses, transformed them into PSSMs, and

used them to predict DDG’s for the EMSA and lacZ experimentally

tested sequences. We performed this comparison using two different

‘‘background’’ nucleotide frequency models: one using equal nuc-

leotide probabilities and one using nucleotide probabilities derived

from S. cerevisiae intergenic sequences. The R2 and P-values for the
correlations between these predicted DDG’s and the experimental

results are displayed in Figure 4. Overall, the quality of the results

from the information theory PSSMs and the MatrixREDUCE

PSAMs were similar. However, the results for the PSSMs are dif-
ferent depending on the choice of equal or intergenic nucleotide

frequencies. While we did not test this scenario, the information

theory results would also change depending on the probe intensity

threshold chosen to label genes as ‘‘bound.’’ Thus, while Matrix-

REDUCE performs comparably with existing information theory

methods, it conveniently avoids having to choose several ad hoc
parameters required by the other methods.

5 DISCUSSION

Overall, position specific affinity matrices (PSAMs) as inferred by

MatrixREDUCE from genome-wide TF occupancy data are good

approximations of the real sequence-specific DNA binding affini-

ties. Discrepancies between the computationally predicted and the

experimentally inferred binding affinities may be due to either the

computational or the experimental methods. EMSA has known

problems with ‘‘caging’’ of the TFs by the gel while electrophoresis

is proceeding (Fried and Crothers, 1981). This could lead to inferred

DDG’s of smaller magnitude. Likewise, lacZ reporter assays are a

very indirect way of measuring relative binding affinities as they

require transcription, translation, and b-galactosidase reactions in

order to make measurements, and noise could be introduced at each

step. Structural model predictions are strongly dependent on the

quality of input structures and are affected by errors in the energy

function. The current MatrixREDUCE model may also give rise to

systematic biases. First, it makes the approximation that nucleotides

contribute independently to the free energy of TF binding (Benos

et al., 2002). Second, it makes the assumption that the concentration

of TF is much smaller than the Kd, which may not be correct for

some TFs. Finally, all consecutive positions in the PSAM are cur-

rently treated as parameters to be estimated, which may lead to

overfitting. We plan to address these issues in a future version of

the algorithm.

Despite these current limitations, PSAMs discovered using the

current implementation of MatrixREDUCE are good approx-

imations of the relative nucleotide binding affinities of assayed

TFs. Especially for microarray methods like PBM and DIP-chip,

where the objective is to define nucleotide-binding specificities,

MatrixREDUCE may be the most physically accurate method

available to analyze the data. Even for less direct reflections of

TF binding affinities like ChIP-chip or differential mRNA expres-

sion data, it will still provide good approximations of the sequence-

specific binding affinities of TFs relevant to those data. Preliminary

results also suggest that MatrixREDUCE performs well on data

Fig. 4. Correlations of experimentally measured DDG’s with information

theory-predictedDDG’s. Experimental measurements of DDG’s were derived
from EMSA and lacZ reporter assays. The R2 and P-values for the Pearson

correlations between the experimental and predicted DDG’s are presented for
each PSSM-experimental data pair. PSSMs were derived and tested using

two different background nucleotide frequencies: equal probabilities and

intergenic probabilities.
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from higher eukaryotes including D. melanogaster and mammals.

Finally, MatrixREDUCE has two key advantages over most other

computational methods for defining nucleotide binding specific-

ities: (i) it uses the information for all probes in genome-wide

TF occupancy data, and (ii) it does not require a background

sequence model.
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