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Our understanding of the principles underlying the protein-folding
problem can be tested by developing and characterizing simple models
that make predictions which can be compared to experimental data.
Here we extend our earlier model of folding free energy landscapes, in
which each residue is considered to be either folded as in the native state
or completely disordered, by investigating the role of additional factors
representing hydrogen bonding and backbone torsion strain, and by
using a hybrid between the master equation approach and the simple
transition state theory to evaluate kinetics near the free energy barrier in
greater detail. Model calculations of folding f-values are compared
to experimental data for 19 proteins, and for more than half of these,
experimental data are reproduced with correlation coefficients between
r ¼ 0.41 and 0.88; calculations of transition state free energy barriers
correlate with rates measured for 37 single domain proteins (r ¼ 0.69).
The model provides insight into the contribution of alternative-folding
pathways, the validity of quasi-equilibrium treatments of the folding
landscape, and the magnitude of the Arrhenius prefactor for protein
folding. Finally, we discuss the limitations of simple native-state-based
models, and as a more general test of such models, provide predictions
of folding rates and mechanisms for a comprehensive set of over 400
small protein domains of known structure.
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Introduction

Recent theoretical models by Alm & Baker,1

Galzitskaya & Finkelstein,2 and Munoz & Eaton3

have focused on the importance of topology in
determining protein-folding mechanisms, using
simple free energy functions to make predictions
about folding rates and transition state (TS)
structures. All three groups used a simplified
approach in which each residue is considered to
be either ordered as in the native state or com-
pletely disordered, with ordered residues occur-
ring in one or more contiguous segments of the
protein chain (the multiple sequence approxi-
mation). The models balance the entropic cost of
ordering residues against the free energy decrease
associated with making native interactions.

Munoz & Eaton scaled the strength of native
interactions on the basis of protein stability, a first-
order approximation that allowed for the calcu-
lation of relative folding rates. Galzitskaya &
Finkelstein, and Alm & Baker considered inter-
actions between ordered segments, and were
successful at predicting the distribution of struc-
ture in the folding TS for a limited number of
proteins. In contrast to these models, work by
Portman et al. introduces the use of a local order
parameter to bypass the requirement that indi-
vidual residues be either completely ordered or
disordered.4 – 6 Studies by Clementi et al., and more
recently by Koga & Takada continue the theme of
native topology-based models, but relax the
multiple sequence approximation by performing
off-lattice simulations using a simplified represen-
tation of the protein chain.7,8

The correlation between folding rates and the
simple topological measure, average contact order,
suggests that such models may be sufficient to
explain folding rates.9 However, recent experi-
mental data indicate that proteins with similar
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topologies, such as proteins G and L, or the src and
spectrin SH3 domains and Sso7d, can fold via
different mechanisms, suggesting that some
topologies allow multiple, nearly isoenergetic
folding pathways, particularly when there is a
symmetry in the native-state structure.10 – 12 Protein
design studies that successfully switch the native-
folding pathway to an alternative-folding pathway
in proteins L and G variants by strengthening or
weakening specific intramolecular interactions,
while not substantially changing the folding rate,
further support this hypothesis.13,14 These results
point to the need for a more accurate free energy
function to characterize folding in some proteins,
and motivate the addition of terms that reflect
hydrogen bonding and backbone torsion strain to
our simple model. Guerois & Serrano recently
used such an energy function to predict folding
mechanisms successfully within the SH3 family.15

Simple theoretical models can be used to test our
understanding of the folding process. Before any
conclusions can be drawn, however, the validity
of the model must be checked by comparison with
experimental data. In principle, the results of any
experimental measurement of folding kinetics or
thermodynamics can be derived from a complete
model of the folding landscape. In practice, the
folding of many proteins has been characterized
in terms of the folding rate of the naturally occur-
ring protein, and by using site-directed muta-

genesis (f-value analysis) to probe the distri-
bution of structure in the folding TS.16 If the
results from model calculations and experimental
measurements are in agreement, then our basic
understanding of the processes that underlie pro-
tein folding is validated. Additionally, there are
several ways that these simple theoretical models
can be used to provide information inaccessible by
standard experimental techniques. In particular,
unstable excited states such as the TS can be
directly characterized, the energy landscape can
be perturbed, and alternative folding pathways
higher in free energy than the experimentally
observed pathway can be identified.

We extend our previous model of protein-
folding mechanisms by (1) investigating the
addition of hydrogen bonding and backbone
torsional strain terms to the free energy function,
(2) computing folding rates and comparing these
to experimental data for 37 proteins, (3) computing
f-values and comparing these to experimental
data for 19 single domain proteins, (4) making
available predictions of folding rates and TS struc-
tures for a comprehensive set of small protein
domains of known structure, and (5) comparing
the transition state theory (TST) approximation for
folding rates with a more rigorous approach based
on the kinetic master equations, and estimating
the Arrhenius prefactor for the folding of small
proteins.

Basic assumptions

As in previous models,1 –3 the folding free
energy landscape is simulated by enumerating all
configurations available to a protein chain. A con-
figuration is uniquely defined by the state of all
residues in the protein, where each residue is
taken to be in one of two states: ordered as in
the folded structure, or completely disordered.
Ordered residues are required to occur in one or
two contiguous groups in the linear protein
sequence. Protein configurations are considered
to be linked kinetically if they differ with respect
to the state of exactly one residue.

In the basic free energy function, attractive inter-
actions are taken to be proportional to the surface
area buried by the ordered regions, and where
noted, the energy function includes terms that
reflect hydrogen bond strength and backbone tor-
sion strain as described in Methods. Energetically
favorable attractive interactions are offset by the
entropic cost of ordering residues and of closing
loops between ordered regions.

Results and Discussions

Comparing predicted and observed
folding mechanisms

We compare model calculations of protein-
folding pathways with experimentally observed

Figure 1. Statistical test of predicted f-values. To
assess the accuracy of f-value predictions, predicted
values were compared to experimentally measured
values and to 1000 random permutations of the
measured values as described in the text. Bars show the
percent of randomly permuted values that do not corre-
late as well with predictions as the measured values
(lower correlation coefficient). Predictions were made
using the basic free energy function, except for starred
proteins, for which the full free energy function inclu-
ding hydrogen bonding and torsion strain terms was
used. In the following Figures, protein names are abbre-
viated as follows: acylP, muscle acylphosphatase; proC,
procarboxypeptidase; S6, ribosomal protein S6; CI2,
chymotrypsin inhibitor 2; FKBP, FK501-binding protein;
lmb, lambda repressor; suc1, the protein product of the
cell cycle gene p13suc1; villin, the N-terminal domain of
the villin headpiece; CheY, bacterial chemotactic protein
CheY; bar, barnase; ten, tenascin; fib, the tenth type III
domain repeat of fibronectin; U1A, U1A spliceosomal
protein; G, protein G; L, protein L; src, the src SH3
domain; spec, the a-spectrin SH3 domain; sso, the Sso7d
SH3 domain.
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f-values by generating a simulated TS ensemble
that consists of the 100 lowest free energy TS
configurations on the model landscape (each con-
figuration in the ensemble is weighted according
to its free energy). A computed f-value for a
given residue is taken to be the frequency with
which that residue is ordered in the TS ensemble.
An implicit assumption is that each residue is
ordered because of its favorable interactions with
other ordered residues.

To test the statistical significance of the model
f-value predictions, the correlation of predictions
to experimental data was compared to the
correlation of predictions to randomized data in
the following manner: 1000 decoy data sets were
generated for each protein by randomly permuting
the measured f-values. The sequence position for
each measurement was kept constant while the
values were permuted to insure that results were
not biased by the choice of experimentally probed
sites. Next, the linear correlation coefficient, r,
between the predicted values and the 1001 total
data sets was assessed, and the rank of the corre-
lation to the actual data set was computed as a
percentile as shown in Figure 1. For over half of
the proteins examined, the correlation to the actual
data was above the 99th percentile.

Experimentally characterized TSs can be divided
into three categories based on the distribution of
f-values observed: (1) polarized TSs in smaller
proteins, (2) compact subdomains within larger
proteins, and (3) diffuse TSs in which the observed
structure is not as well-formed as in the native
state and is distributed across much of the protein.

As shown in Figure 2, calculations for proteins in
the first two categories seem to be more reliable
than those for proteins in the third.

Testing the free energy function

To test the value of adding additional terms
to our model, calculations were performed using
several variants of our free energy function: (1) the
basic function including only the entropic and sur-
face area burial based terms; (2) the basic function
plus a term reflecting backbone torsion strain
(non-glycine residues with positive f torsion
angles penalized þ0.5 kcal/mol upon ordering;
1 cal ¼ 4.184 J); (3) the basic function plus a term
reflecting hydrogen bonding (backbone–backbone
and side-chain–backbone hydrogen bonds
between ordered residues assigned a free energy
between 0 and 20.5 kcal/mol each); (4) the basic
function plus both the backbone torsion strain and
hydrogen bonding terms. As shown in Figure 2,
the additional terms did not greatly affect the
accuracy of f-value predictions for most proteins.
For some proteins, however, the additional terms
did make a difference as described in detail in
following sections. In particular, for proteins L
and G, differences in hydrogen bond strength and
backbone torsion strain play a crucial role in deter-
mining the folding pathway in model simulations.
Additional terms were tested, such as amino acid
and backbone torsion angle dependent free
energies for ordering residues, but did not improve
results enough to justify the added number of free
parameters. Model calculations that allowed for

Figure 2. Comparison of four free
energy functions. Free energy func-
tions were compared based on the
accuracy of f-value predictions
taken from calculations in which
each was used. Bars indicate linear
correlation coefficient, r, between
model predictions and measured
values. Four sets of predictions are
shown: basic model using surface
area and entropy terms only,
basic þ backbone torsion strain,
basic þ hydrogen bonding, basic þ
backbone torsion strain and hydro-
gen bonding terms.
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Figure 3. Predicted versus observed f-values. f-Value predictions were computed for 19 proteins as described in the
text. f-Value predictions are shown (left column) next to experimentally measured f-values (right column). f-Values
for each residue are displayed on the protein using a gradient from blue (f ¼ 0) to red (f ¼ 1), white regions indicate
residues without experimental data. (a) Proteins L and G, and redesigned proteins L and G (labeled nuL and nuG), note
that since comprehensive f-value analysis has not been carried out on the two redesigned proteins, only predictions
are shown. (b) SH3 fold: src, spectrin, and Sso7d. (c) Large proteins with compact subdomains: CheY and barnase.
(d) IgG fold: titin, tenascin, and fibronectin domain 10. (e) Ferredoxin fold: acylphosphatase, procarboxypeptidase,
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three contiguous groups of ordered residues
required that 2–5 residues be linked together
kinetically in order to reduce the computational
difficulty, and as a result, did not perform as well
at reproducing f-values and folding rates (results
not shown).

In the discussion and Figures that follow,
f-values were computed using the basic free
energy function except where indicated.

Small proteins with polarized transition states

Proteins L and G

Proteins L and G provide a good example of
how model calculations can be used to interpret
experimental results. These two proteins have a
very similar topology as shown in Figure 3(a).
Moreover, the symmetry of their native-state
topology suggests that for every folding pathway,
there is a complementary pathway, which begins
ordering residues at the opposite end of the chain,
and indeed the two proteins have complementary
distributions of structure in their folding transition
state ensembles. As might be expected, model
calculations based on surface area burial and
entropic considerations alone (the basic free energy
function) do not accurately reproduce experi-
mentally observed TS structure. Adding the
hydrogen bond and torsion strain terms to the free
energy function seems to capture the experi-
mentally observed TS structure, prompting us to
investigate in greater detail the factors that lead to
this apparent symmetry breaking on the model
folding landscape.

f-Value analysis of protein L indicates that the
N-terminal hairpin is formed, and the C-terminal
hairpin remains disordered in the folding TS.11 As
shown in Figure 3(a), model f-value calculations
reproduce this asymmetry. In model calculations,
the symmetry breaking is due to favorable side-
chain–main-chain hydrogen bonding in the
N-terminal hairpin and two non-glycine residues
with unfavorable positive f-angles in the C-termi-
nal b-turn. In the case of protein G, the C-terminal
hairpin rather than the N-terminal hairpin is
ordered in the TS,12 and has been shown to be
stable in isolation.17 In model calculations, the
differences in hairpin stability and the asymmetric
f-value distribution result from extensive hydro-
gen bonding in the C-terminal hairpin and a
greater total amount of surface area burial. Thus,
for these two proteins, differences in hydrogen
bond strength and backbone torsion strain, which
account for a very small part of the total free

energy function, are sufficient to change the distri-
bution of structure at the rate-limiting step.

As an experimental test of the hypothesis that
changes in the relative stabilities of local structural
elements can change the folding pathway, compu-
tational protein design methods have been used to
stabilize the first b-hairpin in protein G and the
second hairpin in protein L. The folding TSs of
the two redesigned proteins were found to be
reversed: in contrast to their wild-type counter-
parts, the first hairpin is ordered in the TS of the
redesigned protein G and the second hairpin is
largely ordered in the TS of the redesigned protein
L.13,18 As shown in Figure 3(a), model calculations
on crystal structures of these mutants using the
full free energy function seem to capture the
energetic differences between the mutant and
wild-type proteins, and predict that the comple-
mentary pathways should be observed for these
mutants. In the redesigned protein L, the non-
glycine residues with positive f torsion angles
were replaced by a canonical type I0 turn, lowering
the free energy of the second turn. For the
redesigned protein G, hydrophobic packing is
optimized in the N-terminal hairpin and a key
hydrogen bond is deleted in the C-terminal
hairpin.

SH3 fold

The SH3 fold is another case for which the model
reproduces the observed TS structure. The fold
consists of two opposing three-stranded b-sheets.
In the src and spectrin SH3 domains, the local
three stranded sheet comprised of the well-packed
distal loop and the n-src loop is found to be
ordered at the folding TS, while the sheet com-
prised of the RT loop and C-terminal strand
is mostly disordered.10,19 In model calculations
(Figure 3(b)), this asymmetric distribution of
structure in the TS can be attributed in part to
more contacts in the compact distal loop hairpin
compared to the relatively disordered RT loop, but
is likely related to topological considerations as
well. The three stranded sheet that includes the
distal loop consists of three local b-strand pairs,
while the opposing sheet contains a b-strand pair
separated in sequence by nearly the length of the
protein. When the model is used to simulate
kinetics for a circularly permuted variant of the
spectrin SH3 domain in which the N and C termini
are joined, and the chain is cleaved between the
two strands of the distal loop, this region is no
longer predicted to be ordered at the rate limiting
step, although the strength of the interactions in
this region are unchanged.10 Consistent with this

and U1A. (f) l-repressor, FKBP, CI-2, and suc1. (g) U1A TS placement at different stabilities: left column shows
predicted f-values at 0 kcal/mol (top), þ3 kcal/mol unstable (middle), þ5 kcal/mol (bottom); right column shows
experimental f-values at mf/meq values of: 0.5 (top), 0.7 (middle), and 0.85 (bottom). (h) f-Value predictions for the
villin headpiece at two stabilities: 0 kcal/mol (top), þ5 kcal/mol (bottom); right column shows experimental values.
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result, experimental f-value analysis of this
circular permutant indicates a different distri-
bution of structure at the TS.20

The Sso7d domain differs notably from the other
SH3 domains considered in that it contains only
one three-stranded b-sheet, as the C-terminal
region is helical. Although the distal loop b-strands
are similar in structure to those of the other
SH3 domains, the turn region is presumably less
favorable due to the presence of five glycine
residues. Both experimentally and in the model
calculations, the C-terminal helix and nearby
regions of the n-src loop are found to be ordered
in the TS. Similar results on these SH3 folds were
obtained by Guerois & Serrano who found hydro-
gen bonding and torsion angle dependent terms
necessary to reproduce the experimental results,15

and by Koga & Takada.8

Large proteins with compact subdomains

CheY and barnase

For CheY and barnase, results from the folding
model point to a mechanism that is derived from
first-order “topological” features. In fact, model
calculations including only the topologically based
terms, the surface area burial and entropy, perform
slightly better than those using additional terms
at reproducing the experimentally observed TS
structure. The folding model identifies the compact
subdomain at the CheY N-terminus and the
compact core made by packing the C-terminal
b-sheet against the N-terminal helix in barnase as
optimal solutions that maximize surface area burial
while ordering the fewest number of residues
(Figure 3(c)). Consistent with these results, the
N-terminal domain of CheY has been shown to be
structured in the folding TS,21 and for barnase, the
C-terminal b-sheet and the N-terminal a-helix
account for most of the structure observed in the
folding TS.22

Immunoglobulin fold

The three immunoglobulin proteins studied
have two minicore regions that correspond to the
strands on the left and right half of the proteins
shown in Figure 3(d), either of which could be
used to nucleate the folding process. From a purely
topological perspective, local interactions make the
strands on the left more favorable as a folding
nucleus, while the strands on the right form a
minicore that is stabilized by interactions that
span most of the length of the linear protein
sequence. Model predictions for all three proteins
suggest that the local core should comprise the
folding nucleus; experimental data confirm this
prediction for two of the three proteins (titin and
tenascin), but also suggest that, for fibronectin,
interactions in the non-local core are sufficiently
strong to shift the folding nucleus to this alterna-
tive site.23 – 25

Proteins with diffuse transition states

Of the proteins studied by f-value analysis to
date, about half display a diffuse pattern of largely
intermediate f-values distributed across most of
the protein. Model calculations reproduce these
distributions in some cases, but are generally less
accurate for proteins in this class compared to
those described above. This may reflect the
inherent limitation of the model that residues
are either completely ordered or disordered, not
partially ordered.

Ferredoxin-like fold

Two interwoven bab motifs form the scaffold
for the ferredoxin-like fold, and as a result, the
protein core includes mostly non-local interactions
between both helices and all four strands. Com-
pared to the immunoglobulin fold, this fold does
not appear to have a clear topological bias toward
a specific nucleus. However, for one protein in
this set, U1A, Ternstrom et al. report a polarized
TS centered around a locally stabilized minicore.26

In particular, the asymmetry in the helix placement
in U1A results in a very local minicore including
the first helix and the adjacent beta-hairpin.
Experimentally, these differences are realized in
the folding TSs for the four proteins: acylphospha-
tase, procarboxypeptidase and ribosomal protein
S6 have diffuse TSs with intermediate f-values
spread across most of the length of the proteins;27–29

for the asymmetric U1A, the TS is polarized, and
high f-values are clustered in the local minicore
surrounding the first helix. For this reason, we
have included U1A in the class of large proteins
with compact subdomains in Figure 2.26 Model
calculations on this set succeed at picking up on
low resolution topological biases in the case of
U1A, but do not perform as well on the other
more symmetric proteins which may include more
non-local interactions as well as multiple folding
pathways (Figure 3(e)). Interestingly, Koga &
Takada recently reported similar results on this
group of proteins using an off-lattice model,8

suggesting that these results reflect an inherent
limitation of Go-type models rather than an artifact
of our particular approach.

CI-2, FKBP12, l-repressor, Suc1

The remaining proteins have TSs that can be
described as delocalized (Figure 3(f)). CI-2 is an
example of a protein with a low average f-value,
and the residues ordered in the TS structure are
spread across part of the a-helix and some residues
on the nearby b-strands.30 This may indicate
that multiple pathways are accessible for this pro-
tein, or a partial ordering of many residues in a
nucleation–condensation type reaction.31 Model
calculations for CI-2 identify the a-helix and
nearby b-strands as a compact local minicore, but
overestimate the total amount of structure in the
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TS. The FKBP12 TS has been compared to that of
CI-2, and is mostly delocalized with low f-values
spread throughout the large b-sheet.32 Model
calculations, however, predict high f-values in a
small somewhat compact region of the protein,
failing to reproduce the pattern of low and deloca-
lized f-values, suggesting that there may be
multiple folding pathways available to this protein
while only one is identified by model calculations.
For Suc1, much of the observed structure in the TS
is found in the b sheet, particularly the center
strands.33 Strands two and four make extensive
contacts including a network of electrostatic
interactions, but strand two is not predicted to
be structured in model calculations. The lack of
structure in helix 1, despite the strong helical
propensity of its amino acids, observed both
experimentally and in model calculations may be
due in part to the relatively small surface area
buried in this region of the native structure as
evaluated by our energy function. In the case of
l-repressor, the model correctly identifies the
helices determined by experiment to be important
for stability at the rate-limiting step, and these
helices form a well-packed interface that buries a
substantial amount of surface area.34

Limitations of the model

There are three key limitations of the simple
model that taken together may account for the dis-
agreement between calculated and experimentally
measured f-values observed for some proteins:
(1) the free energy function used is of limited
accuracy; (2) configurations are taken to consist of
residues that are either fully ordered or disordered,
although actual protein conformations may include
partially ordered structure; (3) only native inter-
actions are considered. Figure 2 shows how the
calculated TS for protein G and protein L can be
sensitive to relatively small changes in the free
energy function. Since changes as small as 1 kcal/
mol in conformations near the rate-limiting step
can dramatically change the amount of flux
through different pathways, a good free energy
function should be able to predict protein stability
to within 1 kcal/mol, well beyond the reach of
currently available potential functions. Proteins
with diffuse TSs illustrate the second limitation of
the model: experimentally much of the protein
chain is observed to be partially ordered at the
rate limiting step of folding for this group, but the
model allows only for residues to be fully ordered
or fully disordered. The ACBP folding TS (not
shown), which includes many non-native
interactions,35 highlights the third limitation: non-
native interactions cannot be accounted for by a
model which considers only native structure.
The assumption that only native interactions con-
tribute can also be complicated by relatively small
shifts that could occur late in folding, for example,
an a-helix could shift only slightly relative to an

adjacent b-sheet, but dramatically change the
distribution of contacting residues.

Transition state placement

The Hammond postulate from organic chemistry
suggests that lowering the free energy difference
between the TS and folded state on the folding
pathway should increase their structural
similarity.31 Applying this postulate to model
calculations, the TS should have a higher value of
Nf, the number of residues ordered, as the
DDGfolding is lowered. Experimentally, the TS should
have a higher mf/meq value, which measures the
fraction of surface area buried at the rate-limiting
step. The m-values are denaturant dependencies
for the folding rate constant (mf) and the equi-
librium constant (meq). The folding pathway for
U1A has been characterized extensively at different
values of mf/meq.26 For comparison, the DDGfolding of
model calculations was adjusted by scaling the
surface area burial term in our free energy
function. Figure 3(g) shows a series of f-value
predictions using the full free energy function
(including hydrogen bonding and torsion strain
terms) in which the DDGfolding is scaled to: 0, þ3,
and þ5 kcal/mol; experimental measurements
that correspond to mf/meq values of: 0.5, 0.7, and
0.85 are shown for comparison.26 Interestingly,
calculations using our basic free energy function
(data not shown) resulted in a sharp transition
between a TS that is mostly disordered at low
DDGfolding to one that is mostly ordered at high
DDGfolding, while calculations with the full free
energy function (shown in Figure 3(g)) produced
partially ordered TS configurations at intermediate
stabilities. One explanation for these results is that
the full free energy function maps out a more
complicated free energy landscape with many
local minima that have the potential to become
saddle points as the overall stability is changed.
The calculations shown reproduce the order in
which structure is formed as the rate-limiting step
is pushed toward the fully ordered state. Model
calculations on other proteins suggest that similar
changes in TS structure accompanying changes in
protein stability are quite common, and for the
Sso7d SH3 domain, the predicted TS can change
qualitatively as the stability is changed; zero
stability TSs (such as the one depicted in Figure
3(b)) for the Sso7d SH3 domain consist of order
mainly in the n-src loop and the C-terminal helix,
while earlier TSs (for stabilized landscapes that
favor folded configurations) are structured mainly
in the N-terminal RT loop (not shown). Thus, the
quality of f-value predictions may be dependent
on accurate placement of the TS along the reaction
coordinate. In some cases, the model may be able
to determine the relative free energy difference
between configurations at the same position of the
reaction coordinate, Nf, but not between configu-
rations at different values of Nf using the default
scaling factor for attractive interactions, g: for
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example, experimental results for the villin head-
piece correlate significantly better with predictions
for a þ5 kcal/mol destabilized protein (r ¼ 0.59)
than with predictions for a zero stability landscape
(r ¼ 0.24) as shown in Figure 3(h).36

Characterizing the transition state ensemble

An approximation commonly employed in the
study of protein-folding landscapes is that of
thermodynamic equilibrium across the landscape.
The master equation approach37 – 39 recently
employed by Cieplak et al. and Finkelstein et al. is
a more rigorous treatment which includes flux
over suboptimal-folding pathways, as well as
deviations from equilibrium concentrations near
the TS barrier.2,40 We pursue this approach further
and directly compare the concentration and flux
through excited states with those predicted from a
simpler model that assumes equilibrium across
the folding landscape. In addition, we test the
basic assumptions of the transition state theory
(TST) by comparing folding rates calculated using
the two methods. To reduce the number of states
considered by the computationally more expensive
master equation approach, we introduce a hybrid
approach in which only states in the vicinity of
the folding barrier are treated explicitly. Configu-
rations distant from the barrier are treated as a
thermally weighted source population (on the
unfolded side) or a sink (on the folded side).
Further, multiple residues are combined into links

that are ordered or disordered simultaneously.2

In all master equation calculations we employ
the basic free energy function without hydrogen
bonding or backbone torsion strain terms.

Figure 4 shows the relative population of all
configurations on the folding landscape of the
a-spectrin SH3 domain as a function of the number
of residues ordered at equilibrium and for the
steady-state case. There is markedly less ordering
of residues in the N-terminal part of the protein
just after the TS barrier (Nf . 30) in the steady-
state (lower plot) compared to the equilibrium dis-
tribution (upper plot) because there is little barrier
crossing in this region (the lowest energy transition
states are ordered in the C-terminal part of the
protein). Conformations with the N-terminal part
of the protein ordered are lower in free energy at
Nf . 35, as evident in the equilibrium distribution,
but are not kinetically accessible.

The master equation approach was used to
determine protein-folding rates, and Figure 5
compares these rates to those calculated from a
simpler TST rate expression (the Arrhenius rate
law):

kf ¼ k0 exp 2
DGTS

RT

� �
ð1Þ

where k0 is the intrinsic kinetic rate (Arrhenius
prefactor), DG TS is the free energy of the TS, R is
the gas constant, and T is the temperature. To facili-
tate comparison, configurations higher in free
energy than the lowest TS were excluded in both

Figure 4. Deviation of steady-
state distribution from equilibrium
due to depletion near the folding
free energy barrier. The frequency
with which a particular residue is
ordered in the ensemble of struc-
tures with a given value of Nf (the
number of residues ordered) is
shown. Upper plot: equilibrium
distribution for the a-spectrin SH3
domain, where each configuration
is weighted by its Boltzmann
factor. Lower plot: steady-state
distribution, where each configu-
ration is weighted according to its
steady-state concentration obtained
via the master equation. The popu-
lations on both graphs are shown
with the following color scheme
(on a scale from 0 to 1): 0.01–0.35,
hues of blue; 0.35–0.63, hues of
green; 0.63–0.9, hues of yellow;
0.9–1.0, hues of light brown.

10 20 30 40 50

10
30

50
R

es
id

ue
 p

os
iti

on

Nf

SH3 domain

10 20 30 40 50

10
30

50
R

es
id

ue
 p

os
iti

on

Nf

SH3 domain

470 Simple Models in Protein Folding Kinetics



calculations. We expect the TST to overestimate
the folding rates, since it neglects population
depletion close to folding barriers. Nonetheless,
Figure 5 shows an excellent agreement between
master equation and TST rates (with correlation
coefficient r ¼ 0.98). Therefore, the simpler TST
rate expression is used for comparison across the
larger set of folding rates in the following section.

To probe the contribution of suboptimal paths
to folding dynamics, configurations above a
threshold free energy cutoff over the lowest free
energy TS were removed from the landscape
(Figure 6). Exclusion of paths with free energy
maxima more than 2 kcal/mol greater than the
lowest free energy TS did not appreciably change
the rate of flux across the landscape, suggesting
that in the model, the dominant contribution to
folding dynamics comes from pathways within
2 kcal/mol of the lowest free energy path.

Folding rates

Model calculations of TS free energy were com-
pared with experimentally measured folding rates
for a set of 39 proteins. The experimental rates
were taken at the midpoint of the denaturation
curves where proteins are 50% folded, to be
consistent with the model calculations in which
the protein stability was set to zero. TS free
energies were computed from the 100 lowest free
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Figure 5. Comparison of folding rates obtained from
master equation approach to TST. For each protein in
the test set, the effective free energy barrier for the
steady-state approach (calculated as 2RT ln(kf/k0)) is
plotted versus the free energy of the single lowest free
energy TS. The free energy cutoff for the master equation
is set to þ0.03 kcal/mol above the lowest free energy TS,
such that only contributions from the lowest free
energy path are included for comparison with the TST
prediction. The dashed line shown is y ¼ x. The linear
correlation coefficient between the two methods is
r ¼ 0.98. The TST barrier can be higher than the effective
master equation barrier because the master equation
approach allows flux from a single TS into multiple
kinetically connected configurations, thus increasing the
total flux.

Figure 6. Contribution of high
energy states to protein-folding
kinetics. The calculated effective
free energy barriers (calculated as
2RT ln(kf/k0)) for protein G and
the src SH3 domain model land-
scapes are shown as a function of
the threshold above which protein
configurations were excluded from
the calculation.
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energy TSs, using:

DGTS ¼ 2RT log
X

i[TS ensemble

exp 2
DGi

RT

� �( )
ð2Þ

where DGi is the energy of the ith TS in the
ensemble.

Using the simple free energy function without
contributions from hydrogen bonding or torsional
strain the correlation between experimental and
computed rates is 0.67 (Figure 7). To be consistent
with equation (1), the free energies DGi in equation
(2) were scaled by a factor of 0.54 to make the slope
of the best fit line in Figure 7 equal to 21/RT. The
scale factor may be viewed as a correction for the
overestimation of the TS barriers, which occurs in
our model since some residues are only partially
ordered and some interactions are only partially
formed at the TS. The incorporation of partial
structure into such models has been addressed
by Portman et al., and is an important area for
future study.4 – 6 The correlation of the model TS
free energies with observed folding rates does not
change significantly using a free energy function
that includes hydrogen bonding and torsion strain
corrections (data not shown). f-value distributions
are likely to be more sensitive to such high resolu-
tion details than are folding rates, because given a
set of pathways with roughly equal free energy
barriers, changes of 1–2 kcal/mol can have large
effects on the level of flux through the different
pathways while having relatively little effect on
folding rates.

The prefactor in the Arrhenius rate law can be
estimated by extrapolation to a zero free energy
barrier. The result for k0 is approximately 105 s21,
in agreement with earlier semi-empirical and

theoretical estimates.3,41 Since the Arrhenius pre-
factor provides an upper bound for protein-folding
rates in the absence of a free energy barrier, it is
interesting to note that naturally occurring proteins
span an almost entire range of in vitro folding rates,
from the fastest physically allowed to the slowest
biologically relevant.

Conclusions

Previous studies by our group and others have
shown the applicability of simple models based
on native structure to modeling protein-folding
kinetics. We have further tested and extended this
class of models by making predictions of folding
rates and f-values for a comprehensive set of pro-
teins that have been experimentally characterized.

We find that experimentally probed TS struc-
tures generally fall into three categories: (1) small
proteins with polarized TSs, (2) large proteins
with compact subdomains, and (3) proteins with
diffuse TSs. Our results suggest that an approach
based on native state topology performs better at
reproducing f-values for proteins in the first two
categories than for the third, and that adding
additional terms such as hydrogen bonding and
backbone torsion strain does not greatly affect
model accuracy for most proteins. This may result
from a fundamental limit of such models: two
structurally distinct pathways that differ in free
energy by as little as 1–2 kcal/mol can produce
rates almost indistinguishable from those
obtained from the lower energy pathway alone.
This suggests that proteins with a single obser-
vable folding mechanism might have alternative-
folding pathways close in free energy that are
never observed experimentally. An ideal model
must in principle be able to detect such small
differences, otherwise a nearly isoenergetic alterna-
tive pathway can be mistaken for the lowest in
free energy. The scatter in Figure 7, however, indi-
cates that a simple free energy function based on
the fraction of native contacts formed is not
sufficiently accurate to discriminate between
alternative-folding pathways separated by only a
few kcal/mol. Additional limitations include the
absence of non-native and partially formed inter-
actions. In particular, partially formed interactions
may be partly responsible for the poor per-
formance of the model on proteins with diffuse TS
structure.

Despite these limitations, we find that such a
model can reproduce f-value distributions for
many proteins, and that a simple model with no
adjustable parameters predicts TS energies that
correlate reasonably well with experimentally
measured folding rates. On the basis of these
results, we use our model to make some general
observations about protein-folding landscapes,
which are not straightforward on the basis of the
available experimental data alone. First, we note
that simply changing the strength of stabilizing

Figure 7. Comparison of calculated TS energy to
measured folding rates. The x-axis shows the free energy
of the TS ensemble computed from model calculations
using the basic free energy function including only
surface area burial and entropy terms. The free energy
function is scaled by a factor of 0.54 such that the slope
of the best fit line is 21/RT. TS free energies are calcu-
lated by taking the logarithm of the partition function
that includes the 100 lowest free energy TSs. The linear
correlation coefficient between predicted free energies
and log folding rates is r ¼ 0.67, with a p-value of 7 £ 106.
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interactions is enough to change the TS structure,
particularly in proteins with symmetric native-
state topologies such as proteins G and L. Quanti-
tatively, we observe that most of the configurations
that contribute to flux through the TS ensemble are
within 2 kcal/mol of the lowest free energy TS con-
figuration. This result is not trivial, since there are a
very large number of higher energy configurations
that could contribute because of their higher collec-
tive entropy. Although we observe some depletion
of states near the folding free energy barrier
relative to the populations expected at equilibrium,
TST provides a very good approximation to
kinetics on our model landscape, implying that
the folding free energy barrier is large compared
to the ruggedness of the landscape, and is rela-
tively symmetric. Finally, since our model allows
for the direct calculation of the TS free energy, we
can estimate the magnitude of the Arrhenius pre-
factor term to be about 105 s21, in agreement with
earlier theoretical and semi-empirical estimates.3,41

Since our model was developed to account for
the data available to the authors, the key test of its
validity will be its ability to predict the outcome
of future protein-folding experiments. To facilitate
such testing, we provide predictions† of folding
rates and mechanisms for a comprehensive set of
protein domains of known structure under 100
residues in length. The simple physical basis of
our model allows for predictions to be used to
interpret new experimental results when the two
are in agreement, and for other cases should help
point out limitations of Go-type models, and areas
for further improvement.

Methods

Identifying transition-state configurations

A TS is defined as the highest energy state on the
lowest energy path from the unfolded to the folded
state. Additional transition states are defined as the
highest free energy states on the lowest free energy
paths which do not include previously identified tran-
sition states. Transition states are identified using an
algorithm described previously.1

Free energy function

The full free energy function including both hydrogen
bonding and backbone torsion strain terms is given by:

F ¼ 2gDSA 2 HðconfigÞ þ
X

r[residues

OrdðrÞFlocalðrÞ

þ 1:8RT
X
loops

lnð
L

L0
Þ ð3Þ

where

DSA ðsurface areaÞ ¼ SAfolded 2 SAunfolded

is the difference between folded and unfolded solvent-

accessible surface areas,

FlocalðrÞ ¼
2:3 kcal=mol if f . 0 and not glycine;

0:8 kcal=mol otherwise

(

OrdðrÞ ¼
1 if residue r is ordered

0 if residue r is disordered

(

Here, f is a backbone torsion angle. The first two
terms represent the interactions that contribute to protein
stability: surface area burial and hydrogen bonding. The
constant, g, which controls the free energy associated
with surface area burial, is fixed for each protein such
that the stability of the folded state ensemble (defined
as all configurations with at least half of their residues
ordered) is equal to that of the unfolded state ensemble
(all configurations with less than half of their residues
ordered), which is approximately true for most proteins
(the models described by Galzitskaya & Finkelstein, and
Munoz & Eaton also scale native interactions to adjust
protein stability2,3). To compute buried surface area,
ordered residues are modeled using their native state
atomic coordinates and the unfolded state is modeled as
an extended chain. Disordered residues are not con-
sidered in surface area calculations. Calculations are car-
ried out using the method of LeGrand & Merz.42

Energies of backbone–backbone, side-chain–back-
bone and side-chain–side-chain hydrogen bonds
(H (config)) were determined using an empirical poten-
tial function described elsewhere (T.K., A.M. & D.B.,
unpublished results). Briefly, the potential requires
explicit placement of polar hydrogen atoms, and is
dependent on (a) the distance between the hydrogen
(H) and the acceptor (A) atoms, (b) the angle at the
hydrogen atom (D–H· · ·A) (D, donor atom), and (c) the
angle at the acceptor atom (H· · ·A–AB) (AB, heavy
atom bound to the acceptor atom). The distance depen-
dence was described by a 10–12 potential with a mini-
mum at a distance of 1.9 Å between acceptor and
hydrogen atoms. The angle-dependent terms of the
hydrogen bonding potential were derived from hydro-
gen bond geometries observed in high-resolution (2.0 Å
or better) protein crystal structures. Only hydrogen
bonds with proton positions given by the chemistry of
the donor group were considered in the derivation of
the potential. The observed angle-dependent proba-
bilities for side-chain–side-chain hydrogen bonds in the
database of protein structures showed maxima at 1808
(for the angle at the hydrogen atom) and 1208–1408 (for
the angle at a donor with sp2 hybridization, with a
slightly sharper distribution around a maximum of 1208
for a donor with sp3 hybridization), and were used to
derive interaction energies for side-chain–side-chain
and side-chain–backbone hydrogen bonds (backbone–
backbone hydrogen bonds displayed a slightly dif-
ferent geometry, presumably due to steric constraints).
To apply the derived hydrogen bonding function to
hydrogen bond scoring in the experimentally deter-
mined structures used here, explicit hydrogen atoms
were placed either according to the known geometry
around the donor group (for N, Q, R, and W), or
by optimization of the hydrogen bonding network invol-
ving all polar groups, using a scoring function which
included van der Waals interactions and solvation terms
as well as the hydrogen bonding function described
above. Finally, hydrogen bonds were scaled between 0
and 20.5 kcal/mol. The hydrogen bonding term is
absent from all calculations using the basic free energy
function.† http://www.bakerlab.org
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The third term represents the cost of ordering a single
residue and is taken to be 1.8 kcal/mol as in our
previously described model.1 For calculations including
the torsion strain penalty, 0.5 kcal/mol was added to
the cost of ordering non-glycine residues with positive
f-angles.

The last term represents the entropic cost of closing a
loop between two ordered segments, where L is the
length of the loop (L0 ¼ 0.15 Å). This entropy was esti-
mated from simulations of loop closure frequencies in
polypeptide chains,43 and has the same functional form
as the Jacobsen–Stockmayer expression used in polymer
chemistry.44

Free parameters

The free energy associated with surface area burial
was scaled for each protein such that the unfolded and
folded state were of equal stability, and the entropy cost
of ordering a single residue was taken to be 1.8 kcal/
mol.1 The entropy loss associated with loop closure was
taken directly from off-lattice simulations.43 The strength
of hydrogen bonds and the penalty for non-glycine
residues with positive f-angles were chosen such that
they improved the ability of the model to accurately
predict f-values, and did not significantly affect TS
energies. For the calculation of folding rates, the basic
free energy function without hydrogen bonding or back-
bone torsion strain terms was used, and the free energies
were multiplied by a factor of 0.54 such that model
predictions could be directly compared with experi-
mental measurements (observed folding rates indicate
that free energy barriers to folding span about 9 kcal/
mol).

Master equation approach

In order to investigate deviations from a simple TST
and their effect on protein folding, we solve a system of

master equations given by:

dni

dt
¼

X
j

ðkjinj 2 kijniÞ ð4Þ

where i denotes a single protein conformation, and
Metropolis rules are used to describe an elementary
kinetic step from i to j:

kij ¼ k0 £

0 if ij impossible

1 if Fi $ Fj

eðFi2FjÞ=RT if Fi , Fj

8>><
>>:

Here, k0 is the intrinsic kinetic rate (crossing attempt
frequency).

In the case of steady-state protein diffusion across the
free energy landscape, dni/dt ¼ 0, and the system of
equations becomes algebraic. We introduce a hybrid
approach in which we consider protein folding in
microscopic detail close to the barrier while assuming
Boltzmann distribution of states well before the barrier.
This allows the treatment of the important features at
the barrier to be without approximation while retaining
computational tractability. The approach is implemented
through two boundary conditions: a source at thermal
equilibrium, and an irreversible sink (Figure 8):

ni ¼ n0e2Fi=RT i [ equilibrium wall

ni ¼ 0 i [ absorbing wall

(

where n0 sets the total number of particles (proteins) in
the ensemble. The equilibrium wall is defined as the set
of configurations directly connected to the source popu-
lation at equilibrium, and the absorbing wall is defined
as the set of configurations directly connected to the
irreversible sink.

The folding rate is given by:

rate ¼
flux into absorbing wall

n0

The nonequilibrium steady-state solution corresponds
to creating a source of particles in the denatured well
and a sink in the native well. By moving the equilibrium
wall further away from the location of the TSs, we can
relax the assumption of equilibrium in the vicinity of
the folding barriers. On the other hand, assuming equi-
librium among low free energy conformations distant
from the barriers helps reduce the computational com-
plexity of the problem. Note also that by moving the
absorbing wall further away, we allow a particle to
recross the barrier multiple times.

In order to make the system of algebraic equations
well-defined, we identified clusters of kinetically
connected nodes on the free energy landscape. Only
clusters stretching from the source to the sink can carry
flux across; isolated groups of nodes can only equilibrate
within themselves. The number of nodes included in the
flux-carrying cluster depends on the free energy cutoff
imposed on every node; setting the cutoff lower than
the lowest free energy TS makes all clusters dis-
connected, and setting the cutoff higher includes effects
from multiple TSs.

Finally, we used a reduced landscape in which several
residues are added or removed in a single kinetic step
whenever the number of conformations was too great
for the master equation approach to be feasible.2

F

Nf

Feff

SOURCE SINK

Equilibrium Wall Absorbing Wall

Figure 8. Schematic demonstration of the master
equation approach using a one-dimensional free energy
landscape. Master equations are solved in the region
between the source (equilibrium wall) and the sink
(absorbing wall). At the source, thermodynamic equi-
librium is imposed; a particle (protein) is committed to
the final state once it reaches the sink.

474 Simple Models in Protein Folding Kinetics



Folding rates

To investigate the relationship between predicted TS
free energies and experimentally measured folding
rates, a set of 37 small proteins was used. The data for
this set were taken from Grantcharova et al.,45 Jackson46

and from Schymkowitz et al.,33 and Guerois & Serrano,15

and measured at the midpoint transition where the
protein stability is zero. A complete list of the proteins
used and their corresponding PDB identifiers is included
in the following section.

PDB files

To build model landscapes for f-value and folding
rate predictions the following proteins and PDB files
were used: cytochrome b562, 256b; barstar, 1a19; ACBP,
2abd; tendamistat, 2ait; acylphosphatase, 1aps; pro-
carboxypeptidase, 1aye; Sso7d SH3 domain, 1bf4;
a-spectrin SH3 domain, 1bk2; CheY, 2chf; chymotrypsin
inhibitor 2, 2ci2; cspB cold-shock protein, 1csp; ribosomal
protein L9, 1div; FK506-binding protein, 1fkb; src
SH3 domain, 1fmk; fibronectin type III repeat 9, 1fnf;
fibronectin type III repeat 10, 1fnf; HPR, 1hdn; CD2
lymphocyte adhesion protein, 1hng; horse heart cyto-
chrome c, 1hrc; colicin E9 immunity protein Im9, 1imq;
l-repressor, 1lmb; cspA cold-shock protein, 1mjc;
dihydrolipoamide acetyltransferase from pyruvate
dehydrogenase, 2pde; protein G, 1pgx; protein G
C-terminal beta-hairpin, 1pgx; PI3-kinase SH3 domain,
1pks; ribosomal protein S6, 1ris; barnase, 1rnb; fyn SH3
domain, 1shf; tenascin, 1ten; titin, 1tit; ubiquitin, 1ubq;
U1A spliceosomal protein, 1urn; villin headpiece, 2vik;
twitchin, 1wit. The coordinates for the suc1 monomer
were obtained from Jane Endicott. The coordinates for
protein L were obtained from Jason O’Neill prior to
release in the PDB as 1hz5.
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