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Theory of the Phase Transition between Helix and Random Coil in Polypeptide Chains 

B. H. ZIMM AND J. K. BRAGG 

General Electric Research Laboratory, Schenectady, New York 

(Received March 5, 1959) 

The transition between the helical and randomly coiled form~ 
of a polypeptide chain is discussed by reference to a simple model 
that allows bonding only between each group and the third pre
ceding. Two principal parameters are introduced, a statistical 
parameter that is essentially an equilibrium constant for the 
bonding of segments to a portion of the chain that is already in 
helical form, and a special correction factor for the initiation of 
a helix. A third parameter which specifies the minimum number 
of segments in a random section between two helical portions has 
only a minor effect on the results. The partition function for this 
model is handled in two alternative ways, either as a summation 
suitable for short chains, or in terms of the eigenvalues and eigen
vectors of a characteristic matrix; the latter is more suitable for 
long chains. A transition from the random to the helical form is 

I. INTRODUCTION 

DOTY, Blout, and co-workersl have recently found 
that polypeptide chains in solution can be re

versibly converted from the randomly coiled form to 
the a helix of Pauling et al.2 The transformation is 
remarkably sharp. A change of a few degrees in tem
perature or a few percent in solvent composition is 
sufficient to complete it, and it seems fully to merit the 
term "phase transition" that has been applied to it.l(b) 

The polypeptide chain consists of amide groups 

o 
II 

-N-C-
I 

H 

connected by intermediatry carbon atoms. In the 
a helix, the hydrogen atom of each amide group forms 
a hydrogen bond with the oxygen atom of the third 
preceding amide group. We shall refer to an amide 
group plus one adjacent carbon as a segment of the 
chain. 

The amide group is a rigid planar structure. How
ever, according to Pauling et al.2 there is some freedom 
of rotation about the bonds to the adjacent carbon 
atoms. Therefore, if the hydrogen bonds are broken, 
the chain can assume the randomly coiled configura
tions usual to chain polymers. 

Since there can be hardly any doubt that the trans
formation would occur in a single, isolated chain, we 
have the novelty of a rather sharp transition in a one-

I (a) Doty, Holtzer, Bradbury, and B1out, J. Am. Chern. Soc. 
76,4493 (1954); (b) P. Doty and J. T. Yang, ibid. 78, 498 (1956); 
(c) Doty, Bradbury, and Holtzer, ibid. 78, 947 (1956); (d) E. R. 
Blout and A. Asadourian, ibid. 78. 955 (1956); (e) P. Dotyand 
R. D. Lundberg, ibid. 78, 4810 (1956); (f) P. Doty and K. Iso 
(private ·communication). 

2 Pauling, Corey, and Branson, Proc. Nat!. Acad. Sci. U. S. 
37,205, '241 (1951). 

encountered as either the bonding parameter or the chain length 
is increased. The critical value of the bonding parameter is unity 
for long chains, while the sharpness of the transition depends on 
the initiation parameter. 

Depending on the values of the bonding parameter and the 
chain length, one of the following configurations dominates: ran
dom coils, single helices with occasional disorder at the ends, and 
for longer chains, helices occasionally broken by random sections. 
In rather narrow transition regions, mixtures of these forms may 
he found. A diagram is given that displays the relationships of 
these forms. 

The theory is compared with puhlished data on polyhenzyl
glutamate with fair agreement. 

dimensional system. Transformations in other such 
systems, such as the one-dimensional ferromagnet,3 ,4 

are quite diffuse. Furthermore, it has been shown" that 
different macroscopic phases cannot coexist in a one
dimensional system. 

The transition is of obvious importance to the full 
understanding of the formation and stability of pro
teins. The construction of a theory should therefore be 
interesting from several points of view. 

This paper presents a simple model of the chain 
that facilitates calculation of the dependence of the 
partition function on the hydrogen bonding. This 
model gives a rather sharp transition from the random 
to the helical form as the strength of the hydrogen 
bonds is increased beyond a critical value, in agree
ment with the experimental observations. 

The sharpness of the transition is due to the fol
lowing consequence of the model. The formation of the 
first turn of the helix is difficult because of a large 
reduction of entropy. Once formed, however, this turn 
acts as a nucleus to which further turns can add by 
hydrogen bonding. Thus this transformation has the 
property of nucleation characteristic of other sharp 
transitions. 

Associated with the tendency to nucleate is a property 
that might be called a boundary tension. That is, such 
faults in the helical structure as exist tend to consist of 
a number of missing hydrogen bonds at adjacent seg
ments, rather than of missing bonds distributed at 
random. Further, disorder is propagated inward from 
the ends of the helix, in a way similar to the inward 
propagation of disorder from the surface of a crystal 
lattice. 

3 E. Ising, Z. Physik 31, 253 (1925). 
4 H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252, 263 

(1941) . 
5 L. Landau and E. Lifshitz, Statistical Physics (Oxford Uni-

versity Press, New York, 1938), p. 232. . 
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Schellman6 has presented for this transformation a 
very simple theory, in which he considers special effects 
at the ends of the helix, equivalent to our nucleation, 
but ignores the possibility of alternation between helix 
and coil in the middle of the chain. Further, the transi
tion appears in the theory as perfectly sharp, although 
dependent upon chain length. Our theory, described 
below, differs in that it gives a diffuse transition but 
confirms the dependence on chain length. In addition, 
it yields a convenient description of the alternation of 
helical and coiling regions which is important under 
some circumstances with long chains. 

The treatment in this paper differs in another way 
from that of Schellman. The latter uses the heat and 
the entropy of adding a segment to the helix as his basic 
parameters. We prefer to employ two statistical param
eters, one for the nucleation of the helix and one for its 
further growth. While both methods are equally cor
rect, the expression of the results appears to be some
what more direct in terms of the statistical parameters. 

n. THE MODEL 

This section presents a simple model of the chain 
that is intended to represent the significant physical 
features of the system, and at the same time is amenable 
to evaluation by simple means. Specifically, the model 
distinguishes between the contribution of a bonded 
segment and of an unbonded segment to the partition 
function, and additionally considers the influence of 
the state of neighboring segments on these contribu
tions. To describe the model in detail, we first have to 
establish a notation for configurations of the chain. 

It is convenient to base the description of the chain 
on the helical configuration. We assume that a given 
state of the chain can be completely described by the 
state of the oxygen atoms alone; i.e., by a statement as 
to whether or not each is bonded to the hydrogen of 
the third preceding segment. This amounts to assuming 
that bonding of a segment, if it occurs at all, is always 
to the third preceding segment. The state of a chain 
of n segments can then be described by a sequence of 
n- 3 symbols, each of which can have one of two values. 
We establish the convention that theftrst three segments 
are always unbonded. This amounts to selecting as the 
"beginning" of the chain that end of the helix that has 
three unbonded oxygen atoms. If the digit 1 represents 
a bonded oxygen atom and 0 an unbonded atom, 
then a state of the chain is described by a sequence 
such as 

000111000011· . '. 

Since our object is the writing down of a partition 
function, we must now make some specific assumptions 
about the statistical weights to be attached to par
ticular states. Our concern lies primarily with the 
thermodynamics associated with the transition from 

6J. A. Schellman, Compt. rend. tray. lab. Carlsberg, Ser. chim. 
29, No. 15 (1955). 

random coil to helix; hence, it is not necessary to de
scribe the quantum states or phase space of the indi
vidual segments in detail, as long as the relative 
weights of the random and helical forms are correctly 
represented. The following simple set of assumptions 
about the relative weights appears to be adequate. 

The statistical weight* of a given state of the chain is 
assumed to be the product of the following factors: 

(1) The quantity unity for every 0 that appears 
(unbonded segment). 

(2) The quantity s for every 1 that follows a 1 
(bonded segment). 

(3) The quantity (JS for every 1 that follows p. or 
more O's (boundary between bonded and unbonded 
regions). 

(4) The quantity 0 for every 1 that follows a number 
of O's less than p.. 

The effect of assumption (4) is that sequences of less 
than p. zeros do not appear. For the a helix, p. is usually 
considered to be about three. 6 The meaning of the first 
three weights is as follows. The factor unity is arbi
trarily assigned as the statistical weight of a segment 
when it is not bonded into the helix. The factor s meas
ures the contribution to the partition function of a 
bonded segment relative to that of an unbonded seg
ment. This factor contains a decrease in statistical 
weight owing to restriction of freedom of motion, but 
is enhanced by the Boltzmann factor resulting from 
the bond energy. Finally, an abnormally large decrease 
in statistical weight is assumed to be caused by the 
first bond after p. or more unbonded segments since 
such a bond decreases the freedom of the segments 
intervening between the bonding oxygen and hydrogen, 
as well as restricting the freedom of the bonding seg
ment itself. Since the same Boltzmann factor is in
volved, this contribution to the partition function is 
written (JS, where (J is less than unity. 

These assumptions constitute a highly simplified 
representation of the problem. The formalism is 
capable of dealing with more detailed assumptions 
without undue difficulty, but our present knowledge is 
too incomplete to justify a more refined model. For 
example, one might introduce a set of (J's, (J (k), to 
give the decrease in statistical weight due to a bond 
following k unbonded segments. The plot of (J (k) 
versus k would be expected to look like the curve shown 
in Fig. 1. The assumption of a single value of (J, and the 
ban on sequences of less than p. O's, is the approxi
mation shown by the dotted line. 

There are two nonrigid bonds in each segment.2 If 
the degree of restriction of the phase space of each on 
entering the helix is r, then we should have s propor
tional to r2. Similarly, if the formation of a bond 

* By statistical weight we mean the factor that a segment con
tributes to the partition function, including, if appropriate, a 
Boltzmann factor; it is not just the number of quantum states, 
in contrast to one popular usage. 
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FIG. 1. The weighting factor u (k) for the initiation of a helix 
after k unbonded segments (schematic). The approximation used 
in this paper is represented by the dashed line. 

restricts to the same degree the segments intervening 
between the oxygen and hydrogen atoms of the bond, 
we should have us proportional to r6 with the same con
stant, since there are six nonrigid bonds per turn. 
Then we have u= r4. Since r can hardly be greater than 
about 1', u must be of the order of 10-2 or less. The result 
is that the first turn of the helix can only be formed 
with difficulty. 

We neglect several other possible effects that might 
have to be considered in a complete treatment. For 
example, one might introduce a correlation between the 
statistical weights for hydrogen bonding in one turn 
of the helix with the presence or absence of bonds 
in the preceding turn. This has been considered by 
Hill,7 but without the correlation between successive 
bonds in the same turn of the helix on which we base 
the present paper. In our view the interactions between 
successive turns is likely to be of secondary importance 
compared to the interactions within a turn. We also 
neglect the possibility of hydrogen bonding to other 
than the segments characteristic of the alpha helix. 
This phenomenon would not be expected to occur 
except when the alpha helix was unstable, but under 
these conditions very few hydrogen bonds would form 
anyway; therefore we do not believe that the phe
nomenon is ever of major importance. Further, we as
sume that only helices of one sense, right- or left
handed, can form with a given chain; this seems to be 
in accord with experiment for all polypeptides bearing 

n-3 

L kk(n-k-2)sk 
1 

side groups, where the side group interaction is ap
parently strong enough to establish a preference for 
one handedness over the other. Finally, we make no 
explicit reference to interactions between the side 
groups; to a considerable extent the effects of these 
interactions can be included in the parameter s. 

III. MATHEMATICAL TREATMENT 

Direct Derivation of the Partition Function and the 
Probability of Bonding 

A formal representation of the partition function Q 
for a chain of n segments may be obtained from the 
above assumptions by direct enumeration of the num
ber of ways of arranging a given number of zeros and 
ones in a chain always starting with three zeros. For 
example, with ).I. taken as unity, we have obtained the 
formula 

(n-2)/2 n-I-2 (k-1) !(n-k-2) !Sk 
Q=l+ LI u l Lk , (1) 

1 1 l!(l-1) !(k-l) !(n-k-1-2)! 

where (n- 2) /2 is the largest integer less than (n- 2) /2. 
Though this formula does not appear to be attractive 
for calculation in general, it is useful when the product 
of nu is small and s is appreciably greater than unity, 
since then only the first term of the summation over 1 
is important. It will be shown that for rather short 
chains these are just the conditions under which the 
helix is formed. Physically, this corresponds to con
ditions under which only one helical section (unbroken 
sequence of l's) would be expected. 

It is easy to show that the expression (d InQ/ dins) 
is the average number of hydrogen bonds formed in 
the chain at a given value of s, since the number of 
hydrogen bonds in any state is equal to the power of 
s in the corresponding term in the partition function. 
We define (J as the fraction of possible hydrogen bonds 
formed, 

1 d InQ 
(J=----. 

(n-3) dIns 
(2) 

Then, keeping only the first term of the summation 
over 1, we get from Eq. (1), 

(3a) 

(n-3) (s-l) - 2+[(n-3) (s-l) +2sJs-n+2 
(3b) 

= (n-3) (s-l) (1+(s-1)2s-n+l/u-[(n-3) (s-1)+sJs-n+2)' 

These formulas are useful for calculation for small 
values of n. Since they are valid only when there is one 
unbroken helical sequence in the chain, they are inde-

7 T. L. Hill, J. Polymer Sci. 23, 549 (1957). 

pendent of the parameter ).I. which specifies the mini
mum possible number segments involved in a break 
in the helix. It appears, however, that any attempt 
to use all the terms of Eq. (1) would lead to very com
plicated expressions for large n. Fortunately, other 
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methods are available, and these will be discussed in 
the following section. 

The Matrix Method 

There are several well-known methods for evaluating 
complicated partition functions, e.g., the method of 
the maximum term and the method of steepest descents, 
but one method, the matrix method4,7-9 is particularly 
well adapted to this chain problem, and to it we shall 
confine our attention. While the method as applied 
to infinite chains has been adequately described in the 
above references, we have found it desirable to extend 
its scope to include finite chains. For this reason we 
give a brief discussion of the method. 

Formally the method is capable of taking into ac
count interactions between distant segments as well as 
nearest neighbors. Our formal description will be given 
for the general case. Much of the later development is 
in terms of nearest neighbor interactions only (J..L= 1), 
but a model which includes certain longer-range effects 
is also discussed (J..L= 3). 

If the physical situation requires the inclusion of 
effects between segments whose positions in the chain 
differ by the integer J..L, the matrix method requires 
the state description of the chain to be in terms of the 
"joint configuration" of J..L successive segments. Fol
lowing Kramers and Wannier, we use an indexing of 
states based on binary numbers. To illustrate, let 
J..L= 3. The various configurations of a group of three 
segments are described by sequences of a's and l's such 
as 110. The sequence can be interpreted as a binary 
number, and we define a single index for the configura
tions as the value of this binary number. Thus, 

State Index 

000 a 
001 1 
010 2 
011 3 

and so on. There are 21' possible states for a group of J..L 
segments. 

The matrix method involves operations on a sta
tistical weight vector ai. This column vector has 21' 
components, one for each joint configuration of the 
segments i-J..L+1, i-J..L+2···, i. Each component, 
ai.l, is the statistical weight of the lth joint configura
tion of the segments i- J..L+ 1 through i, including the 
contributions to the statistical weight of all compatible 
configurations of the preceding i- J..L segments. The 
partition function of the chain is just the sum of all the 
components of an, where n is the number of segments 
in the entire chain. 

8 E. W. Montroll, J. Chern. Phys. 9, 706 (1941); G. F. Newell 
and E. W. Montroll, Phys. Rev. 25, 159 (1953). 

• E. N. Lasettre and J. P. Howe, J. Chern. Phys. 9, 747 (1941). 

The vectors aI, a2, and a3 are taken to be 

J..L<4, (4) 

since the first three segments cannot bond to preceding 
hydrogens. If J..L is equal to or greater than four, further 
consideration may be necessary to establish a4, "', all' 
The succeeding discussion is for J..L<4, but the necessary 
modification for J..L? 4 is formally a minor one. 

As long as i is greater than the larger of 3 and J..L, 
the vectors ai can be generated by the use of a 21'X 21' 
matrix operator M, 

(5) 

where the symbol t indicates the transposed or column 
vector. The matrix embodies the physical assumptions 
of the problem. The element Mkl is the factor to be 
multiplied to the statistical weight upon adding the 
ith segment, if the segments i through i- J..L+ 1 form 
joint configuration k while the segments i-1 through 
i- J..L are in joint configuration l. (For J..L greater than 1, 
the matrix will have at most the fraction 21-1' of its 
elements nonzero.) 

The vector an is given by 

and the partition function is 

Q=wMn-zat 

0:=(1,0,0, ···,0), 

w= (1, 1, 1, ",,1). 

(6) 

(7a) 

(7b) 

(7c) 

Calculations based on Eqs. (7) are relatively easy. 
If the matrix M can be diagonalized, 

A=T-1MT, (8) 

the diagonal matrix can be easily raised to the required 
power; the elements of the diagonal matrix Ak are the 
kth powers of the elements of A. When k is large the 
kth power of the largest element of A is so much greater 
than the others that it alone needs to be considered; 
this is the classical case discussed in the references.4 ,8,9 

The diagonal elements of A are the eigenvalues of M. 
Corresponding to each eigenvalue are two eigenvectors, 
a row vector and a column vector, since M is not sym
metrical. The row vector is the eigenvector for M 
operating to the left and the column vector for M 
operating to the right. The column eigenvectors con
stitute the columns of T and the row vectors the rows 
of T-1. 

The matrix M is unsymmetrical, and there are cer
tain unsymmetrical matrices that cannot be diagonal
ized. The matrices encountered in our work can in 
general be diagonalized, although in the limiting case 
where q is zero a matrix is formed that cannot be. 
This limiting case is that of a perfectly sharp transi
tion. However, this limit can be evaluated after the 
entire computation has been done for finite q. 
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Average States of Individual Segments 

The model makes it easy to obtain approximations 
to the state of any given segment of the chain. The 
statistical weight to be attached to a given joint 
configuration of the segments (i-.u+ 1) through i 
is given by the sum of the statistical weights of all 
configurations of the entire chain consistent with the 
given joint configuration. Now the vector, 

(9) 

has components which are the aggregate statistical 
weights of the possible joint configurations of segments 
i-.u+ 1 through i, taking account also of the preceding 
part of the chain. In a similar way the row vector, 

(10) 

has components which are the aggregate statistical 
weights provided to each joint configuration by the 
states available to the remainder of the chain. 

The definitions of ai and b i are such that 

(11) 

since Q is the sum of all statistical weights. The proba
bility that segments i through i-.u+ 1 are in joint 
configuration l is therefore 

(12) 

Several special cases of Eq. (12) are of interest. 
First let us consider the state of a segment near the 
middle of a long chain. Then, by neglecting large powers 
of all eigenvalues of M relative to the same powers of 
the largest, Ao, we may express ai and b i in terms of 
the principal eigenvectors only: 

p-l 

b;= Aon-i(LTkO) ( Too-I, TOI-t, T02-t, ... , TOp_I-I), 
k-o 

(13) 

where p= 2;<. Equation (12) then gives the simple 
expression, 

(14) 

If the segment of interest is near the end of a chain, 
the approximation involving the largest eigenvalue 
can be applied to the a vector but not the b vector. 
This leads to an expression 

p-l 

L'bi,ITIO 
1=0 

(15) 

for the probability that the joint configuration is 
state 1. Simplifying the expression further depends 
on the form of the matrix M; later an approximate 
form will be given. 

It is also of interest to discuss the occurrence of 

breaks in the helix. Such a break (unbonded section) 
must be bounded by the configurations 10 and 01, 
i.e., it is described by a sequence such as .. ·100001· . '. 
According to Eq. (14) the probability of the sequence 
01 at the (i-1) th and ith positions near the middle of 
the chain, which is equal to the probability of the 
sequence 10, is 

p-3 p-3 

PiCot) = L"Pi(l) "L"To1-ITIO , (16) 
1=1 1=1 

where the double-primed sum includes only every 
fourth term, 1= 1, 5, 9, .. , p- 3. This formula applies 
when .u?:. 2. The special case .u= 1 will be discussed 
at a later point. 

The Form of the Operator M 

The matrix M is of order pXp, where p= 21'. Only 
certain elements can be nonzero. The assumptions 
listed above give a matrix of the form illustrated below 
for the case of .u= 3: 

10001000 

~S 0 0 0 0 0 0 0 

01000100 

0 S 0 0 0 S 0 0 
M (17) 

0 0 1 0 0 0 1 0 

0 0 0 ° 0 0 0 0 

0 0 ° 1 0 0 0 1 

0 0 0 S 0 0 0 S 

It can be shown that the characteristic equation of the 
matrix, 

IM-IA 1=0, (18) 

where I is the unit matrix, can be reduced in this case 
to 

AIt- 1(1-A) (S-A) =(jS. (19) 

Furthermore, the trace is l+s, independent of .u. 
Since (j is small, approximations to the roots of M 

are 1 and S with .u-1 very small roots, provided ~J/;< 
is less than unity. Therefore the nature of the partition 
function, which depends mainly on the large eigen
values, will be to a large extent independent of .u. 
This being the case, we shall illustrate in most detail 
the case .u= 1. In a later section we shall give some of 
the results of the case .u= 3. In the case .u= 1 the steps 
described in the foregoing are especially simple. 

The matrix M, for .u= 1, is 

M=( 1 1). 
~s s 

(20) 
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The characteristic equation is 

(1-A) (S-A) =rTS, (21) 

and the roots are 

A=t(1+s±[(1-s)2+4rTsJ!). (22) 

We designate the larger of these by Ao, the smaller by 
AI. The transformation that diagonalizes M is 

(23) 

(24) 

The expression for the partition function, Eq. (7a), is 

Q= (1, 1)Mn-3(1, O)t= (1, 1)TAn-3T-I(1, O)t, (25) 

which becomes, using Eq. (22) and the fact that 
Ao+AI=l+s, 

Q 
__ Aon

- 2(Ao-S) +AI,,-2(S- AI). 
- (26) 

Ao-AI 

According to Eq. (2), the average number of hydrogen 
bonds is 

8= [sf (n-3) J( [(n- 2) Ao'/Ao+ (Ao'-l) /(Ao-S) JAg"-2(AO-S) 

+ [(n- 2) AI'/AI+ (l-V) / (S-At) J Aln-2(S-At) I /[Ao,,-2(Ao-S) +AI,,-2(S-Aj) J-(~ __ )(AO'-A~:), (27) 
n-3 Ao-AI 

where the prime denotes differentiation by s. 
In order to discuss the state of a particular bond, say 

one in the middle or near an end of the chain, we need 
the vectors ai and hi. From Eqs. (3), (23), and (24) 
these are 

ai= [ Aoi-3(Ao-S) /(Ao-At) J(l, Ao-1), (28) 

b i =[Ao,,-i+l/(Ao-AI)J(Ao-s,l) (29) 

to the approximation involved in Eq. (13). Equation 
(14) gives directly the probability of the state 1 (0 or 1) 
at the ith segment near the center of the chain as 

(30) 

The state of a segment near the end of a long chain 
is approximately given by Eq. (15). This can be 
simplified for large S in the present case by actually 
computing successive powers of the matrix (20). If a 
small number of these are calculated, and terms 
involving rT are dropped, it may be seen that the 
vector hi, Eq. (0), is approximately 

b i=(l, 1+s+s2+. ··+S"-i). (31) 

Then Eq. OS) yields 

pn-i (0) = T oo/[T 00+ TIOO +s+· .. +sn-;) J 
= 1/[1 + (Ao-1) 0 +s+ ... +S"-i)]. 

But for large s, Ao"'='S, so that we have 

(32a) 

(32b) 

pn_i(O)=S-(n-i+ll, s>1. (33) 

The end segment has the probability S-1 of being un
bonded, the next segment the probability S-2, and so 
on. The mean number of unbonded segments at one 
end, obtained by summing over the above probabilities, 
is 1/ (s-1). These results are valid only for 'chains 
long enough so that the two ends do not influence each 
other. A formula for short chains is given in the next 
section. 

The general formula for computing breaks in the 

chain, Eq. (16), cannot be used when J.I= 1. However, 
it is easy to show in analogy to Eq. (14) that the 
probability of a sequence 01 near the middle of the 
chain, P i (Ol), is 

P i (Ol) = Too-IMOlTIO/XO, J.I=1. (33a) 

To illustrate these formulas, approximation may be 
made to the roots of Eq. (21). Since rT«l, we have the 
results shown in Table 1. Then the probability of an un
bonded segment, Pi(O) , near the center of the chain is, 
from Eq. (14), 

1-rTs/(s-1)2, s<l, 

I 
2, s=l, 

S>1. (34) 

From Eq. (33a) the probability of a change from 
bonded to unbonded region, Pi(Ol), at any given 
segment near the middle is 

rTS/(l-S) , s<l, 

(rT)!/2, s= 1, 

rT/(s-1) , s>1. (35) 

The probability that the last segment of a short 
chain is bonded is of interest in connection with the 
polymerization kinetics. We can find the formula from 
Eq. (10) with Eqs. (8), (23), and (24), 

1) =~AOn-L AI,,-3) (s- AI) (Ao- s) 
p,,( Aun - 2(Ao-S)+AI,,-2(S-AI)· 

(36) 

s<1 

1+<1s/(1-s) 
S-<1s/(1-s) 

TABLE I. 

s=1 s>1 

(l+s)/2+v<1 s+<1s/(s-1) 
(1+s)/2- v<1 1-<1s/(s-1) 
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This reduces to a simple form if we use the above ap- I.Or----,--,---.---,-.-,-r...,.-:_--=~--_?-__r_, 

proximations to the eigenvalues and assume that 
ns-n is much less than unity: 

O"s(s-l) (sn-3-1) i 
Pn(1) = O"sn-l+ (s-l)2 , s> 1. (37) e 

When n is large this agrees wi th Eq. (33). 
We note in passing that the above approximate 

eigenvalues substituted into Eq. (27) for {} yield Eq. 
(3b) if the first power only of 0" is retained. 

The Case of 1-'=3 

The case of J.I= 3 is of special interest because it has 
been assumed6 that this corresponds to real polypeptide 
chains. The right-hand and left-hand eigenvectors are 
respectively: 

(1, O"s/A, O"s/'A2, O"s2/A2, A-l, 0, s(A-l), s2(A-l»t, 

(38a) 

A(A-s) (A-l 1 A-l 1 A-l 1 A-l) 
4AL 3As-3A+2s 1, 7s'~' ----;;;-'~' ----;;;-'~' ----;;; . 

(38b) 

In these formulas the eigenvalue, Ao or AI, correspond
ing to the desired eigenvector is to be inserted for A. 
These eigenvalues are the two largest roots of the 
secular equation, Eq. (19). For s> 1 we have the 
approximations, 

Ao= s+O"/ s(s-l), 

Al=1-O"s/(s-1). 

(39a) 

(39b) 

We omit other formulas for the eigenvalues since this 
case differs from that of 1-'= 1 only when s is large. 

IV. RESULTS AND DISCUSSION 

The discussion of this problem is somewhat com
plicated by the uncertainty regarding the value of j.t, 

the parameter that represents the minimum number of 
hydrogen bonds that can be broken in one sequence. 
The formulas are generally simplest when I-' is assumed 
to be unity, although some larger value, perhaps three, 
is more realistic. Fortunately, we find that many of the 
interesting results are practically independent of the 
value chosen. We shall therefore give the discussion in 
terms of J.I equal to unity, except where we consider 
breaks in the sequence of hydrogen bonds in long 
helices. 

The Transition 

The first noteworthy result is the existence at large 
n of a transition which becomes sharper as 0" is de
creased. For very large n the partition function is 
dominated by the largest eigenvalue, Ao, raised to the 
(n-3) power. The fraction of hydrogen bonds is 
then given approximately by 

II> 
Q 

~ .5 
CD ... o 
z 
o 
;: 
~ 
::: 

FIG. 2. Fraction of intersegment hydrogen bonds 8 as a func
tion of the equilibrium constant s for various values of the initia
tion parameter fT. 

{}=d InAo/d Ins. (40) 

The results from this formula are shown in Fig. 2 for 
the case of j.t= 1 and various values of 0". 

In this case when 0" is unity there is no interaction 
between the states of successive segments, and s is 
just the equilibrium constant for the formation of the 
hydrogen bonds; the fraction of hydrogen bonds then 
shows a gradual rise with increasing s according to the 
formula 

(}=s/(l+s). (41) 

Quite different behavior appears at the other extreme 
when 0" approaches zero; in this case there is an almost 
sharp transition at s= 1 corresponding to the inter
section of the two branches of Ao, 1, and s. In view of 
the form of Eq. (21) and since A is very nearly unity 
at the transition, the shape of the transition curve is 
not perceptibly dependent on the parameter J.I which 
specifies the minimum number of hydrogen bonds that 
can be broken at one place. The value of unity is thus a 
critical value of s at which long chains go substantially 
into the helical form. 

Critical Size 

In a corresponding fashion there is also a critical 
value of the size n at which substantial helix formation 
appears for any given value of 0" and for s greater than 
unity. From Eq. (3b), it appears that this value is 
approximately that at which 

(42) 

The actual behavior of {} as a function of n is shown in 
Fig. 3 for several values of sand 0". These results were 
calculated from Eqs. (3a, b) as well as Eq. (27); a few 
values were also calculated by the corresponding for
mulas for the case of f.1.= 2, but the differences were 
insignificant. Thus the critical size effect is also inde
pendent of j.t, at least at small n. 
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FIG. 3. Fraction of intersegment hydrogen bonds e and prob
ability that the last segment be hydrogen-bonded, Pn(1), Eq. 
(37), as functions of the number of segments n at various values 
of s and fT. While Eq. (37) specifically refers to the case where 
JL= 1, the results would not be significantly different for other 
values of JL. Solid lines, eat fT= 10-' and the indicated values of 
s; thin dashed curve, e for s=2 and fT=lO-2; heavy dashed 
curves, Pn(1) at u= 10-4 and the indicated values of s. 

The critical size effect offers the most definitive 
method of determining the two important parameters 
sand (j from experimental data on the fraction of 
hydrogen bonds. If a sequence of polymers of different 
chain lengths is available, the data may be compared to 
theoretical curves for different sand (j until the best fit 
is found. 

Equilibrium Constants 

Equilibrium constants can be defined for various 
processes involving the helix-coil transition. For ex
ample, a sort of an equilibrium constant is the ratio of 
the number of hydrogen-bonded segments to the 
number of unbonded segments, which is 0/(1-(1). 
Another ratio accessible to direct measurement (by 
optical rotatory power) is the ratio of the number of 
segments in helical form to those in random form; this 
is [(n-3)0+3]/ (12-3) (1-0). The ratio of the 
number of molecules with any amount of helical 
content whatever to those without is another equi
librium constant, and is equal to Q-1. 

Even the parameter s can be thought of as the 
equilibrium constant for a certain process, that of 
incorporating into a helical section the first adjoining 
segment from a long random section, since the ratio 
of the aggregate of the statistical weights of those 
states with a helical section of, say, k+ 1 segments in 
length to the aggregate of the weights of those states 
with a section of k segments is practically s, if the 
adjacent random section is suffiicently greater than 
the minimum length f.t. By a familiar thermodynamic 
relation we then have 

d Ins/dT=AH/RP, (43) 

where T is the absolute temperature, and AH is the 
enthalpy change on converting one segment from the 
random to the helical form under the conditions 
described in the foregoing. 

Temperature Dependence and the Heat of Helix 
Formation 

Experimental data are available in some cases for 
the variation of (I with temperature, but the values of s 
and (j cannot be obtained from these curves unless 
data are available for different chain lengths. For 
example, data of Doty and Yang1(b) and Doty and Iso1(O 
for polybenzyl-L-glutamate are shown in Fig. 4 to
gether with the theoretical curves for two values of (j. 

In each case the relation between s and the tempera
ture has been adjusted to give the best fit to the 
experimental curves. It is evident that a small change 
in d Ins/ dT would be sufficient to make either value 
of (j satisfactory for either value of n alone, but with 
the two together the choice of (j= 2X10-4 with 
d Ins/dT=0'(10614 is clearly preferable. 

From Eq. (43) we immediately calculate that AH 
is +990 cal/mole. This heat, it should be remembered, 
includes the heat of desorption of solvent from the 
random-form segment when the latter is transformed 
to helix. The positive sign of AH, corresponding to 
heat adsorbed on helix formation, would be unintel
ligible otherwise. 

In fitting the curves to the data we have assumed 
that (J" does not depend on the temperature because of 

.. C) 
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.. 
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FIG. 4. Comparison of theoretical curves of fraction of seg
ments intramolecularly hydrogen-bonded e with observations of 
Doty a.nd Yangl(b) and Doty and Isol(l) on polY'-"Y-benzyl-L-gluta
mate. The fraction intramolecularly bonded was assumed to be a 
linear function of the optical rotation and Ins was assumed to be 
linear in the temperature T; Tc is the temperature at which e is 
0.5. Circles, Doty and Yang; triangles, Doty and Iso. Solid lines 
correspond to fT=2XIO-4 ; dashed lines, u=lXIQ-4. Dotyand 
Yang's measurements on a sample of degree of polymerization, n, 
of 84 have been omitted because there is some doubt about the 
molecular-weight distribution of this sample (private communi
cation from Professor Doty). 
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FIG. 5. The 11 - s plane, calculated for 0' = 10-" a.ud showing 
the characteristics of the chains in the various regions. The two 
contours of constant e are the (arbitrarily chosen) boundaries of 
the transition region. The line of constant v corresponds to Eq. 
(45). The dotted line is the circuit described in the text. 

the interpretation given earlier in terms of a ratio of 
available phase space; this ratio should not change 
much with temperature. We might hazard a guess that 
0' should be likewise independent of solvent, depending 
only on the constitution of the polymer. Data are not 
yet available to test this point. 

The Dominant Configurations 

We turn now to the description of the dominant 
configurations of the chains under various conditions. 
The situation is epitomized in Fig. 5. For small values 
of n or s the chains are in the random, unbonded 
configuration. At larger values of nand s the helical 
configurations dominate, but in different ways in the 
sectors of moderate n and large s or large n and mod
erate s; in the former sector each chain contains only 
one unbroken helical section, in the latter, several. 

For the case of p.= 1 we have already seen how the 
probability of a break in the helix depends upon 0' and 
s, Eq. (35). The case of p.= 3, corresponding to no less 
than three consecutive segments being unbonded at 
once, is more realistic, however, when both nand s 
are large. Let us define p as the average number of 
unbroken helical sections per molecule; by analogy 
with Eq. (2) this is given by 

p=(dlnQ/dlnO'). (44) 

With the eigenvalues and eigenfunctions of Eqs. (38) 
and (39) we can calculate easily the necessary terms 
of Q and obtain v by differentiation. The result is 

p= O'[n/ s2(s-1) +0(1)], (45) 

where 0(1) stands for terms of order unity. Likewise, 

by the use of Eq. (15), the probability of finding a 
particular segment unbonded is 

P(O) =0'(3s-2)/S2(S-1)2. (46) 

Since v is approximately the average number of se
quences of unbonded segments, the ratio of nP(O) to v 
is the average number of unbonded segments III one 
~equence; this is 

(3s-2)/(s-1) . ( 47) 

The average number of unbonded segments at a break 
in the helix is thus three or more, depending only on the 
value of s. 

Returning to Fig. 5, we see that the two sectors of 
the region of helices are separated from each other 
by a line of constant v. The exact value of v is arbitrary; 
we have selected v= 1 + In2 for purposes of illustration, 
since along this line half the chains contain one un
broken helical section. 

Let us proceed in sequence through the five distinct 
regions of the diagram to become acquainted with 
their characteristics, following the circuit indicated 
by the dotted line. We begin in the region of random 
chains at point A where nand s are small. If we main
tain chain length n and increase the equilibrium con
stant s, we soon enter the transition region B, where 
chains containing helices start to appear in the en
semble. The critical value of s for a given n is the one 
that satisfies Eq. (42). Equation (42) implies that the 
aggregate statistical weights of the states containing 
helices are approximately equal to those of the random 
states. This has an interesting consequence; since () 
is near one-half, about half of the chains of the ensemble 
must be nearly completely in the helical form while 
half are still in the random form. At any given time 
the individual chains "make a choice" between the two 
extreme forms; mixed forms are not favored at small n. 

In the region beyond the transition C, most of the 
chains are in the helical form, except at the ends, 
where the sizable fraction of random configurations 
indicated by Eqs. (33) and (37) remain. The end 
effect depends only on s; therefore the fraction of 
bonds () depends almost entirely on s alone in this 
region (compare curves for s= 2, Fig. 3). 

The end effect is still present in the same way in the 
next region of the diagram D at large n and large s, 
but disorder also appears in the middle of the chains 
as we increase n. This disorder takes the form of short 
sequences of broken bonds, as we have already seen. 

When we decrease s the amount of disorder increases 
in all its manifestations: the length of the breaks, 
Eq. (47); the number of independent helical sections, 
Eq. (45); and the probability of segments unbonded 
at the ends, Eq. (33). Eventually we enter another 
branch of the transition region near s= 1, point E, as 
shown in Fig. 5. A characteristic of this branch is the 
fact that single chains contain substantial sections in 
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both helical and random forms in contrast to the situa
tion encountered in the lower branch of the transition 
region. The average combined length of a sequence of 
bonded segments followed by a sequence of unbonded 
segments is just the reciprocal of P(Ol), which is 
given by Eq. (35) with sufficient accuracy when s is 
unity. At the midpoint of the transition the average 
length of a helical sequence is half of the reciprocal of 
P(Ol), or 0"-1. The magnitude of this number is note
worthy. By comparison, if the bonds were arranged 
at random, the average length of a bonded sequence 
would be two. When we decrease s further the relative 
lengths of the random and helical sections dispropor
tionate rapidly, until finally the chains become almost 
purely random in configuration, and we return to the 
region of random chains, point F. 

Kinetics of Polymerization 

The kinetics of polymerization have been found to 
show different rate constants when the polymer is in 
the helical or random forms. According to Doty 
and Lundeberg,l(e) the addition of monomer to the 
helical form occurs several times faster than the addi
tion to the random form in dioxane solution. Pre
sumably the rate depends upon the condition of the 
nth segment of the helix. For this reason we have 
plotted pn(1), Eq. (37), in Fig. 3. Here also the 
critical size is important, but the limiting value of 
pn(1) at large n is never quite as large as the limiting 
value of e. Doty and Lundberg found that poly
benzylglutamate in dioxane solution showed a rather 
sharp transition in rate of addition of monomer at 
about n= 8; this would correspond to s= 5 if 0" is as
sumed to be 10-4 as is suggested by the apparent sharp
ness of the transition and in accordance with the results 
cited in the foregoing in the section on temperature 
dependence. 

Relation to Other Work 

Subsequent to Schellman's original publication6 and 
more or less simultaneously with each other, a number 
of workers have been developing theories of the helix-

random coil transition. Several preliminary accounts 
have already appearedlO- 13 and others, in addition to 
the present paper, are now being published.14- 17 Insofar 
as we have been able to ascertain, there is substantial 
agreement about the results, although considerable 
divergence in the methodology and emphasis. Our 
justification for adding one more report on the topic 
is the fact that we alone seem to have made extensive 
use of the matrix method, which allows the simplest 
treatment on a unified basis of the various phenomena 
of interest for various modifications of the basic model. 

It remains to clarify the relation of these results to the 
well known demonstration that a one-dimensional 
system cannot show a sharp phase transition in the 
usual sense. To be exact, the usual demonstration, as 
given for example by Landau and Lifshitz,S states that 
a sharp transition cannot occur unless the boundary 
tension between the two phases is infinite, since other
wise the two phases will always mix with each other to 
an appreciable extent. An infinite boundary tension 
corresponds in our treatment to 0" equaling zero which 
is the only circumstance under which we find the 
transition to be sharp. Thus there is no contradiction. 
In fact, the prediction that the two phases will mix 
with each other when the boundary tension is finite is in 
complete accord with our result that a long chain near 
the transition point consists of alternating helical and 
random sections. It is this alternation of short sections 
of each phase that is characteristic of a one-dimensional 
system and that causes the transition to be diffuse. 
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