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Abstract

In this paper we present two hybrid Particle
Swarm Optimisers combining the idea of the par-
ticle swarm with concepts from Evolutionary Al-
gorithms. The hybrid PSOs combine the tradi-
tional velocity and position update rules with the
ideas of breeding and subpopulations. Both hy-
brid models were tested and compared with the
standard PSO and standard GA models. This is
done to illustrate that PSOs with breeding strate-
gies have the potential to achieve faster conver-
gence and the potential to find a better solution.
The objective of this paper is to describe how to
make the hybrids benefit from genetic methods
and to test their potential and competetiveness on
function optimisation.

1 Introduction

The Particle Swarm Optimisation (PSO) algorithm was
originally introduced in [Kennedy95] as an alternative to
the standard Genetic Algorithm (GA). The PSO was in-
spired by insect swarms and has since proven to be a com-
petitor to the standard GA when it comes to function opti-
misation. Since then several researchers have analysed the
performance of the PSO with different settings, e.g., neigh-
bourhood settings ([Kennedy99, Suganthan99]). Work pre-
sented in [Shi98] describes the complex task of parameter
selection in the PSO model. Comparisons between PSOs
and the standard GA were done analytically in [Eberhart98]
and also with regards to performance in [Angeline98]. An-
geline points out that the PSO performs well in the early
iterations, but has problems reaching a near optimal solu-
tion in several real-valued function optimisation problems.
Both Eberhart and Angeline conclude that hybrid models

of the standard GA and the PSO, could lead to further ad-
vances.

We present such a hybrid model. The model incorporates
one major aspect of the standard GA into the PSO, the re-
production. In the following we will refer to the used re-
production and recombination of genes only as “breeding”.
Breeding is one of the core elements that makes the stan-
dard GA a powerful algorithm. Hence our hypothesis was
that a PSO hybrid with breeding has the potential to reach
a better optimum than the standard PSO.

In addition to breeding we introduce a hybrid with both
breeding and subpopulations. Subpopulations have pre-
viously been introduced to standard GA models mainly
to prevent premature convergence to suboptimal points
([Spears94]). Our motivation for this extension was that the
PSO models, including the hybrid PSO with breeding, also
reach suboptimal solutions. Breeding between particles in
different subpopulations was also added as an interaction
mechanism between subpopulations.

The introduced hybrids were tested against both standard
PSO and standard GA models.

The next section presents the structures of the hybrid PSO
models. Section 3 describes the experimental settings used
to find the results described in section 4. The experimen-
tal results are discussed in section 5 and finally section 6
summarises the study.

2 Model

The traditional PSO model, described by [Kennedy95],
consists of a number of particles moving around in the
search space, each representing a possible solution to a nu-
merical problem. Each particle has a position vector (~xi), a
velocity vector (~vi), the position (~pi) and fitness of the best
point encountered by the particle, and the index (g) of the



best particle in the swarm.

In each iteration the velocity of each particle is updated
according to their best encountered position and the best
position encountered by any particle, in the following way

~vi = χ(w~vi + ~ϕ1i(~pi − ~xi) + ~ϕ2i(~pg − ~xi))

whereχ is known as theconstriction coefficientdescribed
in [Clerc99],w is theinertia weightdescribed in [Shi98B,
Shi98] and~pg is the best position known for all particles.
ϕ1 andϕ2 are random values different for each particle and
for each dimension. If the velocity is higher than a certain
limit, called Vmax, this limit will be used as the new ve-
locity for this particle in this dimension, thus keeping the
particles within the search space.

The position of each particle is updated in each iteration.
This is done by adding the velocity vector to the position
vector, i.e.,

~xi = ~xi + ~vi

The particles have no neighbourhood restrictions, mean-
ing that each particle can affect all other particles. This
neighbourhood is of typestar (fully connected network),
which have been shown to be a good neighbourhood type
in [Kennedy99].

The structure of the hybrid model is illustrated in figure 1.

begin
initialise
while (not terminate-condition) do

begin
evaluate
calculate new velocity vectors
move
breed

end
end

Figure 1: The structure of the hybrid model.

The breeding is done by first determining which of the par-
ticles that should breed. This is done by iterating through
all the particles and, with probabilitypb (breeding proba-
bility ), mark a given particle for breeding. Note that the
fitness is not used when selecting particles for breeding.
From the pool of marked particles we now select two ran-
dom particles for breeding. This is done until the pool of
marked particles is empty. The parent particles are replaced
by their offspring particles, thereby keeping the population
size fixed.

The position of the offspring is found for each dimension
by arithmetic crossover on the position of the parents, i.e.,

child1(xi) = pi ∗ parent1(xi) + (1.0− pi) ∗ parent2(xi)

child2(xi) = pi ∗ parent2(xi) + (1.0− pi) ∗ parent1(xi)

wherepi is a uniformly distributed random value between
0 and1. The velocity vectors of the offspring is calculated
as the sum of the velocity vectors of the parents normalised
to the original length of each parent velocity vector.

child1(~v) =
parent1(~v) + parent2(~v)

|parent1(~v) + parent2(~v)| |parent1(~v)|

child2(~v) =
parent1(~v) + parent2(~v)

|parent1(~v) + parent2(~v)| |parent2(~v)|

The arithmetic crossover of positions and velocity vectors
used were empirically tested to be the most promising. The
arithmetic crossover of positions in the search space is one
of the most commonly used crossover methods with stan-
dard real valued GAs, placing the offspring within the hy-
percube spanned by the parent particles. The main motiva-
tion behind the crossover is that offspring particles benefit
from both parents. In theory this allows good examination
of the search space between particles. Having two parti-
cles on different suboptimal peaks breed could result in an
escape from a local optimum, and thus aid in achieving a
better one.

We used the same idea for the crossover of the velocity vec-
tor. Adding the velocity vectors of the parents results in the
velocity vector of the offspring. Thus each parent affects
the direction of each offspring velocity vector equally. In
order to control that the offspring velocity was not getting
too fast or too slow, the offspring velocity vector is nor-
malised to the length of the velocity vector of one of the
parent particles.

Finally, the starting position of a new offspring particle is
used as the initial value for this particle’s best found opti-
mum (~pi).

2.1 Subpopulation Model

The motivation for introducing subpopulations is to restrict
the gene flow (keeping the diversity) and thereby attempt
to evade suboptimal convergence.

The subpopulation hybrid PSO model is an extension of
the just described breeding hybrid PSO model. In this new
model the particles are divided into a number of subpopu-
lations. The purpose of the subpopulations is that each sub-
population has its own unique best known optimum. The
velocity vector of a particle is updated as before except that
the best known position (~pg in the formula) now refers to
the best known position within the subpopulation that the
particle belongs to. In terms of the neighbourhood topology
suggested by Kennedy in [Kennedy99], each subpopulation
has its ownstar neighbourhood.



The only interaction between subpopulations is if parents
from different subpopulations breed. Breeding is now pos-
sible both within a subpopulation but also between differ-
ent subpopulations. An extra parameter calledprobability
of same subpopulation breeding(psb) determines whether
a given particle selected for breeding is to breed within
the same subpopulation (probabilitypsb), or with a particle
from another subpopulation (probability1 − psb).

Replacing each parent with an offspring particle ensures a
constant subpopulation size.

3 Experimental Settings

Both the PSOs and the standard GA were tested on four
benchmark problems, all minimisation problems. The first
two functions were unimodal while the last two were multi-
modal with many local minima. All functions are designed
such that their global minimum was at or near the origin of
the search space.

The first test function was the generalised sphere function
given by the equation

f1(x) =

n∑

i=1

x2
i

wherex is a n dimensional real-valued vector andxi is
the ith element of that vector. The second function is the
generalised Rosenbrock function given by the equation

f2(x) =

n−1∑

i=1

(100(xi+1 − x2
i )

2 + (xi − 1)2)

The third function is the generalised Griewank function.

f3(x) =
1

4000

n∑

i=1

(xi − 100)2 −
n∏

i=1

cos(
xi − 100√

i
) + 1

The fourth and final test function is the generalised Rastri-
gin function which is given by the equation

f4(x) =
n∑

i=1

(x2
i − 10cos(2πxi) + 10)

These four functions have been commonly used in other
studies on particle swarm optimisers (e.g. [Kennedy99,
Shi99]).

The initial population is usually uniformly distributed over
the entire search space. According to [Angeline98] this can
give false indications of relative performance - especially
if the search space is symmetric around the origin where
many test functions have their global optimum. To prevent
this, and to ease comparison with other models, the asym-
metric initialisation method used in [Angeline98] was used.

Table 1: Search space and asymmetric initialisation ranges
for each test function.

Function Search space Initialisation range
f1 −100 ≤ xi ≤ 100 50 ≤ xi ≤ 100
f2 −100 ≤ xi ≤ 100 15 ≤ xi ≤ 30
f3 −600 ≤ xi ≤ 600 300 ≤ xi ≤ 600
f4 −10 ≤ xi ≤ 10 2.56 ≤ xi ≤ 5.12

Search space and initialisation ranges for the experiments
are listed in table 1. The number of generations run for each
test function was set to 1000, 1500 and 2000 correspond-
ing to the dimensions 10, 20 and 30 of the test functions
respectively.

In both the standard PSO model and the hybrid model, the
upper limits forϕ1 andϕ2 were set to2.0, and a linearly
decreasing inertia weight starting at 0.7 and ending at 0.4
was used. The constriction coefficientχ was set to 1. The
maximum velocity (Vmax) of each particle was set to be
half the length of the search space in one dimension (for
instanceVmax = 100 for f1 andf2).

Two sets of experiments were conducted; Experiments with
breeding alone and experiments with both breeding and
subpopulations.

Research done in [Shi98] regarding scalability of the stan-
dard PSO have shown that the performance of the standard
algorithm is not sensitive to the population size. Exper-
iments with the hybrid model confirm this result. Based
on these results the population size in the experiments was
fixed to 20 particles in order to keep the computational re-
quirements low.

In the experiments with subpopulations, the population size
for the whole system was also 20. The size of each sub-
population was fixed throughout each run at 20

subpopulations

particles.

The probability for breeding (pb) was empirically found to
have its optimal setting at0.2, which with 20 particles on
average gives a total of two breedings per generation.

In the experiments with subpopulations, the best setting re-
garding the probability for breeding within the same sub-
population (psb) was determined empirically by examining
the results for different settings. The number of subpopu-
lations used in the experiments was 2, 3, 4 and 6. Table 2
shows the relation between the number of populations and
the setting for this probability that appeared to be optimal.

The standard GA that we used was a real-valued GA with
random initialisation, tournament selection with tourna-
ment size two, arithmetic crossover with random weight,
Gaussian mutation with distributionN(0, α) whereα is



Table 2: Probability for breeding within same subpopula-
tion compared to number of populations

Populations Psb
1 1.0
2 0.6
3 0.3
4 0.0
6 0.0

linearly decreasing from1 to 0. Crossover and mutation
probabilities for each of the four test functions are listedin
table 3. In order to get a fair comparison between the mod-
els, with regards to the total number of evaluations, a pop-
ulation size of 20 individuals was also selected for the GA.
This was done even though the standard GA often requires
larger population sizes in comparison to the standard PSO
model [Angeline98]. Other studies [Shi99] show that the
standard PSO model with different population sizes have
almost the same performance, so the low population size
seems to be fair when analysing the PSO model.

Table 3: Crossover and mutation probability used in stan-
dard GA.

Function Crossover prob. Mutation prob.
f1 0.60 0.30
f2 0.50 0.30
f3 0.50 0.40
f4 0.20 0.02

A total of 100 runs for each experiment were conducted.

4 Experimental Results

Tables 4 and 5 list a representative set of results from the
conducted experiments. The tables list the test function, the
dimensionality of the function, the number of generations
the algorithm was run and the average best fitness for the
best particle found for the 100 runs of the four test functions
respectively. Standard error for each value is also listed.
Table 4 shows results for the experiments with the hybrid
PSO without subpopulations. The table also list the corre-
sponding average best fitness of both the standard PSO and
the standard GA with the same settings (where they are ap-
plicable) as described in the previous section. Results for
experiments with subpopulations are listed in table 5. Note
that the hybrid PSO with one subpopulation in table 5 cor-
responds to the hybrid PSO in table 4.

Figures 2 to 7 are graphs corresponding to the reported ex-
periments.

Figures 2 to 5 show the average best fitness for each genera-
tion for both the standard PSO model, the standard GA and
the hybrid model. The graphs illustrate a representative set
of experiments for functions with a dimensionality of 30.
The hybrid model in these figures are without subpopula-
tions (i.e. one subpopulation). Note that the figure with the
Griewank function only illustrates two experiments, since
the standard GA was unable to achieve a reasonable result
(see table 4).

Figures 6 and 7 show the average best fitness for each
generation for both the standard PSO model and the hy-
brid model. The graphs illustrate experiments with both
a unimodal (Rosenbrock) and a multimodal test function
(Griewank) both of 30 dimensions. The graphs for the hy-
brid model correspond to experiments with a varying num-
ber of subpopulations. The graphs for the standard PSO
model are the same as in the previous figures.

Tables 4 and 5 with corresponding figures 2 to 5 show re-
sults for the standard PSO supporting the results in [Shi99].

In experiments with the Sphere function the standard PSO
achieved better results and had much faster convergence
than both the standard GA and the hybrid model with one
subpopulation. The GA and the hybrid model found similar
values but the hybrid model had a faster convergence speed
than the GA. When the number of subpopulations in the
hybrid model was increased the best fitness got worse. This
happened in all of the experiments.

With the Rosenbrock function, the standard PSO had a bet-
ter performance than both the GA and the hybrid model.
The hybrid model only had a fitness comparable to that
of the standard PSO when the test functions were of low
dimensionality. When the dimensionality of the test func-
tions were higher, the GA accomplished better results than
the hybrid model. The convergence speed of the GA and
the hybrid model was better than that of the standard PSO.

In the experiments with the Griewank function, the GA
failed to achieve a reasonable result compared to the other
models. The hybrid model had a faster convergence than
the standard PSO, but achieved a marginally worse best
value.

In experiments with the Rastrigin function, the hybrid
model was better than both the standard GA and the stan-
dard PSO model with both a faster convergence and also a
better best value found.



Table 4: Average best fitness of 100 runs for experiments without subpopulations (Average best fitness±standard error).

f Dim. Gen. Std. PSO Std. GA Hybrid
f1 10 1000 2.98E-33±4.21E-33 2.43E-04±1.14E-05 2.42E-04±2.17E-05
f1 20 1500 3.03E-20±9.27E-21 0.00145±6.22E-05 0.00212±2.75E-04
f1 30 2000 6.29E-13±7.64E-14 0.00442±1.78E-04 0.01203±6.33E-04
f2 10 1000 43.049±11.554 109.810±6.212 43.521±16.047
f2 20 1500 115.143±19.871 146.912±10.951 169.112±21.535
f2 30 2000 154.519±24.512 199.730±16.285 187.033±22.960
f3 10 1000 0.08976±0.00498 283.251±1.812 0.09078±0.03306
f3 20 1500 0.03601±0.00298 611.266±3.572 0.00459±0.01209
f3 30 2000 0.01504±0.00241 889.537±3.939 0.09911±0.00106
f4 10 1000 4.8021±0.2323 3.1667±0.2237 3.0599±0.1535
f4 20 1500 21.3917±0.7885 16.8732±0.6007 11.6590±0.3602
f4 30 2000 46.9712±1.3206 49.3212±1.1204 27.8119±0.8059

Table 5: Average best fitness of 100 runs for experiments withsubpopulations (Average best fitness±standard error).
(“Hybrid (i)” is the hybrid model withi subpopulations).

f Dim. Gen. Hybrid ( 1) Hybrid ( 2) Hybrid ( 4) Hybrid ( 6)
f1 10 1000 2.42E-04±2.17E-05 3.796E-05±9.22E-05 0.00223±9.13E-04 0.02124±0.00641
f1 20 1500 0.00212±2.75E-04 0.00175±2.28E-04 0.00566±0.00185 0.04597±0.00721
f1 30 2000 0.01203±6.33E-04 0.17396±4.56E-04 0.02023±0.00349 0.05669±0.00738
f2 10 1000 43.521±16.047 51.701±13.761 63.369±14.006 81.283±14.907
f2 20 1500 169.112±21.535 129.570±14.880 108.391±16.928 137.236±19.619
f2 30 2000 187.033±22.960 196.554±14.733 279.390±19.468 247.724±31.822
f3 10 1000 0.09078±0.03306 0.46423±0.03700 0.69206±0.02758 0.74694±0.01844
f3 20 1500 0.00459±0.01209 0.02231±0.02121 0.09885±0.01883 0.34306±0.03072
f3 30 2000 0.09911±0.00106 0.06316±0.00121 0.16389±0.00913 0.37501±0.02842
f4 10 1000 3.0599±0.1535 3.5615±0.1478 3.6840±0.2611 6.8036±0.4657
f4 20 1500 11.6590±0.3602 12.9158±0.3107 11.6379±0.5308 11.7054±0.5992
f4 30 2000 27.8119±0.8059 38.5897±0.6455 29.5827±1.0649 29.1747±0.9449
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Figure 2: Standard PSO versus hybrid model for Sphere
function with one population.
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Figure 3: Standard PSO versus hybrid model for Rosen-
brock function with one population.
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Figure 4: Standard PSO versus hybrid model for Griewank
function with one population.
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Figure 5: Standard PSO versus hybrid model for Rastrigin
function with one population.

5 Discussion

Tables 4 and 5 show a comparison of the performances in
the standard PSO model, the standard GA, and the breeding
PSO hybrid with regards to the optimum found.

Looking at the unimodal functions Sphere (f1) and Rosen-
brock (f2) both the hybrid and the standard GA seem to
outperform by the standard PSO. As mentioned in section
2 the offspring are initialised with a clean memory, i.e., the
previously best found solution of a new particle is its start-
ing point in the search space. This should provide a form
of diversity since new particles are unaware of previously
found optima. The purpose of adding diversity to the stan-
dard PSO is to tackle the problem of avoiding sub-optimal
solutions. When we try to avoid sub-optimal solutions we
run the risk of not beeing able to find a close to optimal so-
lution because the particles takes longer to converge. This
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Figure 6: Hybrid model with different number of subpopu-
lations versus standard PSO (Rosenbrock 30 dim.).
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could be why the hybrid model suffers in experiments with
unimodal functions.

Looking at the multimodal functions Griewank (f3) and
Rastrigin (f4) the hybrid model should have a better chance
of outperforming the standard PSO, because of the ex-
tra diversity. Table 4 does not show an improvement for
the Griewank function, but figure 4 shows that the hybrid
model converges faster than the standard PSO model. The
standard GA was not able to reach a reasonable optimum
in any of the experiments with the Griewank function. This
is probably due to the fairly small population size in the
GA. Table 4 along with figure 5 show the improvements
for the Rastrigin function. Here both faster convergence
is achieved and an improvement in the best solution is
found. These results could be because of the design of
the crossover operator that allows offspring particles to es-
cape local optima (see section 2). The results seem to show



the potential of particle breeding regarding the multimodal
problems.

Table 5 as well as figures 6 and 7 show no further in-
crease in performance when subpopulations were intro-
duced. Comparisons between the approach with one sub-
population (equal to the standard breeding PSO hybrid) and
cases with more than one subpopulation show that the in-
troduction of subpopulations only outperforms the standard
breeding PSO hybrid in the Rosenbrock 20-dimensional
function. In all other experiments the hybrid model with
subpopulations performs worse than the standard PSO
model. This is probably because the particles are dis-
tributed in several subpopulations which yields a subpopu-
lation size that is too low.

The setting ofpsb, the probability of breeding within the
same subpopulation, could be the cause of the performance
deterioration. When the number of subpopulations is in-
creased, the number of particles in each subpopulation is
decreased. Having only a few particles in a subpopulation
limits the effect of breeding within this subpopulation. Our
experiments confirm that it was better to use a lowerpsb

when the number of subpopulations increases, as seen in
Table 2. A lowpsb implies that the probability for breed-
ing between subpopulations is high which of course re-
duces the effect of subpopulations, in that the amount of
gene flow in the total population is kept somewhat constant.
These results suggest that the introduction of this specific
subpopulation construction to the hybrid model does not
generally improve the performance of particle swarms.

6 Conclusions and Future Work

In this paper a hybrid model based on the standard Par-
ticle Swarm Optimiser (PSO) and the standard Genetic
Algorithm (GA) was introduced. The hybrid model
was basically the standard PSO combined with arithmetic
crossover. Furthermore, the notion of subpopulations in the
hybrid model was introduced, also from the genetic algo-
rithm field.

Four models were used in comparison, namely the stan-
dard PSO model, the standard GA and the two hybrid mod-
els. Parameters for each model were empirically tuned for
each model yielding interesting results regarding the hybrid
models. We found that the probability of breeding (pb) for
a given particle had its optimum around0.2. The optimal
setting for the probability for breeding between subpopu-
lations (psb) was in our case found to depend on the num-
ber of subpopulations. This result indicates that the model
would work better with larger subpopulation sizes or other
interaction constructions between subpopulations

On unimodal test functions (Sphere and Rosenbrock) the
hybrid model was outperformed by the standard PSO and

GA models regarding a comparison of the best optima
found. Yet, the hybrid model had a marginally faster con-
vergence than both the standard PSO and GA models. On
multimodal test functions (Griewank and Rastrigin) the hy-
brid model performed better. The optima found by the hy-
brid were better or identical to those of the standard PSO
model and the convergence speed was marginally faster.

Future work should cover the grounds of other subpopu-
lation constructions. We chose breeding to model interac-
tion between subpopulations, but other schemes such as mi-
gration should be investigated. Larger subpopulationsizes
should also be investigated and compared to other evolu-
tionary algorithms that uses subpopulations.
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