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Phase Transitions in Gapless Fermi Systems with Magnetic Impurities
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%'e consider a model of a Kondo-like impurity interacting with a band of fermions for which the den-

sity of states is zero or small near the Fermi energy. Renormalization-group arguments and a large-

degeneracy technique are used to demonstrate that this model has a nontrivial zero-temperature phase
transition at a finite coupling constant, in contrast to the zero-coupling-constant transition of the ordi-

nary Kondo model. Possible experimental realizations of this model include anisotropic superconductors,

narrow-gap semiconductors, and systems with flux phases.

PACS numbers: 75.20.Hr, 74.65.+n, 74.70.Tx

It is weil known that the dramatic low-temperature
properties (Kondo eflect) associated with interaction be-
tween band electrons and magnetic impurities appear
only when the density of states is nonzero (metallic) at
the Fermi energy. In insulators and semiconductors the
density of states vanishes in a finite energy gap contain-
ing the Fermi energy, and the full Kondo effect is not
seen since electronic excitations are frozen out at low

temperatures. Between these extremes, however, is an
interesting marginal or "gapless" case for which the den-

sity of states vanishes at a point (infinitely narrow gap)
near the Fermi energy. In this paper we study a simple
model of a Kondo impurity interacting with a gapless
band of electrons. We show that the model has a non-
trivial zero-temperature critical point at a finite value J,
of the coupling constant, and that a Kondo effect occurs
only for J & J„in contrast to the usual Kondo model for
which J, =0. Near the critical point we study the prop-
erties of the model as a function of magnetic field and
chemical potential and predict a diA'erence between the
crossover behavior of this model and that of the usual
Kondo model.

A variety of materials are thought to have a gapless
excitation spectrum. In bulk semiconductors this situa-
tion can occur when the valence and conduction bands
touch at symmetry points of the Brillouin zone, such as
the L points of fcc lattices. For example, a-Sn is gapless
under appropriate conditions, and certain tertiary semi-
conductors such as Pb~ —„Sn Te can be gapless at a criti-
cal composition. If the bands cross, the gap is almost
linear and the electrons behave as if they were relativistic
massless particles moving at the Fermi velocity. This sit-
uation arises in the latter example as well as in domain
walls of PbTe, in PbTe-SnTe heterojunctions, and in

graphite. The density of states then behaves like

The single-particle excitations in anisotropic supercon-
ductors are also gapless, and it has been argued that
heavy-fermion materials may be physical realizations of
such a system. Coupling between magnetic impurities
and these excitations could provide an interesting direct
probe of the nature of the gap. Magnetic impurities are

also known to interfere with superconductivity, but the
description suggested here should apply if the supercon-
ducting condensate is rigid enough to persist at least par-
tially at the impurity site. In these systems, the gap van-
ishes at points or lines in the Brillouin zone, and the den-
sity of states behaves like

~
e J

' near the gap' (axial)
and like

~
e

~
(polar). Other possible candidate sys-

tems are the conjectured "flux phases" of models of
strongly correlated systems.

In all of these cases the density of states is proportion-
al to

~
e

~

' with r =0, —, , 1, or 2 for physical dimensional-
ities. As a simple model the density of states p(e) will

here be taken to be

+ ~ Jg (ck Jck JS +Ck Jck'JS
kk'

(2)

with a density of states p(e) given by Eq. (1). The
influence of band electrons having energies within BE of
the cutoA's can be accounted for approximately using a
generalization of the Rayleigh-Schrodinger perturbation
theory to obtain an effective Hamiltonian for the remain-
ing degrees of freedom. The eff'ective Hamiltonian is
characterized by a cutoA O'=D —BE and an effective

where D is a large band cutoA. Although this approxi-
mation ignores the asymmetry across the gap which ex-
ists, for example, in most semiconductors, the qualita-
tive results are nevertheless expected to be reliable.
Also, in realistic situations the parameter r need not
equal any of the values listed above, ' but the listed
values certainly suggest the correct range.

Scaling. —A primary motivation for studying the Kon-
do model with a gapless density of states is that the scal-
ing properties of such a model are significantly different
from those of the model with a constant density of states.
The diff'erence can be demonstrated using a simple gen-
eralization of the "poor-man' s-scaling" method intro-
duced by Anderson. " Consider the spin- —,

' Kondo mod-
el for gapless band electrons
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coupling constant J,q given by

J'=J+p( D—)J BE/D+

degeneracy [SU(N)] version of the same model, which

we write here as

H =2 &km~I m&l rn + 2 X &I mfa('fm&i, '~(' ~

knr
tel (s)Rescaling to restore the cutoA' and the density of states

can be accomplished by first noting that the density of
states is proportional to volume and the coupling con-
stant is inversely proportional to volume. When the den-

sity of states is given by Eq. (1), the number of band
electron states is 2CD'+'/(r+ I ). The original number

of states can be restored if the unit of length scaled by a
factor of (D/D')"+'. With this rescaling the coupling
constant changes by the inverse of the same factor. The
cutoff can be restored if physical quantities with units of
energy, including the coupling constant, are increased by
a factor of D/D'. The renormalized coupling constant

JR is then

where m =1, . . . , N. The impurity spin operators have
been represented here by the pseudofermion operators
f„', and f„, together with the constraint of single occu-
pancy

n& —=Z fn, fn, =1,

where ny is the occupancy of the impurity site. Several
years ago, Read and Newns' introduced a path-integral
method for obtaining a 1/N expansion for this model. In
this method, a Stratonovich-Hubbard transformation is

used to eliminate the four-fermion term in favor of a

path integral over an auxiliary Bose field o. An integral
over a variable X is used to enforce the constraint. The
fermionic fields then occur only in a quadratic exponent
and can be integrated out in closed form leaving a path
integral over o and an integral over X to be evaluated. A
I /N expansion can then be obtained from a saddle-point
expansion for these integrals. Here we will consider only
the N ~ limit and will therefore only be studying the
extrema of the integrand.

The maximum of the integrand as a function of o
turns out to occur for a constant value cd of the function
o, and the A' ~ partition function can be written in

the form Z =exp( —PV), where

—~+ ~F —pf C I

&'
I
"4&'/(&' &)—

(7)
~c

I
~

I
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Jg =(D'/D) "J'=J+J(JCD' r)BE/D—.

The most significant difference between this expression
and the standard result'' is that, in addition to the fixed

points at J=O and ~, there is a new infrared unstable
fixed point at J, =r/CD', neglecting terms beyond J-'.
For J) J,. the effective coupling flows towards the
strong-coupling fixed point and we find a standard Kon-
do eA'ect, but for 0& J & J„ low-temperature behavior
of the model is controlled by the J=O fixed point and no
Kondo eAect is seen.

Large-N limit. —The results of the previous section

!
can be confirmed and extended by considering the large-

N 2 dt.' 1
V =—crp

—pF —N —cotJ 4 1+et~ z

and

8 V/Sero =0.
At zero temperature these equations become

and er parametrizes the position of the saddle point of the l (constraint) integral. Physically, eF corresponds to the po-
sition of the Kondo resonance relative to the Fermi energy, and zp(eF)oo characterizes the width of the resonance.
Values for oo and eF can then be obtained by solving the simultaneous equations

av/a~, =o

and
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One immediate solution to the second equation is op=0. Since all interactions are mediated by the field a, stability of
this solution should imply that the impurity is decoupled from the band electrons within mean-field theory, and corre-
sponds to the perturbative regime of the model. The phase transition to an interacting state is signaled by the appear-
ance of an additional solution at a nonzero value of op.

Near the phase transition a solution to the saddle-point equations is expected at a small but nonzero value of op. In
this region Eq. (11) has a solution only if eF is also small, and at the transition cro and eF must go to zero together in
such a way that Eq. (10) remains satisfied. The critical value of the coupling constant can be determined by substitut-
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ing crp =SF =0 into Eq. (11) to obtain 1/J, =CD"/r+O(1/N) to within corrections which vanish when D is large. This
result has more general validity than the prediction of poor man's scaling since it is nonperturbative and therefore not
restricted to the limit of small J.

Let us now consider the scaling properties of the system in the large-A' limit. It will suffice to consider the saddle-
point equations. The divergences which arise in the D ~ limit turn out to depend crucially on the value of r. For
0 & r & 1 the principal-value integral in Eqs. (10) and (11) is

rP, =«I eI 'tan sgn(e)
C I

e'I'de', nr
2 (i2)

up to corrections which vanish in the D ~ limit. If the density of states is constant then r=0 and this term can be
dropped. Equation (10) is convergent for r & 1, and Eq. (11) contains a divergence of order D' which will be absorbed
into a definition of the crossover temperature. For r & 1 both the principal-value integral and Eq. (10) contain a diver-
gence of order D' ' which is discussed below.

The leading divergence in Eq. (11) can be canceled by subtracting the same equation at the critical point

r p

de Ce' '— CII "( ~+.F) 1

(tr C I
e'

I
'cro2) 2+ [—e+ or+ « I e I

'cro2 tan (rrr/2) ] 2, J
CTp

J r (i3)

nF zr Ct-'F &o
2

N sin(trr) cF
from which it is seen explicitly that eF and crp go to zero
together at the transition. For present purposes op can
be neglected in Eq. (11) to obtain

CTo
CEF .

(14)

(is)
r sin(trr)

Thus we find

To[sin(rrr)/rrr] ' '
and

]/t. —]

r 2 nf s1f1 (trr )
h, :7rCTpo'p = Tp zr

jv 7W

where Tp sets the energy scale of the problem and in fact
reduces to the usual Kondo result Ttc =Dexp( —I/pJN)
at r =0. The integral is then convergent for D ~, pro-
vided r & —,'. For r~ —,. the integral in Eq. (13) con-
tains an uncanceled divergence which diverges like lnD
for r = —,

' and like D " for r ~ —, . This divergence can
be absorbed into a renormalized value of ap, and |.F
must then also be renormalized in such a way as to satis-
fy Eq. (10). A similar renormalization applies to the
divergences mentioned above which appear for r ~ 1.

Return for simplicity to the case r ~ —,', and consider
the limit of small nr/N In th. is region Eq. (10) can be
approximated by

which should be compared with the standard Kondo re-
sults "-

EF = Ttc cos (rt/N )

npcrp' = Ttc sin(tr/N ) .

In both cases the resonance at eF is of order Tp from the
Fermi energy, as expected. Note also that the resonance
width 6 is smaller than er by a factor of 1/N and is pro-
portional to the density of states near the resonance.

Magnetic /teld ttnd chemical potential The .p—hase
transition discussed here exists only if the zero in the
density of states occurs exactly at the Fermi energy,
since any finite density of states at the Fermi energy will
lead to the smooth crossover associated with the ordinary
Kondo eA'ect. This rounding of the phase transition can
be seen explicitiy in the current model by introducing a
nonzero chemical potential p to move the Fermi energy
away from the center of the band. The resultant model
is probably a more realistic representation of actual ma-
terials whenever the density of states at the Fermi energy
is small but nonzero.

The chemical potential corresponds to the upper limit
of integration in Eqs. (10) and (11),which therefore be-
come

and

flF l & C I ~ I
'ood~

(«I t.'
I
'oo) + [&F & ooC I e

I 'tan(zr/2)sgn(e)]
(20)

(2i)
t P

J o (« I el 'oo2) + [gF —e —crpC I e I 'tan(rrr/2)sgn(e)]

When p is nonzero Eq. (21) has a solution for any positive value of J, and the critical coupling constant is therefore
J=() as in the usual Kondo model. If J is small, Eq. (21) implies that op and EF —

p must also be small, which implies
that the resonance becomes narrower and follows the Fermi energy when the coupling constant is small.

The chemical potential provides the problem with an additional energy scale, and several possible behaviors might be
expected. The eAective crossover energy should be determined by an average of the density of states near the energy

1837



VOLUME 64, NUMBER 15 PHYSICAL REVIEW LETTERS 9 APRIL 1990

scale of interest. For very high energies this average
density of states is an increasing function of energy, so
the eA'ective crossover energy will also increase and the
approach to the high-energy limit should be correspond-
ingly slower. At low energies the average density of
states is constant and relatively small, so the model could
be well into the high-energy regime before this increase
in the eA'ective crossover energy begins. If J & J„ this
should always be true, but the slowing of the approach to

the high-energy limit might appear earlier if p is smaller
than the eAective To at the beginning of the increase.

A magnetic field can be introduced by adding a Zee-
man term to the Hamiltonian to scan the energy scales
of the model and study the crossover behavior. When
p =0 and J & J, the magnetization saturates at a finite
value of the magnetic field. As an example consider the
case in which the magnetic field splits the degeneracy
into two N/2-fold degenerate levels. " Equation (13)
then becomes

CTo 1 ~ 2
deCI el" ——

r 2& —o
EF+h

(zC l e
l
'an) + [eF+ h —e+ cro C

l
e l

'tan(zr/2)]

eF A e

(zCl el "urn) +[eF —h —e+ooCl el 'tan(nr/2)]
(22)

CTn/r = —, de e' '/(e+ 2h, ), (23)

which can be solved for

h, = —, To[2 sin(zr )/zr ] '~', (24)

where h„ is the field at saturation. Note that the smooth
crossover of the usual Kondo model is recovered since
h, ~asr 0.

If p&0, it is found numerically that the model mag-
netizes smoothly in much the same way as the ordinary
Kondo model. The size of the field in the crossover re-
gion is related to eF —

p at zero field, which plays the
role of the Kondo energy scale. When nq/N is small, oo
is also small. After a subtraction like that in Eq. (13)
we find

CD' Cp' I ~DClel' 'de
r J ~ & SF+ t.' (2S)

In the J 0 limit the logarithmic behavior of the in-
tegral in Eq. (25) for e near —eF dominates to give

1 D 1To=—eF —p = p exp —— ———,(26)
p r ( p J

which is to be compared with T~ =De ' for the ordi-
nary Kondo problem. Note in particular that the cross-
over temperature contains in both cases the factor
e '~~(")J, where p(p) is the density of states at the Fer-
mi energy.

In this paper we have studied the phase transitions at
zero temperature of a gapless Fermi system coupled to a
single magnetic impurity. We have shown that for sys-
tems with a bare density of states of the form p(E) = E",
with r & 0, there is no Kondo eAect for weak values of
the coupling constant J. For J & J, we find a nonvanish-

which is adequate for r & 7 . At the saturation point the
lowest-energy level magnetizes completely. This point is

signaled here by on 0 and eF 0, and Eq. (22) then
becomes

t

ing Kondo temperature To and a singlet ground state.
The Kondo temperature To is found to vanish at J, like
To= l I—J„ l

', with v= I/r. We also studied the cross-
overs both in an external magnetic field and in chemical
potential. We find a rich spectrum of possible behaviors.
Typically, away from the degeneracy points, a standard
Kondo eA'ect is seen. However, as the degenerate limit is

reached by lowering the chemical potential, the Kondo
scale is seen to drop to zero for J & J,. and to reach a
limiting nonzero value for J)J„. At J, we find a criti-
cal point with anomalous dimensions. A similar behavior
is seen in the presence of external magnetic fields.
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