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Abstract. Rigorous relations of nonequilibrium statistical phy-
sics are discussed. An arbitrary system brought into a strongly
nonequilibrium state by an external time-dependent impact is
considered. Based on the Hamiltonian formalism of classical
mechanics, the Bochkov±Kuzovlev equality, the Jarzynski
equality, and Crooks reversal relations valid for fluctuations
in the work done on a system are derived. Verification of these
equalities in mechanical experiments with a torsion pendulum
and biological objects (folded ribonucleic acids) is described.

1. Introduction

I dedicate this paper to the memory of my senior friend
V L Ginzburg. 1 When I began attending his seminar, I was
amazed at the universality of his interests. The participants
in the seminar discussed a very wide range of issues. VL
listened with great interest to the reports touching on many
different topics, and his comments and questions were, as a
rule, very nontrivial. The present paper is not quite usual
either. It deals with some very crucial issues of modern
theoretical physics, but the theory expounded in it has been
verified most precisely in experiments carried out in a quite a

different branch of scienceÐmolecular biology. I believe it
represents the mainstream development paradigm for our
science. Such a situation would certainly have drawn the
attention of Vitaly Lazarevich and he might have been
pleased by it.

As known, statistical physics of the equilibrium state
based on the Gibbs distribution provides a comprehensive
description of the phenomena being observed. Knowing the
Hamiltonian of a system, H� p; q�, one can calculate its free
energy (see, for instance, Ref. [1])

F�T;V � � ÿkBT logZ ; �1�

where Z is the partition function defined as

Z �
�
exp

ÿÿ bH�p; q�� dG; b � 1

kBT
; �2�

and derive thermodynamic identities. Here, dG is the number
of states in the phase space volume element

dG � d3p1::: d
3pN d3 q1::: d

3qN

�2p�h�3N ; �3�

and N is the number of atoms in the system. In this way, the
microscopic substantiation of equilibrium thermodynamics is
given. The phase space distribution function takes the form
exp

�
b�FÿH� p; q���. In other words, the probability that the

system resides in the phase space volume element dG is

dP � exp
�
b�FÿH� p; q��� dG : �4�

[I am reasoning in terms of the classical (to be precise, quasi-
classical) statistical physics that rather accurately describes
the experiments discussed in Sections 2, 3. The reader will find
some remarks on the quantum formulation of the problem in
the Conclusion (Section 4).]

A different situation is encountered in the statistical
physics of nonequilibrium processes or physical kinetics.
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Although the kinetic equation describing the nonequilibrium
behavior of a rarified gas was derived byLBoltzmann as early
as 1872, there are still very few exact results applicable to
arbitrary systems in arbitrary nonequilibrium states. A major
leap forward was the discovery by L Onsager in 1931 of the
symmetry principle for kinetic coefficients describing the
behavior of a system under the influence of a small external
perturbation [2, 3]. This theory was further developed by
H B Callen and T A Welton [4], who proved in 1951 the
fluctuation-dissipation theorem relating fluctuations in a
system to dissipation under the effect of a small external
perturbation.

The situation began to change in the late 1970s after the
pioneering publications of GNBochkov andYu EKuzovlev,
who obtained rigorous equalities for fluctuations in an
arbitrary system brought into a strongly nonequilibrium
state by an external time-dependent impact [5±8]. In their
time, this far-reaching work did not attract the attention it
deserved, probably due to the difficulties encountered in its
experimental verification (I shall dwell on the causes behind
these difficulties below). It was appreciated later when
researchers took a fresh look at the problem and more
general equalities were obtained. In my opinion, the results
of C Jarzynski [9] andGECrooks [10, 11] are very important,
and I shall rely on them henceforth. Their theoretical
predictions have been validated in interestingÐeven if
scarceÐexperiments performed thus far.

2. Rigorous results of nonequilibrium statistical
physics

2.1 Bochkov±Kuzovlev and Jarzynski equalities
Let us consider a thermally isolated macroscopic (i.e.,
consisting of a large number of particles) system. Let
external forces deliver work to the system. Then, its
Hamiltonian will depend on parameter l that is, in turn, a
time-dependent one, H � H� p; q; l�t��. Let us further
assume that the work done on the system is small
compared with its total energy. This condition can be
realized in a natural way if the work is done on a small
part of the system (subsystem), e.g., on the contents of a
small cylinder with a movable piston (Fig. 1). Let parameter
l be constant and equal l0 up to an instant t � 0. Then, at
t � 0, the system resides in thermodynamically equilibrium
state with temperature T � 1=�kBb�. However, this macro-
scopic state corresponds to a variety of states of a system
with given initial values of momenta p and coordinates q.

Let the system have momenta and coordinates p0, q0 at an
initial instant t � 0 when its energy isH� p0; q0; l0� � H0. The
system moving in phase space in accordance with laws of
classical mechanics will pass into a certain state pf, qf by the
time tf, and its energy will be H� pf; qf; l�tf�� � Hf. The work

done on the system 2 is given by

W �
� tf

0

qH
ql

dl
dt

dt � H
ÿ
pf; qf; l�tf�

�ÿH
ÿ
p0; q0; l�0�

�
: �5�

However, the statistical sense is attributed to average work

hW i � 
Hÿ pf; qf; l�tf��ÿH
ÿ
p0; q0; l�0�

��
; �6�

with averaging over the results of the experiment performed
repeatedly with the same dependence l�t�.

The central point of the theory expounded here is that the
quantity hexp�ÿbW �i rather than hW i needs to be consid-
ered. The system having been in equilibrium at t � 0, its
distribution function is exp

�
b�F0 ÿH0�

�
, where F0 is the free

energy at the initial instant 3 t � 0. According to the definition
of the average, one has

exp �ÿbW ���� exp �b�F0ÿH0�

�
exp

�ÿ b�Hf ÿH0�
�
dG0

� exp
ÿ
bF0

� �
exp

ÿÿ bHf

�
dG0 : �7�

The main point of the proof is that the Jacobian of the
transformation from variables p0, q0 to variables pf, qf is unity
in accordance with the Liouville theorem (see Ref. [12,
par. 46]; therefore, dGf can be substituted for dG0:


exp �ÿbW �� � exp � bF0�
�
exp �ÿbHf� dGf : �8�

As a result, we arrive at the `Jarzynski equality' [9]:

exp �ÿbW �� � exp �ÿbDF �; DF � Ff ÿ F0 ; �9�

where Ff is the equilibrium free energy calculated with the
Hamiltonian Hf at temperature T. It should be emphasized
that Ff is by no means the free energy of the system at the
moment tf when the system is generally speaking out of
equilibrium. However, if parameter l remains (not necessa-
rily) constant for t > tf, the system sooner or later come to
equilibrium, while its temperature, owing to the large size of
the systemand the small energy imparted to it, will not change.
Then the free energy of the system will finally equal Ff.

If the final and initial values of parameter l coincide,
l�tf� � l�0�, i.e., in the case of a cyclic process, then DF � 0
and equality (9) reduces to the Bochkov±Kuzovlev equality
[5, 6]


exp �ÿbW �� � 1 : �10�

Figure 1. Schematic of the imaginary experiment.

2 The question of the definition of work is actually an intricate one, as

illustrated by a simple example. Let us consider the static problem of an

oscillator in an external field l: H�q; l� � q 2=2ÿ lq. Minimization gives

q � l; as l changes from zero to lf, the HamiltonianH changes from 0 to

ÿl2f =2. Then, if the work is defined by relationship (5), W�
W incl � ÿl2f =2. Bear in mind that, in our definition, the change in the

second term in H is included in the work; hence, the superscript incl.

However, a different formulation of the problem is equally feasible in

which the energy of the subsystem is taken to be q 2=2, and the second term

is related to the system doing work. Then, workW excl � l2f =2. Because the
second term in H fluctuates, W incl and W excl have different statistical

properties. The former definition of work is adopted in Ref. [9] and in the

present paper, and the latter was used in Refs [5, 6].
3 The assumption that the system obeyed the Gibbs distribution at the

initial instant of time implies that it was in contact with a bigger thermal

reservoir before heat insulation.
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Equations (9), (10) look very simple. However, they prove
rather unusual on closer examination. Recall firstly the
known properties of the work hW i. If parameter l changes
adiabatically slowly, i.e., time tf is large compared with all
relaxation times in the system, the process is reversible and
isothermal. In this case, one has

hW i � DF �11�

(see Ref. [1, par. 15]).
If parameter l changes rapidly, the entropy of the system

increases. In this case, `usual' statistical physics tells us only
that

hW i > DF : �12�

Here, however, we immediately encounter a paradox. Let
the subsystem on which work is done (gas in the cylinder) be
large enough, i.e., contain Ns 4 1 particles, and the work
hW i be on the order of the subsystem's energy, i.e., / Ns.
Then, fluctuations of hW i are relatively small,
jdW j=hW i � 1=

������
Ns

p
, and can naturally be neglected in

equation (9), which can be rewritten as exp �ÿbhW i� �
exp �ÿbDF �. Hence, the relation hW i � DF that is in
obvious conflict with inequality (12) because the work in a
nonequilibrium process may be different from DF by several-
fold.

The solution to this paradox is very nontrivial. The fact is
that large work fluctuations acquire significance in equality
(9) in the nonequilibrium case, when W fortuitously takes
small values compared with hW i. Such fluctuations are very
rare, but they make an important contribution due to the
exponential dependence of



exp �ÿbW �� on W. To under-

stand the type of fluctuations in question, let us consider our
cylinder and assume the process in it to be a two-fold
compression of the gas. At what fluctuation will the
compression work be small? If all molecules of the gas are
gathered by fluctuations in the half of the cylinder where we
wish them to be, no work whatever will be needed. But the
experiment will have to be endlessly repeated till the `right'
fluctuation occurs (see Section 2.3 for the estimation of the
number of required repetitions). It is such fluctuations that
contribute to Eqns (9), (10). I think that these equations are
the first exact relations of statistical physics in which large
fluctuations make a definitive contribution. Certainly, this
peculiarity of equalities (9), (10) hampers their verification on
macroscopic objects, which probably explains why the first
studies were not properly appreciated. Today, the situation
has changed. Mesoscopic objects are playing an increasingly
greater role in physics and technology, and the studies
mentioned acquire progressively greater importance.

To conclude this section, it is worth noting that formula
(9) leads to inequality (12). The inequality hexp xi5 exp hxi
may be used for the proof. However, this does not mean that
we thus proved the entropy increment law, because we
postulated that the system would eventually come into
equilibrium at temperature T.

Equality (9) may be utilized to calculate the first
fluctuation correction to DF. To this end, let us rewrite the
equality as

DF � ÿkBT log


exp�ÿbW �i ; �13�

represent the work in the form W � hW i � dW, and expand
(13) with respect to dW, restricting ourselves to a quadratic

term. As a result, one arrives at

DF � hW i ÿ b

�dW �2�

2
: �14�

This expression was obtained by Hermans [13] with the help
of a usual fluctuation±dissipation theorem.

2.2 Crooks reversal relations
The equalities derived in Section 2.1 are based on the fact that
the system of interest moves in phase space in accordance with
Hamilton's equations and therefore satisfies the Liouville
theorem. Other important relationships can be obtained
bearing in mind the reversibility of the equations of motion
(G E Crooks [10, 11]). Henceforth, I shall follow paper [14].

In order to obtain these relationships, the `direct' process
in which parameter l changes in accordance with the lA�t�
law should be considered along with the `reverse' process in
which l � lR�t� � lA�tf ÿ t�. In other words, lR�t� runs
through lA�t� values in the reverse order, from l�tf� to l0.
Let our system be in thermodynamic equilibrium before the
onset of the direct process. Let us again choose a trajectory
p0q0 ! pfqf in the phase space in which the work W is
delivered. According to formula (4), the probability of doing
such a work is given by

dP A � exp
�
b
ÿ
F0 ÿH� p0; q0; l0�

��
dG0 : �15�

Let us consider the reverse process in which parameter l
varies according to l � lR�t� � lA�tf ÿ t�. At t � 0, the
system resides in equilibrium at the parameter value lf. Let
us now consider the trajectory of the system in the phase space
with initial conditions p; q � ÿpf; qf at t � 0. Because the
HamiltonianH exhibits symmetry with respect to the change
in the sign of time, namely

H�ÿp; q� � H� p; q� ; �16�

the Hamiltonian at the initial moment will be equal toHf, and
the probability of this initial state takes on the form

dP R � exp
�
b�Ff ÿHf�

�
dGf : �17�

Next, variables �ÿp; q� in the `reverse' trajectory will clearly
run in the reverse order over the same values as � p; q� in the
direct trajectory (Fig. 2):ÿ

pR; qR
�
�t� �

ÿÿ pF; qF
�
�tfÿt� : �18�

2.5

p0; q0

ÿpf; qf

pf; qf

ÿp0; q0

p 2.0

1.5

1.0

0.5

ÿ0.5
ÿ1.0
ÿ1.5
ÿ2.0
ÿ2.5

0

0 1 2 3 4 5 q

Figure 2. Schematic representation of direct (solid curve) and reverse

(dashed curve) trajectories in phase space.
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Accordingly, the values of momenta and coordinates at t � tf
will be equal toÿp0; q0, and the Hamiltonian isH0; hence, the
work delivered is H0 ÿHf � ÿW.

Combining Eqns (15) and (17) and taking account of the
Liouville theorem, we arrive at the sought Crooks equation
for the probability distribution of direct and reverse trajec-
tories:

dP A�W �
dP R�ÿW � � exp

�
b
ÿ
Wÿ DFA

��
: �19�

In a reversible process, the probabilities are equal and
W � DF in accordance with relationship (11). However,
these probabilities may prove equal in a nonequilibrium
process, too, for a certain value of the work W. This value
gives the difference between the energies of two equilibrium
states. Equation (19) holds true in the absence of a magnetic
field that breaks time symmetry of H. Therefore, for this
equation to be correct in the presence of a magnetic field,
probabilities (19) should be calculated for its opposite
directions.

It should be noted that the value ofWd �Wÿ DF has the
sense of energy dissipation in a given realization of the
process. It is referred to as dissipated work. The mean value
of this work is positive: hWdi5 0, but in certain realizations
of the processWd may be negative. Equality (9) can be written
out in terms ofWd as


exp �ÿbWd�i � 1 : �20�

Let us show that equation (9) directly follows from
equation (19). To this effect, Eqn (19) should be rewritten as

exp �ÿbW � dP A�W � � exp �ÿbDF � dP R�ÿW �

and integrated over the entire phase space. Taking into
account that

�
dP R�ÿW � � 1, it gives equality (9).

2.3 How many times does an experiment need to be
repeated to verify the Jarzynski equality?
As mentioned in Section 2.1, rare fluctuations with work
values significantly smaller than hW i contribute to the
mean value of



exp �ÿbW �� for a sufficiently large

system. To find what these work values are, both direct
and reverse processes need to be considered [14]. The
probability distribution of different experimental realiza-
tions of the direct process, dPA � exp

�
b�F0 ÿH0�

�
dG0,

has a sharp peak in the phase space region close to the
hypersurface corresponding to the mean energy value,
H0� p0; q0; l0� � hE0i. We denote this region by GA

Typ. As a
result, the overwhelming majority of realizations of the
experiment will give the `typical' value of work in the
vicinity of hWAi. The distribution determining the average

exp �ÿbW �� is exp �ÿbW � exp �ÿ b�F0 ÿH0�

�
dG0. It has a

maximum in the still unknown phase space region GA
Dom

responsible for the dominant contribution to integral (7).
The same transformations as in the derivation of this
equation lead to

exp �ÿbW � exp �ÿ b�F0 ÿH0�
�
dG0

� exp
�ÿ b

ÿ
F0 ÿHf � pf; qf; lf�

��
dGf : �21�

The expression on the right-hand side of this equality is
proportional to the initial equilibrium distribution for the
reverse process, having a maximum near hWRi. This means

that the main contribution to


exp �ÿbWA�� comes from the

values close to the typical value hWRi of the work for the
reverse process. By analogy, one finds

GA
Dom �

ÿ
GR
Typ

��
; �22�

where superscript � denotes the change of the signs of all
momenta.

Now, we can calculate the probability P that the value of
W in a given realization of the experiment will be on the order
ofWDom. Then, the quantityN � 1=P stands for the number
of realizations (to an order of magnitude) of the experiment
needed to satisfy equality (9). Let us consider the direct
process. The probability of finding the value from GA

Dom in a
given realization of the experiment is given by

P A �
�
GA
Dom

exp
�ÿ b�F0 ÿH0�

�
dG0

�
�
GR
Typ

exp
�ÿ b�WR � DF A� ÿ b�Ff ÿHf�

�
dGf : �23�

In this transformation, we utilized the Crooks equality
(19), as well as formulas (16) and (22). Let us take into account
that W � hWRi in the small integration domain GR

Typ in the
last integral. It allows for the substitution W! hWRi. The
remaining integral is roughly equal to unity, by definition of
GR
Typ. Thus, P A � exp

�ÿ b�hWRi � DF A�� or, after the
introduction of dissipated work hWR

d i � hWRi � DF A, one
finds

N � 1

P � exp
ÿ
b


WR

d

��
: �24�

In other words, the number of necessary realizations of the
experiment is determined by an energy dissipation but, oddly
enough, in the reverse process. Clearly, the theory under
consideration implies that experiments should be performed
with energy dissipation on the order of several kBT, which
requires small but not necessarily mesoscopic systems;
practically speaking, they must be such so as to ensure the
observation of Brownian motion. However, the necessity of
multiple measurements creates difficulties. The system's
properties (i.e., its Hamiltonian) may change during such
repetitions, e.g., as a result of material fatigue.

Notice that the above formulas also hold for the reverse
process with the substitution A$ R.

3. Experimental verification of the theory

3.1 Experiment with a torsion pendulum
Let us begin the discussion of the experimental verification of
the theory from a direct and demonstrative experiment
reported by Douarche, Ciliberto, Petrosyan, and Rabbiosi
[15]. Their experimental device (Fig. 3) was a Brownian
torsion pendulum composed of a bronze strip (length 10 mm,
width 0.75 mm, thickness 50 mm, and mass 5:9� 10ÿ3 g) and
a glass mirror with a gold surface (length 2.25 mm, width
7 mm, thickness 1.04 mm, and mass 4:02� 10ÿ2 g) glued in
the middle of the strip. The elastic torsional stiffness of the
strip was C � 7:50� 10ÿ4 N m radÿ1, the moment of inertia
of the suspension I � 1:79� 10ÿ10 kg m2, and the eigenfre-
quency of pendulum oscillations in a vacuum f0 � 326:25 Hz.
The pendulumwas enclosed in a cell filled with a viscous fluid

628 L P Pitaevskii Physics ±Uspekhi 54 (6)



to increase friction and ensure thermal contact. As a result,
the eigenfrequency decreased to f0 � 213 Hz. Relaxation
time of the liquid oscillator in the presence of the fluid and
in a vacuum was trelax � 23:5 and 666.7 ms, respectively.
Notice that the device had macroscopic dimensions alto-
gether.

The role of parameter l in this experiment was played by
the moment M of forces applied to the pendulum. It was
created by means of electric current J delivered through the
strip to the two coils glued behind the mirror. The whole
device was positioned between analogous poles of two
permanent magnets; due to this, the flowing current created
the moment M / J. The mirror was illuminated by two laser
beams, their interferencemaking possible themeasurement of
the pendulum rotation angle y. The moment M of forces
varied in experiment up to a certain maximum value Mmax

over time t. In each realization of the experiment, the workW
was calculated for the direct and reverse processes using
formula (5) reduced to

W � ÿ
� tf

0

_My dt : �25�

The multiple repetition of the experiment allowed the
probability distributions of W to be determined. They are
shown in Fig. 4 for two different parameters of the process
(see cases 1 and 3 in the table). In this experiment,DF could be
calculated in advance: ifM0 � 0, then

DFcalc � ÿM 2
max

2C
; �26�

because in an equilibrium isothermal process only the elastic
energy of the pendulum varies. The results of measurements
under different experimental conditions are presented in the
table.

Clearly, the results of this laborious experiment are in
satisfactory agreement with the theory. However, the linear
oscillator for which the difference DF between the free
energies is known beforehand cannot be regarded as a
sufficiently general system. Moreover, the observed fluctua-
tions of the work obeyed the Gaussian distribution within the
accuracy of the measurement. This means that large fluctua-
tions, the account of which is the most nontrivial part of the
theory, made no substantial contribution in the above
experiments.

3.2 Experiments with ribonucleic acids
3.2.1 DNA and RNA. It turned out that experiments with
natural microscopic springs created in the course of the
evolution of living organisms enable extraction of much
more useful information than those with artificially prepared
working substances. Such springs are represented by ribonu-
cleic acids (RNA) and deoxyribonucleic acids (DNA) playing
the key role in the storage and transfer of genetic information.

ÿ � � ÿ

Current J

Magnet
Mirror

Bronze strip

Laser beams

Figure 3. Torsion pendulum to check the Jarzynski equality. Schematic of

an experimental setup [15].

ÿ26 ÿ25 ÿ24 ÿ23 ÿ22 ÿ21
bWA, bWR

10ÿ2

P

10ÿ3

a

A

R

bWA, bWR

ÿ7.5 ÿ7.0 ÿ6.5 ÿ6.0 ÿ5.5 ÿ5.0

10ÿ2

P

10ÿ3

b

A

R

Figure 4. Probability distributions of direct (WA, circles) and reverse (WR, squares) processes Nos 1 (a) and 3 (b) (see table) [15].

Table. Results of measurements for five implementations of the torsion
pendulum experiment.�

No. t=trelax Mmax ÿbDFcalc ÿbDFA bDFR ÿbDF� b jDFcycl j

1 8.5 11.9 23.8 24.1 24.5 24.1 1.0

2 0.85 6.1 6.1 5.6 6.1 6.2 1.0

3 3.5 6.1 6.1 6.1 6.3 5.7 0.4

4 2.8 4.2 2.7 2.6 2.8 2.2 0.3

5 4.2 1.2 0.22 0.23 0.24 0.22 0.04

� The ratio of the time of experiment to the relaxation time, t=trelax, and
the maximum moment Mmax of forces in terms of [pN m] units are
presented. The cell was élled with a viscous êuid. The value of DFcalc was
calculated by Eqn (26). DFA andDFR were found by using the measured
work values to calculate DF according to the Jarzynski equality (9) for
the direct and reverse processes, respectively. The value of DF� was
determined by Eqn (19) from the intersection of work probability
distribution curves for the direct and reverse processes. Theoretically,
the last three values must coincide with DFcalc. The quantity DFcycl

characterizes a change of the free energy calculated from Eqn (9) for a
cyclic process. Theoretically, it must be zero.
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RNA and DNA are similar in their overall structure. They
comprise two long helical strands of organic compoundsÐ
nitrogenous bases. The two individual strands of DNA are
folded into a double helix, whereas the single strand of typical
RNA folds in a hairpin loop fashion. Figure 5a shows the
RNA P5abDU segment structure for unicellular infusoria
Tetrahymena thermophila. This RNA segment (with modifi-
cations) was utilized in experiments [16].

We are interested in the mechanical properties of this
RNAmacromolecule. To begin with, it should be emphasized
that such a molecule, if left to its own resources, tends to fold
into itself (Fig. 5b). However, such a folded molecule can be
straightened like a spring by applying a stretching force to its
free ends. This implies that some work needs to be done.
Notice that such natural springs are characterized by high
quality.While the straightening energymay be on the order of
several kBT (at room temperature), a much higher energy is
required to rupture the molecule, guaranteeing the conserva-
tion of genetic information.

3.2.2 Experimental setup.A few studies reported thus far were
designed to verify the theory under discussion in experiments
with the use of RNAmolecules [16, 18±21]. We shall consider
here experiments [16, 19, 20] that yielded the most detailed
information (see also the interesting popular article [22]).
Figure 6 depicts the setup employed in these experiments.
Measurements of fluctuations of the work needed to unfold
and refold the single-stranded RNA molecule call for having
a device performing such deformation. The parameters to be
measured are the displacement of the molecule's ends and the
force acting on them.

First and foremost, it turned out that the length of a RNA
segment chosen for the measurement (ca. 20 nm) was too
short to be manipulated straightforwardly. 4 Therefore,
flanking DNA `handles' had to be attached to the two free

ends of the RNAmolecule by means of specific enzymes. The
free ends of the DNA segments were in turn glued to
polystyrene beads 2,000±3,000 nm in diameter. The RNA
strand tethered to the beads was immersed in an aqueous
solution within a transparent cell. The lower bead anchored
on a glass micropipette was rigidly coupled to the cell, while
the upper one was confined by an `optical trap', i.e., in the
focus of two oppositely directed laser beams that pulled in the
dielectric material of the bead. The position of the cell was
varied with the help of a piezoelectric device (actuator), while
the upper end of the DNA glued to the upper bead remained
virtually motionless. The displacement was governed by a
level gauge consisting of a laser, whose beam was delivered
through a lightguide to the lens in the upper part of the cell,
and a detector. In this way, RNA stretching could be
measured. The measurement of the force encountered
greater difficulties that were overcome by a trick described
in the study by Smith, Cui, and Bustamante [23].

Let the RNA unfolding force be applied to the upper
bead. It will displace the bead in the optical trap in the vertical
direction, but the displacement will be too small to be
measured. However, it is possible to directly evaluate the
force by measuring the light intensity distribution behind the
beam-focusing lens. The momentum transferred from the
RNA to the bead must be carried away by the light scattered
from the bead. The momentum carried away per unit time in
the direction n in the solid angle don is equal to
DP � �n1=c� I�n� don=4p, where I�n� is the radiation intensity
in this angle, and n1 is the refraction coefficient of the fluid
within the cell. Projection of DP on the focal plane is
DP? � �n1=c� I�n� don=4p sin y1, where y1 is the angle with
respect to the optical axis at which the beam leaves the lens
focus. It follows from the equations of geometric optics that
such a beam leaves the lens at distance r? from the axis,
described by the equation r? � RLn1 sin y1, where RL is the
lens focal distance. The law of energy conservation asserts
that I�n� don=4p � J�r?� d2r?, where J�r?� is the energy of
radiation leaving the lens per unit area, and d2r? is the area
on the plane behind the lens through which the light from the
solid angle don passes. Elimination of sin y1 from these
equations and their integration yield the force acting on the
bead:

f? � 1

c

�
J�r?� r?

RL
d2r? : �27�

Thus, the force can be evaluated from the intensity
distribution of the light passing through the lens, which is
measured by the detector. Notice that the role of the external
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Figure 5. (a) The structure of an RNA segment from Tetrahymena

thermophila ribosomes [16]. Capital letters denote nitrogenous bases.

(b) Folded RNA [17].

C

B

A

Figure 6. Experimental setup [19]: AÐ the bead attached to the cell; BÐ

the bead held in the optical trap, and CÐthe lens of the laser level gauge.

4 Specifically, the distance between the beads must be large enough, so that

the effect of van der Waals interaction can be neglected.
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parameter l in these experiments is played by the displace-
ment of the end of the RNAmolecule rather than themoment
of forces, as in torsion pendulum experiments.

3.2.3 Discussion of experimental results.Let us first discuss the
orders of magnitude of the values with which an experimenter
has to be concerned. The maximum unfolding of the
molecules was 50±250 nm, and the maximum unfolding
force amounted to 15±20 pN. Slow and fast deformations
corresponding to a reversible process were effectuated at a
rate on the order of 1±5 and 30±50 pN sÿ1, respectively.

The order of magnitude of work values in these experi-
ments varied in a range of (50±200) kBT, and dissipated work
amounted to 50 kBT. The unfolding of the molecules was
viewed as a direct process, and the refolding as a reverse one;
hence, notations U and R in the figures.

Equality (9) was checked up in Ref. [20] by comparing the
DF value calculated using this equality with an independently
measured value. 5 Special experiments were designed to find
DF in which average workWA; rev was measured during slow,
i.e., reversible, deformation of the molecule. This work
coincided with DF. For the RNA modification used in this
experiment, DF � 60:2� 1:6 kBT. The fast deformation
experiments with a rate of 34 and 52 pN sÿ1 were also carried
out. Two estimates of DF were obtained, one using equality
(9) (with the resultant value denoted by WJE) and the other
from the `fluctuation±dissipation' equality (14) (the resultant
value denoted byWFD). The results of comparisons are given
in Fig. 7. Obviously, WJE coincides with DF within the
accuracy of the experiment, whereas WFD and especially
WA � hW i are essentially different from it.

The setup described in Ref. [20] was used later [16] to
verify the Crooks equality (19) in experiments with various
RNA molecules. Figure 8 presents the results of unfolding
and refolding experiments using an RNA segment of human
immunodeficiency virus (this object is known to undergo
nonequilibrium deformation at a rate convenient for the
purpose of experiment). The value of W at the point of
intersection of the curve describing the direct and reverse
processes determines DF (in the present case,
DF � 110:3 kBT). Notice that the coincidence point is
independent of the deformation rate, in agreement with
equation (19). Actually, this method for determining DF has

practical implications, since too large a relaxation time may
hamper the achievement of thermodynamic equilibrium.

Of great interest are experiments in which a high degree of
departure from equilibrium was reached. In this case, the
work distribution function was broad and essentially non-
Gaussian, with long tails. These experiments were performed
using the RNA of wild-type andmutant strains ofEscherichia
coli. The results are demonstrated in Fig. 9. In either case, the
regions where curves U and R overlap were small, while
dissipated work was large, especially for mutants. Two wild-
type and five mutant molecules were subjected to deforma-
tion 900 and 1200 times, respectively. The inset to Fig. 9
shows the values of log

�
PU�W �=PR�ÿW �

�
corresponding to

W=kBT in accordance with the Crooks reversal relation. The
slope of the experimental curve, 1.06, is in excellent agreement
with the theory.
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Figure 7. Comparison of different DF �WA; rev estimates (see the text).

Curve AÐexperiment with the deformation rate of 34 pN sÿ1, and curves

BÐwith the deformation rate of 52 pN sÿ1 [20].

5 In this experiment, deformation was produced at a constant pressure.

Due to this, DF was practically identical with the change in the molecule's

Gibbs thermodynamic potential DF.
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Figure 9. Work probability distributions for unfolding (U) and refolding
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4. Conclusion

I have discussed in the present article only one of the possible
formulations of a problem in nonequilibrium statistical
physics, namely that of fluctuations in a system driven away
from thermodynamic equilibrium by a time-dependent
external impact. My choice is dictated first and foremost by
the fact that the theory of interest is rather simple and can be
verified in relatively simple experiments. However, this is not
the sole possible formulation of the problem. For example,
the rather general relations have been obtained in the
practically important problem of fluctuations in stationary
but far-from-equilibrium systems [24]. In this paper, I
discussed only real experiments. However, there are many
studies devoted to the verification of analytical relations in
numerical simulations. Sometimes, such calculations give
evidence of the existence of new exact relations.

I purposely presented all conclusions in the framework of
classical statistical physics. Their generalization for the
quantum regime encounters difficulty. A key notion in the
classical theory is that of the trajectory in phase space along
which the work is calculated. This notion makes no sense in
quantum mechanics; furthermore, it is impossible to intro-
duce the work operator because the work cannot bemeasured
in a one-shot manner. The correct quantum definition of
work has the form W � Ef ÿ E0, where E0 and Ef are the
energy values measured at moments t � 0 and t � tf in one
and the same realization of the process. Based on this
definition, Campisi, H�anggi, and Talkner proved the quan-
tum version of equalities (9)±(10) (see Ref. [25]). A rather
detailed discussion of the quantum approach to the phenom-
ena under consideration can be found in thework of Esposito,
Harbola, and Mukamel [26].

I believe quite enough has been said to convince the reader
that nonequilibrium statistical physics is an important area of
theoretical and experimental research. Its significance is
increasing every day, in parallel with the development of
nanoscale physics. Nonequilibrium statistical physics is
beginning to find applications even in such a field as
quantum informatics (see, for instance, Ref. [27]). It has
proved equally useful for physicochemical research in
biology.

I am grateful to I R Arkhipova for the discussions on the
section addressing biological issues.
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