IMPOSMIBLE
) CRYSTALS

Quasicrystals started out as a
mathematical game. But one day
the game became real.

BY HANS C. VON BAEYER

do not know what I may appear to the world; but to myself I
seem to have been only like a boy, playing on the seashore.”
Thus Sir Isaac Newton, the patriarch of modern physics,
defined his life’s work. And in so doing he revealed a truth
about his vocation that is rarely apparent to nonscientists.
Too often the playful child in the center of the enterprise is
hidden by a wall of abstruse theory and an impenetrable welter of
technology. But occasionally we see a little face peeking out from
behind the mask of profundity, and from such rare glimpses we
gain a better insight into the true nature of science than from
volumes of erudite explanation.

The vital role of scientific playfulness is vividly illustrated by the
story behind the discovery of a new class of materials known as
quasicrystals. Quasicrystals are three-dimensional structures, but
their antecedents exist in two dimensions, in the plane. The story
begins in January 1977, when Martin Gardner devoted his Mathe-
matical Games column in Scientific American to the question of
how to cover a plane with tiles. It's a problem as ancient as Greek
mosaics, yet Gardner’s essay sparked a flurry of research that
brought tiling to the forefront of modern physics.

The mathematical analysis of tiling begins with the observation
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There are only a few basic shapes, such as squares, regular hexagons, and triangles,
that can fill a plane completely without leaving gaps.

that a plane—a bathroom floor, for ex-
ample—can be covered, without gaps,
by tiles in the shape of rectangles, trian-
gles, or hexagons, but not by circles or
stars or even, significantly, regular pen-
tagons. No matter how you try to join
pentagonal tiles, they will always leave
gaps. To convince yourself of that, just
cut out a pile of identical pentagons and
play with them on your desk. You will
soon develop a distinct antipathy to-
ward the five-sided monsters.

A regular pentagon has fivefold sym-
metry, which means that if you rotate
the pentagon about its center, it looks
the same after every one-fifth of a rota-
tion. Similarly a square has fourfold
symmetry, a hexagon sixfold, and so on.
Any shape that tiles a plane can impart
its symmetry to the whole tiling pattern:
you can rotate a hexagonal tiling about
the center of any hexagon, for example,
and see that the whole pattern has
sixfold symmetry. If you could use a
pentagon to tile a plane, then the tiling
could exhibit fivefold symmetry. But, of
course, pentagons are prohibited.

Using two tile shapes instead of one,
however, Gardner reproduced intrigu-
ing tiling patterns that did indeed dis-
play fivefold symmetry: whole regions
could be rotated so that the arrangement
of tiles within looked the same every
one-fifth of a rotation. One pattern, for
example, contained groups of tiles that

“looked like five-pointed stars. It was as

if pentagons were defining the rules
without actually being present.

Gardner learned how to construct
these puzzling tilings from Roger Pen-
rose, a British mathematical physicist.
Penrose has a knack for playing tricks
with geometry. In his youth he and his
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father drew an impossible object, the
“Penrose staircase,” which spirals round
and round without getting higher or
lower. The Dutch artist M. C. Escher
used their mind-boggling concept in a
famous lithograph, Ascending and De-
scending, which shows a line of men
going both up and down the stairs
simultaneously.

“Penrose tiles” are equally intriguing.
Neither of the two basic shapes is a
pentagon, and they do not combine 1o
form a pentagon.’But the shapes are like
mischievous pentagonal offspring: they
have angles and proportions that can be
found in a pentagon and its diagonals,
and when assembled on a plane the two
proudly display the fivefold symmetry
of their parent.

The simplest Penrose tiling uses two
diamond shapes, one fat and the other
skinny. The fat shape has interior angles
of 72 and 108 degrees, the interior angle
of a regular pentagon. The skinny shape

has interior angles
of 144 and 36 de-
grees, an angle il
formed by the
pentagon’s diago-
nals. While all the
tile edges are of
equal length, the ratio of the area of the
fat tiles to that of the skinny tiles is

108°

(1 +V/5)/2, which equals approximately
1.618. This happens to be the ratio of
the length of a diagonal to that of a side
of a regular pentagon. It is also the
famous “‘golden ratio,” a measure re-
vered as a standard of harmony by both
the ancient Greeks and a legion of Renais-
sance painters and architects. As we
shall see, the golden ratio and pen-
tagonal symmetry are embedded in the
design of Penrose tilings in many won-
drous ways.

Any Penrose tiling can be constructed
in an infinite variety of patterns. Every
variation is nonperiodic, and therein lies
its allure. Unlike the individual bricks in
a wall or the pickets in a fence, no group
of one or more tiles can be repeated
indefinitely to generate the whole pat-
tern. At first glance Penrose tilings may
look periodic. Groups of tiles do form
such repeating motifs as five-pointed
stars. But a more careful look reveals
that the spacing between these motifs is
irregular, and some are rotated with
respect to others.

Naturally, when researchers saw these
patterns balance teasingly between order
and chaos, they were drawn to them
like children to a brand-new toy. Over
the next half-dozen years many Penrose
tilings were generalized to three dimen-
sions, using solid polyhedrons that fill
space without gaps. Like their counter-
parts in the plane, the three-dimensional
tilings were also nonperiodic.

One of the enchanted players was
Paul Steinhardt, a physicist at the Uni-
versity of Pennsylvania who is well aware
of the research value of playthings. Stein-
hardt’s office is filled with toys. Scat-
tered among the books and computers
that are the standard trappings of the
scholar’s craft is every conceivable kind
of model, from the crudest cardboard
cutouts untidily held together with tape
to. expensive computer graphics. Any-
thing at hand is pressed into service:
coat hangers, foam balls, dice from the
game Dungeons and Dragons, acetate
sheets, Tinkertoy pieces, toothpicks, con-
struction paper. Steinhardt is a natural
victim for the kind of game that can be
played with three-dimensional nonperi-
odic tilings.

Indeed, in 1984, he and one of his
graduate students, Dov Levine, became
so caught up in the game that they took
the analysis one step further: they pro-
grammed their computer to calculate
the diffraction patterns these theoretical
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structures would produce if the build-
ing blocks were real atoms instead of
imaginary tiles.

Diffraction patterns are the windows
physicists use to peer inside materials.
When beams of electrons or X-rays pass
through a solid material, they are dif-
fracted, or scattered, by the atoms in-
side. The diffracted beams can be pho-
tographed head-on, and the images they
form on the film reflect the atomic ar-
chitecture of the solid. By themselves
diffraction patterns are not much to
look at. They consist of mysterious ar-
rangements of dots and streaks that
bear little resemblance to the solids they
portray. But to the initiated they are as
recognizable as family snapshots.

The most distinct diffraction patterns
contain sharp, isolated dots. These are
the portraits of crystals, and they owe
their clearly defined spots to the period-
icity of the underlying structure. When
the beams hit the atoms in a crystal,
they scatter in all directions; but in a

few preferred directions, depending on

Roger Penrose made mysterious new tiling patterns from
the fat and skinny diamonds shown here.

the arrangement of atoms, the diffract-
ed beams reinforce one another, produc-
ing bright spots on the film. A crystal
is a little like an orchard planted in a
rigid geometric grid. Most lines of sight
are blocked by trees, but you can see
right through to the other side in a few
directions.

In another class of diffraction pat-
terns the dots are either spread out into
fuzzy rings or altogether absent. These
are the images formed by glassy materi-
als. Glasses, in contrast to crystals, are
made of atoms or molecules stuck to-
gether randomly; they’'re more like ran-
dom forests than well-planned orchards.
Because they offer no preferred direc-
tions for diffraction, the patterns they
produce contain no sharp dots.

Until the discovery of quasicrystals, it
was thought that there were only these
two classes of solid materials, corre-
sponding to these two types of diffrac-
tion patterns. If the pattern contained
sharp dots, the material was a crystal; if
the dots were fuzzy or absent, the mate-

rial was a glass. Every pure solid in
nature, from gemstones to metals to
DNA, was either crystalline or glassy.

Levine and Steinhardt called that neat
scheme into question when they aimed
a simulated X-ray beam at one of their
imaginary solids. The computed diffrac-
tion pattern contained a surprise: un-
mistakable sharp points. Since the atomic
arrangement of their solid was nonperi-
odic, it should have produced the fuzzy
diffraction pattern characteristic of glassy
substances.

This contradictory result required an
explanation, of course, and to under-
stand what was going on the two physi-
cists went back to the source of their
computer model: the two-dimensional
Penrose tiling. They also consulted
Robert Ammann, a recreational mathe-
matician. Ammann’s work led them to
the discovery that the spacing between
the tiles was neither periodic nor ran-
dom but something in between, an order
called quasiperiodic.

This is a subtle kind of order, which
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is revealed, Ammann found, only by
reference to a pentagonal grid. In this
grid the rulings are not perpendicular,
like those of normal graph paper, but
parallel to the five sides of a pentagon.
The five sets of intersecting lines, each
set rotated 72 degrees from the next,
produce a graph paper with fivefold
symmetry.

The tricky part of Ammann’s proce-
dure was to draw one of these fivefold
grids over a Penrose tiling so that a line
from each of the five sets passed
through each and every tile; it’s a tough
thing to do on a nonperiodic tiling. But
Ammann figured out how to draw such
a grid by adjusting the spacing between
parallel lines to correspond to an order
with an old mathematical pedigree: The
distance between “Ammann lines” is
one of two lengths, either a longer
length, a, or a shorter length, b. The
ratio of the longer to the shorter is the
golden ratio. And the two lengths suc-
ceed each other in a predictable, fixed
order—an infinite series known as the
Fibonacci sequence.

Just as a Penrose tiling contains no
group of tiles that can be repeated to
generate the entire pattern, the Fibonac-
ci sequence contains no shorter string
of a’s and b’ that can be repeated to
generate the whole. Yet the sequence
can be produced by following two sim-
ple rules. Leonardo Fibonacci, a thir-
teenth-century mathematician, defined
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Thanks to the
recreational
mathematics of the
Middle Ages,
Steinhardt and Levine
finally had an
explanation for their
imaginary solid.

those rules when he considered the ide-
alized propagation of rabbits. The first
rule: Start with one adult rabbit, a, and
assume that at the end of every year
each adult has a baby, b, which you
record right after its parent. Second rule:
Every baby grows into an adult the year
after it is born. (Fibonacci, a realist,
made each letter stand for a pair of
rabbits. Steinhardt and many others sim-
plify by pretending that a single parent
can have a baby, and we follow the
simpler description here.)

To get the first term of the sequence,
you start with one adult: a. In the sec-
ond year the adult has a baby, and the
sequence goes to two terms: ab. In the
third year the original adult has another
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Over a Penrose tiling it is possible to draw five sets of parallel lines so that one

line from each set passes through each and every tile. These lines reveal a
hidden order, which is discussed in the text above.
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baby, which is recorded after the adult,
and the first baby grows up, to give you
aba. In the fourth year you add a baby
after each adult, and change the baby
that was already there to an adult, get-
ting abaab. If you keep going year after
year, you get abaababa, abaababaabaab,
and so forth. Another way to generate
the sequence is to add the sequences of
the two previous years, writing last year’s
sequence first. And so the sequence
does not change from year to year; it
just grows longer. If you write down the
total number of rabbits in each vyear (1
in year one, 2 in year two, 3 in year
three, 5 in year four, and so on), you get
a string of integers that make up the
famous Fibonacci sequence (1, 2,3, 5, 8,
13, 21, 34, 55, 89 . . ), in which each
term is the sum of the previous two.
And again the golden ratio rears its
beautiful head. As the series progresses
the ratio of any two successive terms
approaches 1.618.

Obviously Fibonacci was onto some-
thing. Nearly eight centuries ago he in-
vented a sort of one-dimensional Pen-
rose pattern, a sequence that while not
periodic is not random either. There is a
perfectly rigorous prescription for pre-
dicting what the next member of the
sequence will be. Thanks to the recrea-
tional mathematics of the Middle Ages,
Steinhardt and Levine were onto some-
thing, too. They finally had an explana-
tion for the diffraction pattern of their
imaginary solid. Their discovery
amounted to the demonstration that,
contrary to established belief, periodici-
ty in three dimensions was not neces-
sary for producing diffraction spots—

"quasiperiodicity was quite sufficient.

But their quasi-
periodic solid had
an awkward feature:
the dots in the diffrac-
tion pattern were ar-
ranged with fivefold
symmetry. To tradi-
tional crystallogra-
phers, such a pattern
is simply unaccept-
able. It is a fundamen-

tal tenet of their science. Crystals can- :

not produce diffraction patterns with

fivefold symmetry because the underlying

arrangement of atoms cannot have pen-
tagonal symmetry, any more than bath-
room floors can be tiled with pentagons.

So whatever Steinhardt’s imaginary

solids were, they were not crystals. But

TEINHARDT, UNIVERSITY OF PERNSYLVANIA
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- Quasicrystal

ctron beams or X-rays paint the recognizable portraits of solid matter. As the beams pass through the solid they are
tered by the atoms within and emerge in a pattern characteristic of the material. Crystals divide the beams into
an, geometric patterns of sharp dots. Glasses produce patterns with fuzzy dots or rings. Quasicrystals produce an
nishing amalgam: dots arranged in a pattern that no crystal on Earth could produce. The pattern shown here, from
eal metallic alloy, is the one that tlpped off physucnst Paul Steinhardt that quasicrystals may actually exist.

DISCOVER * FEBRUARY < 1990 75




the discrete spots in the diffraction pat-
terns showed they were not glasses ei-
ther. Their underlying structure com-
bined properties of crystals with those
of glasses; the theoretical substances
were like mammals that lay eggs, the
platypuses of physics. Steinhardt de-
cided to call them quasicrystals, and
added them to the growing list of amus-
ing ideas that sprang from Penrose’s
mathematical recreation.

ut then the incredible happened.
In the fall of 1984 Steinhardt
was on leave at the IBM re-
search center in Yorktown
Heights, New York. One day a
colleague, Harvard physicist David Nel-
son, came into the office with exciting
news. He put on the table a small copy
of a diffraction image made with a real
alloy of aluminum and manganese. Nel-
son explained that a team of researchers
at the National Bureau of Standards had
made the picture, and he pointed out
the unusual appearance of the pattern
of dots: an obvious fivefold symmetry.

¥

spacing between

In his office at the University of Pennsylvania, Steinhardt builds a three-

In the closet lurked a
skeleton: no one could
think of a way that
millions of real atoms
could arrange
themselves in the
intricate patterns of
quasiperiodicity.

Steinhardt’s pulse guickened. The pic-
ture looked amazingly similar to a com-
puter simulation he and Levine had pro-
duced and not yet published. Levine
happened to be visiting from Philadel-
phia that day. Immediately the three
scientists, as excited as boys playing on
the seashore, set to work measuring the
dots on an enlarge-

o o

dimensional cousin to the mischievous Penrose tiles.
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ment of the real photograph and com-
paring the results with the computer
printout. Steinhardt recalls that he knew
what the answer would be even before
the measurements confirmed it. The two
pictures agreed with each other.

The moment of truth, in science,

~ comes when theory confronts experi-

mental evidence. Agreement between
the two is the ultimate arbiter of valid-
ity. Nothing else matters. The compari-
son of data with calculations usually
proceeds in bits and pieces, and truth
emerges gradually from the confusion
that surrounds all creative effort. But
when the moment of truth arrives in an
unexpected flash, as it did that day at
IBM, it illuminates and energizes the
scientific enterprise for years to come.

Thus a new field of solid-state phys-
ics, the science of quasicrystals, was
born. It grew up quickly. In short order
more than a hundred alloys with five-
fold symmetry were discovered; seven-
fold, ninefold, elevenfold, and other pre-
viously forbidden symmetries proved to
be possible; scholarly symposia were
convened, and fat monographs were
published.

But in the closet there lurked a skele-
ton—a potentially fatal flaw in the whole
scheme. While researchers were begin-
ning to understand the architecture of
two- and three-dimensional quasiperi-
odic tilings, no one could think of a
mechanism by which millions upon mil-
lions of real atoms could arrange them-
selves spontaneously in those intricate
patterns.

Anyone who tries to assemble Pen-
rose tilings quickly realizes that it’s not
easy. You have to think ahead, and keep
the whole pattern in mind when adding
a tile; otherwise there is trouble. If you
make a mistake, you have to undo a lot
of work that has gone before. The prob-
lem is that while there are local rules, or
instructions for fitting a tile into a par-
ticular niche, these rules are not suffi-
cient to build the entire pattern. It seems
necessary to augment them with global
rules that force you to plan ahead and
check the configuration of tiles at far
distant points. And between 1984 and
1988 the conviction grew that perfect
quasiperiodic tilings could not be con-
structed with local rules alone.

Local rules for adding tiles are analo-
gous to forces that attract and hold new
atoms to the surface of a growing quasi-
crystal; they are plausible ingredients in
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An alloy of aluminum and lithium, discovered in a search for new aerospace materials, has the familiar diamond-shaped faces

g M

of a quasicrystal. Each crystal, among the largest yet made, measures about a quarter-inch across.

the growth mechanism. Global rules are
not. The atoms on a growing surface do
not plan ahead, and they do not check
the orientation of distant surfaces. They
respond only to the interatomic sticking
force, which is electrical in origin, of
their immediate neighbors. If quasi-
periodic patterns could be constructed
only with the help of global rules, they
could not be assembled by real atoms in
real alloys, and quasicrystals could not
exist in nature.

The problem was so serious that re-
searchers began shifting their attention
to more conventional explanations of
the observed diffraction patterns. The
two-time Nobel laureate Linus Pauling,
for example, championed an arrange-
ment of ordinary crystals called twin-
ning. Twinned crystals grow from sepa-
rate origins and penetrate each other at
odd angles, such ‘as 72 degrees. This
might produce a diffraction pattern with
spurious fivefold symmetry, even
though the underlying structure was
conventional. Other researchers, includ-
ing Steinhardt himself, studied glassy
structures with tiny embedded crystal-
line fragments. These fragments, it was
thought, might produce a diffraction
pattern with spots almost as sharp as
the dots from crystals, even though the
overall structure was glassy.

But then, in 1988, playfulness paid
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off .once more. George Onoda, an IBM
ceramics expert, started toying with about
200 Penrose tiles. Unconvinced by the
claims that he wasn’t supposed to be
able to do it, he learned how to assem-
ble flawless tilings of any size he wished
using strictly local rules. “1 approached
it as a puzzle,” he says, “as a challenge
to try to prove the naysayers wrong.”
Onoda showed Steinhardt his proce-
dures, and the two of them fiddled
around with the tiles for a couple of
hours. Steinhardt simplified Onoda’s in-

sights to a set of rules that force the .

vertices of the tiles into one of the eight
possible combinations found in a per-
fect Penrose tiling. With the help of two
other researchers, he then hammered
out a mathematical proof, corroborated
by a computer simulation of a million
tiles, that quasiperiodic structures can
indeed grow naturally—at least in two
dimensions.

Following these rules, you can build
a Penrose tiling by adding tiles to a
growing boundary. The rules specify
which type of vacancy to fill first and to
choose randomly if there is more than
one equivalent vacancy, which of the
two tile shapes you should use in every
case, and which way it should be
turned. You don’t have to pay attention
to any distant part of the pattern to
assemble a tiling, any more than an

atom has to know what’s going on some-
where else before it decides which way
to turn and attach to its neighbors.

For a complete theory of quasicrys-
tals the local rules must be generalized
to three dimensions, and they must be
shown to correspond to actual atomic

forces. Neither of these tasks has been .

achieved vet, but Steinhardt, for one,
believes they will be.

In the meantime, experimentalists
have been busy. They continue to re-
port bigger, more perfect quasicrystals
and are diligently measuring their phys-
ical properties. No one knows what to
expect, for none of their vast experience
with crystals and glasses permits them
to make confident predictions about qua-
sicrystals. Quasicrystalline alloys, because
of the intricate interlocking of their con-
stituents, might turn out to be harder
than crystals and therefore might be
used as replacements for industrial dia-
monds. Or they might end up at the
heart of novel electronic devices as yet
undreamed of. Who knows? Research-
ers are going to have to play around
with them a bit and see what they can

do. L

Hans C. von Baeyer, a professor of phys-
ics at the College of William and Mary,
won a AAAS-Westinghouse Award for
science journalism in 1989.
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