HW#4 (due 02/27/12)

Reading:

- 1) Omar (0) Ch. 4
- 2) Handout 4: D. Jin, "a Fermi gas els atoms"

Problems:

- 1. 0 Pr. 2
- 2. a) Show that $6 = \frac{he^2T}{m}$ in Drude's model, where T is the collision time.
 - b) Using Eq. (4.32) in 0, derinee the vatio between the ratio between the ratio of K and thermal conductiveity K and electrical conductiveity 6.
- 3 Show that the Fermi-Dirac distribution reduces to the dassical Boltzmann distribution:

what are the conditions under which this expansion is valid?

4. Derinee the nome function of a free electron confined to a 3D culic box of side L.

1

5. O Pr. 6
6. O Pr. 7
7. Kittel Ch. 6 Pr. 4 (see below)
8. Kittel Ch. 6 Pr. 5 (see below)
9. please describe the main
9. please in Handout 4. Use a points in Handout 4. Use a minimum of 4 sentences in minimum of your response.

- 4. Fermi gases in astrophysics. (a) Given $M_{\odot} = 2 \times 10^{33}$ g for the mass of the Sun, estimate the number of electrons in the Sun. In a white dwarf star this number of electrons may be ionized and contained in a sphere of radius 2×10^9 cm; find the Fermi energy of the electrons in electron volts. (b) The energy of an electron in the relativistic limit $\epsilon \gg mc^2$ is related to the wavevector as $\epsilon \cong pc = \hbar kc$. Show that the Fermi energy in this limit is $\epsilon_F \approx \hbar c \, (N/V)^{1/3}$, roughly. (c) If the above number of electrons were contained within a pulsar of radius 10 km, show that the Fermi energy would be $\approx 10^8$ eV. This value explains why pulsars are believed to be composed largely of neutrons rather than of protons and electrons, for the energy release in the reaction $n \to p + e^-$ is only 0.8×10^6 eV, which is not large enough to enable many electrons to form a Fermi sea. The neutron decay proceeds only until the electron concentration builds up enough to create a Fermi level of 0.8×10^6 eV, at which point the neutron, proton, and electron concentrations are in equilibrium.
- 5. Liquid He³. The atom He³ has spin $\frac{1}{2}$ and is a fermion. The density of liquid He³ is 0.081 g cm⁻³ near absolute zero. Calculate the Fermi energy ϵ_F and the Fermi temperature T_F .