Clearcutting the Energy Frontier

February 1, 2012

Amitabh Lath Rutgers, The State University of New Jersey

Richard Plano 1929 - 2012

What is the Energy Frontier? And why do we want to be there?

• How do we see anything?

Scattering Experiments

Things started small...

The first cyclotron...

And got larger...

Large Hadron Collider

Radio Frequency Klystron Cavities 1232 Super Conducting Dipole Magnets

T = 1.9 K	I = 12000 Amps						
B = 8.3 Tesla	E = 7 MJ / Dipole						

 $\frac{1}{2}$ nanogram in Beam -

Kinetic Energy of 100,000 Ton Aircraft Carrier at Cruising Speed

High Energy Collider Detectors

PLT Luminosity Monitor in CMS

Rutgers designed and built detector for CMS

Dedicated, stand-alone luminosity monitor

Eight 3-plane telescopes each end of CMS

Diamond pixel sensors pixel area: 3.9 mm x 3.9 mm

Stable 1% precision on bunch-by-bunch relative luminosity

So what is everything made of?

Status as of 2012

Everything* in the universe is made of the 1^{st} generation particles.

Quarks bind together with the strong force to make familiar particles such as protons and neutrons.

So why isn't this good enough?

antimatter

Because it is not viable by itself

Everything we are made of, observe and interact with (baryonic matter) is made possible (stable) by some unknown set of forces/interactions/particles.

antimatter

This happens at various scales: microscopic, galactic, cosmological.

We know *nothing* about this part of nature, except what we infer from our observations:

Inflation happened, Antimatter got swept away, Galaxies are not falling apart, Matter has mass, Gravity is very weak, Weak interactions will violate unitarity...

The unknown part is probably larger, more complex and more interesting that the known.

What do you need to find new physics?

- Even more important than highest energy colliders and cutting-edge detectors...
- Need to know what new physics will look like when it shows up.
- Experimental and Theoretical workers have to collaborate closely.
 - Unique feature of Rutgers physics.

OBSERVED BEHAVIOR OF HIGHLY INELASTIC ELECTRON-PROTON SCATTERING

M. Breidenbach, J. I. Friedman, and H. W. Kendall Department of Physics and Laboratory for Nuclear Science,* Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and

PRL Vol 23, No 16, (1969)

Around the same time at BNL...

VOLUME 25, NUMBER 21

PHYSICAL REVIEW LETTERS

23 NOVEMBER 1970

Observation of Massive Muon Pairs in Hadron Collisions*

J. H. Christenson, G. S. Hicks, L. M. Lederman, P. J. Limon, and B. G. Pope Columbia University, New York, New York 10027, and Brookhaven National Laboratory, Upton, New York 11973

and

E. Zavattini CERN Laboratory, Geneva, Switzerland (Received 8 September 1970)

Muon pairs in the mass range $1 \le m_{\mu\mu} \le 6.7 \text{ GeV}/c^2$ have been observed in collisions of high-energy protons with uranium nuclei. At an incident energy of 29 GeV, the cross section varies smoothly as $d\sigma/dm_{\mu\mu} \approx 10^{-32}/m_{\mu\mu}^{5} \text{ cm}^{2} (\text{GeV}/c)^{-2}$ and exhibits no resonant structure. The total cross section increases by a factor of 5 as the proton energy rises from 22 to 29.5 GeV.

FIG. 2. (a) Observed events as a function of the effective mass of the muon pair. (b) Cross section as a function of the effective mass of the muon pair (these data include the wide-angle counters). (c) Cross section as a function of the laboratory momentum of the muon pair.

Four years later...

1974 Nobel Prize awarded for Charm quark discovery

Could a proto-theory of charm have motivated the BNL Drell-Yan group to investigate further?

CMS in the first few months after turning on (2010)

The Rutgers LHC Group

Collider Experiment:

John Paul Chou, Yuri Gershtein, Eva Halkiadakis, Amit Lath, Steve Schnetzer, Sunil Somalwar

+ undergrad students + grad students + postdocs

New High Energy Theory Center:

Tom Banks, David Shih, Matthew Strassler, Scott Thomas,

+ undergrad students + grad students + postdocs

The New Physics is hiding somewhere

New physics has not shown up in easy to harvest areas.

We need better tools, since new physics is hiding in hard to reach areas.

First example of Rutgers LHC innovation

- No new* physics since 1974!
- What are we missing?
 - Strong couplings?
- Typical* searches require electrons/ muons/ missing momentum.
 - Blind to strongly coupled signals.
- We designed a technique to find these signals amid horrible backgrounds.

In a multiple-jet event,

how do you know which triplet of jets belong together? Our technique: Look at them all

- Ensemble method
- There are several jet triplets in a multi-jet event.
- Plot the invariant mass m_{iii} vs ΣPt_{iii}
- We look at them all (multiple entry plot).

Simulated new physics

We see the top quark! first time without any special aids

Similarly on CMS (2010 data)

First ever 3-jet resonances search.

Multijet resonances were not considered possible for searches.

A new analysis technique invented and executed by Rutgers LHC group.

Need tools to get to harder to reach areas.

Four-jet, Eight-jet analyses are also ongoing. We are systematically tackling physics with jets.

Another example: Multileptons

- Leptons (electrons, muon, taus*) are interesting.
 - Indicate something Weak happened.
- Good tools for new physics searches
- Standard Procedure:
 - Find a model of new physics that produces leptons.
 - Now look for it...
 - Z-primes: two opposite signed, same type leptons
 - Supersymmetry: Three leptons, missing momentum
 - Leptoquarks: Some leptons, some jets
 - Fourth generation, Extra dimensions, &c...
- Rutgers approach to multileptons:
 - Do it all.

Rutgers Multileptons

- Instead of piecemeal approach, look at all interesting events with 3 or more leptons.
 - Difficult for the Standard Model to produce
- Bin them in #leptons, missing momentum, total energy in event, is there a Z-boson present...
 - Lots of bins.
 - Some bins will have lots of events from SM.
 - Some will have few/none.
- Need to understand all ways SM can make leptons!

How do you get leptons? From top quark decays

Superb understanding of leptons from top quark decays

How do you get leptons? From "newly discovered" SM processes

- How can three leptons make a Z?
- Answer: Asymmetric conversions.
 - Internal conversion of emitted photon can give you a ee or $\mu\mu$ pair.

- Conversions can be highly *asymmetric*, one of the pair carries of all the photon's momentum.
- If simulation has a momentum cutoff for soft particles, will miss this important background.
- Background pollutes all lepton analyses.
- Discovered by Rutgers LHC group

and the tome of the content are for mornadoral parposed.

# Bodies (Selection)		$\tau=0$				$\tau = 1$				1					_
	obs	SM	sigA	sigB	ob	s SM	sigA	sigB	obs	SM	Sup	erb u	nderstar	ndir	na of
\geq FOUR Lepton Results															.9
4 (DY0) S _T (High)	0	0.0000 ± 0.0007	2.9	0.3	0	0.00 ± 0.09	2.0	2.5	0	0.09 ± 0	all D	ackgi	rounas (SOL	irces c
4 (DY0) $S_{\rm T}$ (Mid)	0	0.001 ± 0.002	0.0	0.0	0	0.11 ± 0.10	0.0	0.0	0	0.68 ± 0	falca				
4 (DY0) $S_{\rm T}({\rm Low})$	0	0.02 ± 0.02	0.0	0.0	0	1.69 ± 0.27	0.0	0.0	4	1.34 ± 0	таке	iepu	DNS) IS U	<u>ie r</u>	laiimar
4 (DY1,ZV) S _T (High)	1	0.002 ± 0.001	12.6	1.1	0	0.02 ± 0.07	6.1	5.5	0	0.10 ± 0	- £ +l-				
4 (DY1) S _T (High)	1	0.010 ± 0.004	2.9	0.4	0	0.22 ± 0.10	1.6	1.8	0	0.15 ± 0	OT th	is an	alysis.		
4 (DY1,ZV) $S_{\rm T}$ (Mid)	0	0.008 ± 0.003	0.0	0.0	0	0.20 ± 0.09	0.0	0.0	0	0.45 ± 0					
$4 (DY1) S_T(Mid)$	0	0.27 ± 0.11	0.0	0.0	2	1.38 ± 0.38	0.0	0.0	2	1.52 ± 0	144 0.0	0.0			
$4(DY1)S_{T}(Low)$	0	0.03 ± 0.01 0.37 ± 0.13	0.0	0.0	4	2.2 ± 1.4 66 ± 15	0.0	0.0	56	10.0 ± 7 30 ± 2	2 0.0	0.0			
$4 (DY2,ZV) S_T(High)$	ő	0.005 ± 0.002	7.7	0.8		0.0 ± 1.0	-	-	-		2 0.0	-			
4 (DY2) $S_{\rm T}$ (High)	ŏ	0.33 ± 0.13	3.9	0.5	_	_	_	_	_	_	_	_			
4 (DY2,ZV) S_{T} (Mid)	0	0.022 ± 0.009	0.0	0.0	_	_	_	-	_	_	_				
4 (DY2) S_{T} (Mid)	1	2.2 ± 0.9	0.0	0.0							—				
4 (DY2,ZV) S _T (Low)	0	0.04 ± 0.02	0.0	0.0		Selec	fion			N	$\tau = 0$		$N(\tau)$		$N(\tau)=2$
$4 (DY2) S_T(Low)$	10	7.2 ± 2.9	0.0	0.0		- Cenee	citori		0	he ov	rected SM	obe	expected SM	obe	expected SI
THREE Lepton Results						>FOUR Los	too Poo	ulto	0	08 CA	Petteriow	008	expected out	000	expected 5
3 (DY0) S _T (High)	2	0.53 ± 0.25	6.3	3.2		2rook Lep	ton Kes	uits	<u> </u>		00 1 0 000		0.01 0.05	0	0.00 1.0.0
3 (DY0) S_T (Mid)	3	3.8 ± 1.5	0.0	0.0		MET>50,H ₁	· >200,1	noZ		0.0	003 ± 0.002	. 0	0.01 ± 0.05	0	0.30 ± 0.22
$3 (DY0) S_T(Low)$	9	6.4 ± 2.0	0.0	0.0		MET>50,H ₁	r >200,	Z	(0 0	$.06 \pm 0.04$	0	0.13 ± 0.10	0	0.15 ± 0.23
$3 (DY1,ZV) S_T(High)$	4	1.34 ± 0.40 7.9 \pm 2.6	19.9	8.4		MET>50,H ₇	· <200,1	noZ	1	1 0.0	0.005 ± 0.005	5 0	0.22 ± 0.10	0	0.59 ± 0.23
$3 (DY1 ZV) S_{\pi}(Mid)$	20	7.9 ± 2.0 10.2 ± 2.8	0.0	2.4		MET>50.Hz	<200	Z		0 0	43 ± 0.15	2	0.91 ± 0.28	0	0.34 ± 0.19
3 (DY1) S_{T} (Mid)	31	43 ± 13	0.0	0.0		MET < 50 Hz	200	207		້ ດດ	113 ± 0.000	NR 0	0.01 ± 0.05	ŏ	0.18 ± 0.01
3 (DY1,ZV) S_{T} (Low)	88	85 ± 21	0.0	0.0	1	MET~30,11	>200,			0 0.00	15 ± 0.000	0 0	0.01 ± 0.05	0	0.10 ± 0.00
3 (DY1) $S_{T}(Low)$	368	381 ± 92	0.0	0.0		MET<50,H ₁	r > 200,	Z		1 0	$.28 \pm 0.11$	0	0.13 ± 0.10	0	0.52 ± 0.19
Totals	546	549 ± 95	59.0	17.0	1	MET<50,H ₁	· <200,1	noZ	(0 0	$.08 \pm 0.03$	4	0.73 ± 0.20	6	6.9 ± 3.8
Totals 4L	13	10.4 ± 3.1	29.9	3.1		MET<50,H ₁	r <200,	Z	1	1	9.5 ± 3.8	14	5.7 ± 1.4	39	21 ± 11
Totals 3L	533	539 ± 95	29.0	14.0	1	THREE Lep	ton Res	ults							
						$MET > 50, H_T >$	-200,no	-OSSF	1	20	$.87 \pm 0.33$	21	14.3 ± 4.8	12	10.4 ± 2.2
						MET>50. H_T <	200.no	-OSSF		4	3.7 ± 1.2	88	68 ± 17	76	100 ± 17
						$MET < 50.H_T >$	-200 no	OSSE		1 0	50 ± 0.33	12	7.7 ± 2.3	22	24.7 ± 4.0
						MET < 50 Hr	200 no	OSSE		7	50 ± 17	245	208 ± 39	976	1157 ± 32
Results Din	nea	several	wa	ys:		MET 50 H	~ 200	007		5	19 ± 0.5	7	10.8 ± 3.3	200	1107 ± 02
Total energy	/ in (event				MET>50 H	~ ~200	7		8	81 ± 2.7	10	11.2 ± 2.5		
	y 11 1					MET> 50,11	~200,	207	1	0 1	16 20	64	F2 12	-	-
Missing mo	omei	nta in evo	ent			MET >50,117	< 200,1	noz.		9 1	1.0 ± 3.2	04	52 ± 15	-	-
Descible 7	in o	vont				ME1<50,H7	>200,1	noZ		5	2.0 ± 0.7	24	26.6 ± 3.3	-	-
PUSSIBle Z	me	veni				MET>50,H ₁	r <200,	Z	5	8	57 ± 21	47	44.1 ± 7.0	-	-
						MET<50,H ₁	r >200,	Z	(6	8.2 ± 2.0	90	119 ± 14	-	-
						MET<50,H ₁	· <200,1	noZ	8	6	82 ± 21	2566	1965 ± 438	-	-
						MET<50.H ₂	<200.	Z	3	35	359 ± 89	9720	7740 ± 1698	-	-
This technique is the way to get at new physics that produces leptons								7.8 ± 1.5	45	30 ± 12					
Dissetter and a fair and a fair a last a last provide that produces reptoris.							10267 ± 1754	1086	1291 ± 324						
Does the work of several previous lepton analyses.															

3(e/µ) Lepton Results

S	electio	n	3(e/μ)		
ST	DYpairs	Z?	SM	Obs	
>600	DYO		0.53 ±0.25	2	
300-600	DYO		3.8 ± 1.5	3	
0-300	DY0		6.4 ± 2.0	9	
>600	DY1		1.34 ± 0.40	4	
>600	DY1	Ζ	7.9 ± 2.6	8	
300-600	DY1		10.2 ± 2.8	20	
300-600	DY1	Ζ	43 ± 13	31	
0-300	DY1		85 ± 21	88	
0-300	DY1	Ζ	381 ±92	368	
3-body			539 ± 95	533	

 Control channels have been highlighted.
Other channels are potential signal channels.

High S_T Control Channel

Mid S_T Control Channel

Low S_T Control Channels

Results first presented in public by RU Research Associate R.C. Gray

4(e/µ) Lepton Results

Selection			4(e/μ)	
ST	DYpairs	Z?	SM	Obs
> 600	DYO		0.0000 ± 0.0007	0
300-600	DYO		0.001 ± 0.002	0
0-300	DYO		0.02 ± 0.02	0
> 600	DY1		0.002 ± 0.001	1
>600	DY1	Z	0.010 ± 0.004	1
300-600	DY1		0.008 ± 0.003	0
300-600	DY1	Z	0.27 ±0.11	0
0-300	DY1		0.03 ± 0.01	0
0-300	DY1	Z	0.37 ±0.13	0
>600	DY2		0.005 ± 0.002	0
>600	DY2	Ζ	0.33 ± 0.13	0
300-600	DY2		0.022 ± 0.009	0
300-600	DY2	Ζ	2.2 ±0.9	1
0-300	DY2		0.04 ± 0.02	0
0-300	DY2	Ζ	7.2 ± 2.9	10
4-body			10.4 ± 3.1	13

- A few events in very low background channels.
- These could become interesting if we see more with additional data.

High S_T Control Channel Mid S_T Control Channel Low S_T Control Channels

Two spectacular events

* fourth generation quarks.

. . .

* Higgs produced with top quarks

Search for the Higgs Boson

- Interactions with this field "gives" a particle its mass
- Field → particle, so there has to be a Higgs particle.
 - Indirect indications are that it is light (low mass).
- Couples to mass, so decays to heaviest things allowed.
 - In most probable mass range, most common decay channels swamped by SM.
 - We focus on rare but more fruitful channels

Current Higgs result (Dec 2011)

Higgs to two photons rare, but SM background is featureless

- Looking for tiny bump on smooth background.
- To increase sensitivity:
 - Don't throw away less than perfect photons
 - Use kinematic information (other than mass!) that separates signal from background

Understand photons in the detector

150

Photons convert to e+e- pair in presence of material

> Use information about material that photon had to swim through in photon energy calculation.

Correct photon energy for where on face of crystal it hit.

Use kinematic information about photon Pair to distinguish from background.

All of these (and other) improvements give few% each. But together they are substantial.

Rutgers one of the best positioned groups for 2012 Higgs to $\gamma\gamma$ effort.

Various ways to look for Higgs

	Production											
		Inclusive h	Wh	Zh	$q\bar{q}h$	$t \bar{t} h$						
	WW	OS+MET	SS+[jj]+MET			SS+[jj][jj]b(j)+MET 3L+[jj]b(j)+MET 4L+b(j)+MET						
	$\gamma\gamma$	$[\gamma\gamma]$	$[\gamma\gamma]$ +L+MET	$[\gamma\gamma] + MET$	$[\gamma\gamma]+jj$	$[\gamma\gamma] + [[jj]b]jj(j)$						
Decay	ZZ	$[[OSSF] \cdot [OSSF]]$										
	au au	$OS\tau F$			$OS\tau F+jj$							
	$b\bar{b}$		$L+\{bb\}+MET$	$\begin{bmatrix} OSSF \end{bmatrix} + \{bb\} \\ \{bb\} + MET \end{bmatrix}$								
	$\mu\mu$	$[OS\mu F]$										

Various ways to look for Higgs*

Production Inclusive h $t\bar{t}h$ WhZh $q\bar{q}h$ OS+MET WWSS \mathbf{ET} $3L+[j_1]$ A+MET4L+b(j)+MET \mathbf{ET} ET $[\gamma\gamma] + [[jj]b]jj(j)$ $\gamma\gamma$ Decay [[OSSF]·[OSSF]] ZZ $OS\tau F+jj$ $OS\tau F$ $\tau \tau$ $[OSSF] + \{bb\}$ $b\overline{b}$ $L+\{bb\}+MET$ +MET $[OS\mu F]$ $\mu\mu$

*not all searches optimized for Higgs like $\gamma\gamma$, but sensitive especially in case of non-standard Higgs.

Competing with dedicated Dark Matter searches!

- Direct search:
 - Acoustic technique

DM particle /

Nucleus (Xe, Ar etc)

LAS Gev photon

DM

DΜ

DM particle hits
nucleus

- Collider:
 - Production of DM pairs that
 - go undetected
 - Initial quark radiates hard photon (QED).
 - Analysis is:
 - γ + missing momentum

Summary

- . Many other analyses ongoing that I was not able to present:
 - Search for a heavy W boson (W')
 - Black Holes (completely independent of decay model!)
 - . High mass di-photon resonances
 - . Extra dimensions with photons and missing momentum
 - Production of 3 heavy objects (ttW, ttZ)
- Close cooperation between experiment and theory is the ideal way in the LHC era. Recalls dawn of quark era.
 - New physics may not announce itself unambiguously. Will need excellent understanding of possible signals and backgrounds.
 - Rutgers is at the forefront. Helps us attract the best people, at all levels.

. 2012 will be a very exciting year!

- Will get x4 the data (at higher CM energy).
- Are covering new physics with jets, b-quarks, leptons, photons.

_RU(+friends) search for Higgs $\rightarrow \gamma \gamma$ is well positioned to find it (if it is indeed there).

_Watch this space.

backup

CDF + CMS Limits 3 jet resonances

Jet Extinction (black holes)

If black holes are made at LHC, then all other processes have to turn off completely.

This will be obvious at the highest rate processes first. This is inclusive jet production.

We look for extinction of jet production This way of looking at black holes does not assume anything about their decay process

