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Has there been a blind spot in new 
physics searches?

● Most new physics searches require either

– leptons (e, µ)

– missing momentum (ie, MET) from ν, lightest 
neutralino, extra dimensions...

– Photons 

● What if new physics has color (q- or g-like)?

– Not produced at e+e- colliders

– Could be pair produced at hadron colliders

– Of course, massive QCD backgrounds
– Important exception:  Ongoing dijet bump hunt at 

Tevatron/LHC.  Not as sensitive to multiple jet final 
states. 
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Searches for new physics without 

e, µ, γ, o
r m

issing energy signatures 

are rare.



5

New Physics with Color
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Some questions before we start

● Is this even possible?
● Test:  Can you find the top quark?

– Cons:   Top really heavy,  our analysis is 
geared to lighter objects, produced 
with some boost.

– Pros:  Know top is there...

● How will you handle backgrounds?
– Has to be data-driven..
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Usual tricks do not work

● Picking the correct 3 jets in a multiple-jet 
event is difficult.

– In a 6-jet event, there are 6-choose-3=20 different 
triplets.

– Some hard jets are from initial- and final-state 
radiation (not part of signal)

● Techniques like min[M(a,b,c) – M(d,e,f)] just 
don't work.

● NN etc are good only if you are very sure of 
your model’s kinematics.

● QCD 6-jet cross-section, kinematics not known 
well (except that it's huge). 
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Our technique:  Look at them all
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“correct” triplets
 lie along horiz line

● Ensemble method

● There are several jet 
triplets in a multi-
jet event.

● Plot the invariant 
mass 

  m
jjj
 vs ΣPt

jjj
 

● We look at them all 
(multiple entry plot).
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The CDF Detector

Tracker: 

Momentum Resolution: σ(pT) / pT 

COT alone : 0.15% pT [GeV/c]-1 

COT + SVX + ISL: 0.07% pT [GeV/c]-1 

COT beam constrained: 0.05% pT [GeV/c]-1 

Calorimeter
EM Energy Resolution:                                                             

sigma(E)/E = 13.5% / sqrt(E * sin(theta)) + 2% 

HAD Energy Resolution:                                
sigma(E)/E = 0.5 / sqrt(E) [GeV]

Slightly worse for the PLUG (endcaps) 
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CDF Monte Carlo: ttbar 
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CDF Monte Carlo: ttbar 

Wrong trip
let co

mbination along diagonal
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CDF Monte Carlo: ttbar 

Wrong trip
let co

mbination along diagonal

Correct triplet combination along horizontal
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The diagonal offset cut

Diagonal offset:

For ANY triplet of jets require: 
Mjjj < ∑ |pT,jjj| - diagonal-offset
● where Mjjj is the invariant mass of the 3 jets
● ∑|pT,jjj| is the scalar sum |pT| of the 3 jets

Offset = 155 GeV/c

Offset = 190 GeV/c

Offset = 200 GeV/c
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R-Parity Violating Gluino MC
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Notes on the technique
● We look for just one 3-jet mass resonance in a multi-jet 

environment.

– No attempt to fully reconstruct both decays.

– Nothing model dependent: no b-quarks, no internal 
resonances, no requirements on geometry 
(hemisphere, ∆R, etc.)

● New physics with strong couplings will have large cross 
sections.

– Recall ttbar production is ~7 pb.

– RPV gluinos are similar, ~10 pb at m
top

, rising to ~200 pb 

at 90 GeV/c2 (LO, higher with NLO).

– The power of this technique is in the focus on (slightly) 
boosted decays.   Reduces QCD and combinatoric 
backgrounds.
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Trigger
● CDF has an interesting Quad-Jet trigger

– Designed for top and Higgs (all hadronic) 
modes

– Constructs calorimeter clusters at trigger 
Level 2 (raw, energy not corrected). 

– Thresholds changed as luminosity went up 
(total L2 rate ~300 Hz).

●  Triggers on 4 jets @L2 (15 GeV raw each) 
and SumEt >175 GeV raw.

– This is ideal for our search.
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Basic Event Selection

● MET < 50   (get rid of beam splash)

● Vertex: between 1 and 4

● Jets: between 6 and 8

● Σ pt of top 6 jets > 250 GeV

Multiple interactions could be a large 
background:

– Two 3-jet (or three di-jet) events may be 
more likely than 6-jet events.
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Jet Z Requirement
• CDF Beamline is z-coordinate

• Event with multiple interactions will typically be a 
multiple vertex event.

• Cannot simply cut on Nvertex

• Calorimeter jets do not come with Z info.
• Need to create.

 Loop over tracks (pt >1 Gev)
 Associate w/ jet (cone 0.4)

• Take mean z of tracks as Jet-z.  
• If  RMS_z > 4cm, treat as no Z info.

• Event must have >3 jets w/ Z info
• “Good” triplet must have at lest 2 jets w/ Z 

info.
This lowers our 
acceptance for 
forward clusters
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z rms0.5

● Within a triplet,

– δ(z
jet

) for any jet in triplet <2.5

● Event level cut was < 4

– number of jets without z info <= 1

● These tend to be high eta jets w/out tracks

– | z
jet

- VTX-z| < 10 cm for all jets in triplet

6

– Define                         (mean position of all the tracks 
                                                 within a jet)

– Error on z
jet

:

– Define z
rms

Summary of jet Z 
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z rms0.5

● Within a triplet,

– δ(z
jet

) for any jet in triplet <2.5

● Event level cut was < 4

– number of jets without z info <= 1

● These tend to be high eta jets w/out tracks

– | z
jet

- VTX-z| < 10 cm for all jets in triplet

6

– Define                         (mean position of all the tracks 
                                                 within a jet)

– Error on z
jet

:

– Define z
rms

Summary of jet Z 

Make sure tracks 
pointing to cluster come 
from same point on the 
beamline

Make sure (almost) all jets
come  from same point on 
the beamline.   
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CDF Data
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CDF Data

Edge due to cone 0.4 
definition of Jet
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Backgrounds
● QCD and combinatoric (both have Landau 

shape)

● Also need to optimize diagonal offset cut

● Need parametrized background function.

– Why not just fit the data with 
Landau+Gaussian and let Minuit handle 
it?

– Minuit will chase fluctuations, we need an 
independent background estimate.
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Background Procedure
● Get 5-jet sample and make 

triplets.

– Statistically independent 

● Create ratio of triplet Σpt  

– (6-jet/5-jet)

● Correct the 5-jet mass 
distribution by this weight.

● Fit the scaled 5-jet mass dist 
with Landau

– Extract MPV, width..

● Use parameters from scaled 
5-jet fit on the 6+-jet data
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Background Procedure
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Comment on Background 
Procedure

● The 6-jet triplets have a softer Σpt distribution than 
the 5-jet

– The main difference between a QCD 5-jet and QCD 
6-jet is a soft gluon emission.

● We use the pt (non-invariant) ratio to correct the 
mass (invariant).

– Note that for signal, pt and mass are not correlated

● What if there is signal in the 5-jet?

– Tough problem when doing data-driven 
backgrounds.  But we note that Landau 
parameters are smooth functions of diagonal 
offset cut.

– σ(QCD 5-jet) is ~10x  σ(QCD 6-jet).
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Background Parameters

● 5jet scaled and 6jet w/ top 
window blind MPV, Width 
nearly agree

● Amplitude curves obviously 
different.

● When we fit for signal we FIX 
background params.

     

Diagonal Cut (GeV) Diagonal Cut (GeV)

Diagonal Cut (GeV)

Landau Peak

Landau Width

Landau Ampl
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Optimizing the diagonal cut
● What is the best diagonal cut for a given m

gluino
?

– Cannot avoid signal MC

● Use signal/background as metric

– We have a (data-driven) background estimate 
as function of diagonal cut.

– Make pseudoexpts by adding signal MC

– Vary diagonal cut, fit.  Extract optimal diagonal 
cut.

● Note: fitting background & optimizing cuts in 
same step with data does not work.
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Optimized diagonal cut

Pole mass Optimal diagonal 
cut

110.1 145

133.5 180

167.9 185

190.3 195

223.3 205

245.0 195

ttop25 190
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What do we expect to see?
● We need to quantify our expectation 

before we can claim we see 
anything.

● Get background shape (Landau) and 
signal (Gaussian)

● Use as parent distribution to throw  
pseudoexperiments.

● Recover #events (signal and 

background) and calculate σ
95

● Systematic uncertainties 
incorporated as jitter in parent 
Landau parameters

– Adding systematics does not 
change the mean # 
events found, but raises 
the  σ

95.

M
jjj
 (GeV/c2) #events from fit
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What do we expect to see?
● We need to quantify our expectation 

before we can claim we see 
anything.

● Get background shape (Landau) and 
signal (Gaussian)

● Use as parent distribution to throw  
pseudoexperiments.

● Recover #events (signal and 

background) and calculate σ
95

● Systematic uncertainties 
incorporated as jitter in parent 
Landau parameters

– Adding systematics does not 
change the mean # 
events found, but raises 
the  σ

95.

Background only
(m=140 fit)

Background + 60 pb signal
(m=140)

Background + 300 pb signal
(m=140)

M
jjj
 (GeV/c2) #events from fit
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Expected Limits
● Gluino acceptance is 

(4.9 +- 1.1) e-5.

● Systematic uncertainties:

– Jet Energy Scale: 38%

– ISR/FSR: 20%

– PDF: 10%

● Systematics incorporated as 
jitter of parent distribution 
Landau params in the 
pseudoexperiments.

– For signal extraction we 
fix background 
params at nominal 
values.

Without systematics
With systematics

Expected 95% Conf. Limit
In the absence of signal.
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Fits to Data

[-

We fit data the same way:
Fix background params
Float Gaussian amplitude
Extract #events (sig,bckg) 
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Fits to Data

[-
m=94 GeV
Diagonal 134 GeV

m=112 GeV
Diagonal 155 GeV

m=175 GeV
Diagonal 190 GeV
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Fits to Data

[-
m=94 GeV
Diagonal 134 GeV

m=112 GeV
Diagonal 155 GeV

m=175 GeV
Diagonal 190 GeV

See ~2σ 
excess.
More on this 
fit later...
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The m=175 fit 

At the top mass, we expect ~1 event, 
But see 11 events (+-1 σ integral of Gaussian)
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Limits
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Limits
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Limits

Significance of excess
~ 2 sigma

RPV gluino cross section
NLO corrected with PROSPINO
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Examine top acceptance
● We looked at various top MC

– PYTHIA (various mtop)

– CTEQ and MRST PDFs

– more/less ISR and FSR

– ALPGEN → PYTHIA

– MC@NLO

● All predict 0.75 – 1.5 events after diagonal cut of 190 GeV.

● Excess is robust wrt sliding pt, diagonal cut around nominal.

● These are 3.2 fb-1 plots.  We also looked at

– 6 fb-1 of data

– JET100 trigger (not good for m=90, but fine for m>150)

– Semileptonic top (in lepton+4jet events) 

● Bottom line:  excess is real, there is a discrepancy with MC

mailto:MC@NLO
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Toy top study

● Generator-level study

● PYTHIA → FastJet 

– Perfect detector 
output.

● After just eta, pt, diagonal 
cuts:

– Expect 5.5 events.

● Note that jet_z, detector 
ineff. not taken into 
account at all.

● MC simply not producing 
enough top with high pt.
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Conclusion
● Developed a new technique (ensemble method) to 

extract correlated objects in a multi-object 
background

– Working closely with theorists pays off big!
● Rouven Essig (theory GS) thesis on ensemble technique

– Used it to look at 3jet in multi-jet events

– Technique will work with other objects.
● Add leptons, photons, MET?

● Found an excess at top mass.  Significance ~2σ
– Stat. Fluctuation? Boosted tops? PDFs? New physics?

– Studying this with more data now.

– Same group doing this analysis on CMS.
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Backup
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Data event display, in mass window
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Data event display, in mass window
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Data event display, in mass window
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Data event display, in mass window
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MC ttbar event display, in mass window
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MC ttbar event display, in mass window
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MC ttbar event display, in mass window
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MC ttbar event display, in mass window
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