Search for a New Hadronic Resonance Using Jet Ensembles at CDF

Amitabh Lath with Rouven Essig, Eva Halkiadakis, Tim Lou, Claudia Seitz, Scott Thomas

Rutgers, The State University of New Jersey

Has there been a blind spot in new physics searches?

- Most new physics searches require either
 - leptons (e, μ)
 - missing momentum (ie, MET) from v, lightest neutralino, extra dimensions...
 - Photons
- What if new physics has color (q- or g-like)?
 - Not produced at e⁺e⁻ colliders
 - Could be pair produced at hadron colliders
 - Of course, massive QCD backgrounds
 - Important exception: Ongoing dijet bump hunt at Tevatron/LHC. Not as sensitive to multiple jet final states.

New or Excited Fermions

High Mass Resonances

Search

t' in Lepton + Jets + Missing E_T

Right-Handed Quarks in Dileptons + X

Long-Lived b' Quarks in the Z + X Channel

SUSY

Search

Squark and/or Gluino Production

 $Stop \rightarrow c + neutralino$ in Jets + Missing E_T

 $Stop \rightarrow b + l + sneutrino$ in Dilepton + Jet + Missing E_T

Chargino + Neutralino Production

<u>Unified Trilepton and Dilepton + Track</u>

Gaugino Pair Production in $Z + W + Missing E_T$

Low p_T ee + Track

R-parity Violation

Sneutrino in eμ, eτ, μτ channels

Search

RS Graviton to ee (+diphotons)

W' search

3-jet resonances

μμ Channel

ZZ Channel (Graviton)

tt Channel (Massive Gluon)

Signature-based

Search

Photon + Jet (+ Missing E_T)

<u>Lepton+Photon+MET+Bjet</u> (and top-antitop+photon production cross section

Photon + Jet (+ Missing E_T)

Z Boson Production at High p_T^Z

Photon + Heavy Quark (b, c)

New or Excited Fermions

High Mass Resonances

Search

t' in Lepton + Jets + Missing E_T

Right-Handed Quarks in Dileptons + X

Long-Lived b' Quarks in the Z + X Channel

SUSY

Search

in Dileptor ches for new pergy signature

Chargino Searches for missing energy

Tiffer e, H, Y, or missing energy signatures

are rare. Unified Trile ad Dilepton + Track

> **Gaugino Pair Production** in $Z + W + Missing E_T$

> > $Low p_T ee + Track$

R-parity Violation

Sneutrino in eμ, eτ, μτ channels

Search

RS Graviton to ee (+diphotons)

W' search

3-jet resonances

uu Channel

ZZ Channel (Graviton)

annel (Massive Gluon)

Signature-based

Search

Photon + Jet (+ Missing E_T)

Lepton+Photon+MET+Bjet (and top-antitop+photon production cross section

Photon + Jet (+ Missing E_T)

Z Boson Production at High p_T^Z

Photon + Heavy Quark (b, c)

New Physics with Color

No leptons, No MET, No W resonance, No b

Some questions before we start

- Is this even possible?
- Test: Can you find the top quark?
 - Cons: Top really heavy, our analysis is geared to lighter objects, produced with some boost.
 - **Pros:** Know top is there...
- How will you handle backgrounds?
 - Has to be data-driven..

Usual tricks do not work

- Picking the correct 3 jets in a multiple-jet event is difficult.
 - In a 6-jet event, there are 6-choose-3=20 different triplets.
 - Some hard jets are from initial- and final-state radiation (not part of signal)
- Techniques like min[M(a,b,c) M(d,e,f)] just don't work.
- NN etc are good only if you are very sure of your model's kinematics.
- QCD 6-jet cross-section, kinematics not known well (except that it's huge).

Our technique: Look at them all

- Ensemble method
- There are several jet triplets in a multijet event.
- Plot the invariant mass

$$m_{jjj}$$
 vs ΣPt_{jjj}

 We look at them all (multiple entry plot).

The CDF Detector

Calorimeter

EM Energy Resolution:

sigma(E)/E = 13.5% / sqrt(E * sin(theta)) + 2%

HAD Energy Resolution:

sigma(E)/E = 0.5 / sqrt(E) [GeV]

Slightly worse for the PLUG (endcaps)

Tracker:

Momentum Resolution: σ(pT) / pT

COT alone: 0.15% pT [GeV/c]-1

COT + SVX + ISL: 0.07% pT [GeV/c]-1

COT beam constrained: 0.05% pT [GeV/c]-1

CDF Monte Carlo: ttbar

CDF Monte Carlo: ttbar

CDF Monte Carlo: ttbar

The diagonal offset cut

For ANY triplet of jets require:

 $M_{iii} < \sum |p_{T,iii}|$ - diagonal-offset

- where M_{iii} is the invariant mass of the 3 jets
- $\Sigma |p_{T,jjj}|$ is the scalar sum $|p_T|$ of the 3 jets

R-Parity Violating Gluino MC

Notes on the technique

- We look for just one 3-jet mass resonance in a multi-jet environment.
 - No attempt to fully reconstruct both decays.
 - Nothing model dependent: no b-quarks, no internal resonances, no requirements on geometry (hemisphere, ∆R, etc.)
- New physics with strong couplings will have large cross sections.
 - Recall ttbar production is ~7 pb.
 - RPV gluinos are similar, ~ 10 pb at m_{top} , rising to ~ 200 pb at 90 GeV/c² (LO, higher with NLO).
 - The power of this technique is in the focus on (slightly) boosted decays. Reduces QCD and combinatoric backgrounds.

Trigger

- CDF has an interesting Quad-Jet trigger
 - Designed for top and Higgs (all hadronic) modes
 - Constructs calorimeter clusters at trigger Level 2 (raw, energy not corrected).
 - Thresholds changed as luminosity went up (total L2 rate ~300 Hz).
- Triggers on 4 jets @L2 (15 GeV raw each) and SumEt >175 GeV raw.
 - This is ideal for our search.

Basic Event Selection

- MET < 50 (get rid of beam splash)
- Vertex: between 1 and 4
- Jets: between 6 and 8
- Σ pt of top 6 jets > 250 GeV
 - Multiple interactions could be a large background:
 - Two 3-jet (or three di-jet) events may be more likely than 6-jet events.

Jet Z Requirement

- CDF Beamline is z-coordinate
 - Event with multiple interactions will typically be a multiple vertex event.
 - Cannot simply cut on Nvertex
- Calorimeter jets do not come with Z info.
- Need to create.
 - Loop over tracks (pt >1 Gev)
 - Associate w/ jet (cone 0.4)
- Take mean z of tracks as Jet-z.
- If RMS_z > 4cm, treat as no Z info.
- Event must have >3 jets w/ Z info
- "Good" triplet must have at lest 2 jets w/ Z info.

This lowers our acceptance for forward clusters

Summary of jet Z

- Define
$$ar{z_j} = rac{\sum\limits_{tracks} z_0}{N_{tracks}}.$$

(mean position of all the tracks within a jet)

– Error on Z_{jet}:
$$\delta(z_j) = \sqrt{\frac{\bar{z}_j^2 - \bar{z}_j^2}{N_{tracks}}}$$
.

- Define
$$z_{rms}$$
 $z_{rms} = \sqrt{\frac{(\sum\limits_{j \in ts} \bar{z}_j{}^2)/N_{j \in ts} - \left(\sum\limits_{j \in ts} \bar{z}_j/N_{j \in ts}\right)^2}{N_{j \in ts}}}$ $z_{rms} < 0.5$

$$z_{rms} < 0.5$$

- Within a triplet,
 - $\delta(z_{iet})$ for any jet in triplet < 2.5
 - Event level cut was < 4
 - number of jets without z info <= 1
 - These tend to be high eta jets w/out tracks
 - $|z_{iet}$ VTX-z| < 10 cm for all jets in triplet

Summary of jet Z

- Define $\sum_{\bar{z}_j = \frac{\text{tracks}}{N_{tracks}}} z_0$ (mean position of all the tracks within a jet)
- Error on $\mathsf{Z}_{\mathsf{jet}}$: $\delta(z_j) = \sqrt{\frac{\bar{z}_j^2 \bar{z}_j^2}{N_{tracks}}}.$

Make sure tracks pointing to cluster come from same point on the beamline

- Define
$$z_{rms}$$
 = $\sqrt{\frac{(\sum\limits_{j \in ts} \bar{z}_j{}^2)/N_{j \in ts} - \left(\sum\limits_{j \in ts} \bar{z}_j/N_{j \in ts}\right)^2}{N_{j \in ts}}}$ $z_{rms} < 0.5$

- Within a triplet,
 - $\delta(z_{iet})$ for any jet in triplet <2.5
 - Event level cut was < 4
 - number of jets without z info <= 1
 - These tend to be high eta jets w/out tracks
 - $|\overline{z}_{iet}| |\overline{z}_{iet}| < 10$ cm for all jets in triplet

Make sure *(almost)* all jets come from same point on the beamline.

CDF Data

CDF Data

Backgrounds

- QCD and combinatoric (both have Landau shape)
- Also need to optimize diagonal offset cut
- Need parametrized background function.
 - Why not just fit the data with Landau+Gaussian and let Minuit handle it?
 - Minuit will chase fluctuations, we need an independent background estimate.

Background Procedure

- Get 5-jet sample and make triplets.
 - Statistically independent
- Create ratio of triplet Σpt
 - (6-jet/5-jet)
- Correct the 5-jet mass distribution by this weight.
- Fit the scaled 5-jet mass dist with Landau
 - Extract MPV, width...
- Use parameters from scaled
 5-jet fit on the 6+-jet data

Background Procedure

Comment on Background Procedure

- The 6-jet triplets have a softer Σpt distribution than the 5-jet
 - The main difference between a QCD 5-jet and QCD 6-jet is a soft gluon emission.
- We use the pt (non-invariant) ratio to correct the mass (invariant).
 - Note that for signal, pt and mass are not correlated
- What if there is signal in the 5-jet?
 - Tough problem when doing data-driven backgrounds. But we note that Landau parameters are smooth functions of diagonal offset cut.
 - $\sigma(QCD 5-jet)$ is $\sim 10x \sigma(QCD 6-jet)$.

Background Parameters

- 5jet scaled and 6jet w/ top window blind MPV, Width nearly agree
- Amplitude curves obviously different.
- When we fit for signal we FIX background params.

Optimizing the diagonal cut

- What is the best diagonal cut for a given m_{gluino}?
 - Cannot avoid signal MC
- Use signal/background as metric
 - We have a (data-driven) background estimate as function of diagonal cut.
 - Make pseudoexpts by adding signal MC
 - Vary diagonal cut, fit. Extract optimal diagonal cut.
- Note: fitting background & optimizing cuts in same step with data does not work.

Optimized diagonal cut

Pole mass	Optimal diagonal cut
110.1	145
133.5	180
167.9	185
190.3	195
223.3	205
245.0	195
ttop25	190

What do we expect to see?

- We need to quantify our expectation before we can claim we see anything.
- Get background shape (Landau) and signal (Gaussian)
- Use as parent distribution to throw pseudoexperiments.
- Recover #events (signal and background) and calculate σ_{95}
- Systematic uncertainties incorporated as jitter in parent Landau parameters
 - Adding systematics does not change the mean # events found, but raises the σ_{95} .

What do we expect to see?

- We need to quantify our expectation before we can claim we see anything.
- Get background shape (Landau) and signal (Gaussian)
- Use as parent distribution to throw pseudoexperiments.
- Recover #events (signal and background) and calculate σ_{95}
- Systematic uncertainties incorporated as jitter in parent Landau parameters
 - Adding systematics does not change the mean # events found, but raises the σ_{95} .

Expected Limits

Gluino acceptance is
 (4.9 +- 1.1) e-5.

Systematic uncertainties:

Jet Energy Scale: 38%

- ISR/FSR: 20%

- PDF: 10%

- Systematics incorporated as jitter of parent distribution Landau params in the pseudoexperiments.
 - For signal extraction we fix background params at nominal values.

Fits to Data

We fit data the same way:

Fix background params

Float Gaussian amplitude

Extract #events (sig,bckg)

Fits to Data

Fits to Data

The m=175 fit

At the top mass, we expect \sim 1 event, But see 11 events (+-1 σ integral of Gaussian)

Limits

Limits

Limits

Examine top acceptance

- We looked at various top MC
 - PYTHIA (various mtop)
 - CTEQ and MRST PDFs
 - more/less ISR and FSR
 - ALPGEN → PYTHIA
 - MC@NLO
- All predict 0.75 1.5 events after diagonal cut of 190 GeV.
- Excess is robust wrt sliding pt, diagonal cut around nominal.
- These are 3.2 fb-1 plots. We also looked at
 - 6 fb-1 of data
 - JET100 trigger (not good for m=90, but fine for m>150)
 - Semileptonic top (in lepton+4jet events)
- Bottom line: excess is real, there is a discrepancy with MC

Toy top study

- Generator-level study
- PYTHIA → FastJet
 - Perfect detector output.
- After just eta, pt, diagonal cuts:
 - Expect 5.5 events.
- Note that jet_z, detector ineff. not taken into account at all.
- MC simply not producing enough top with high pt.

Conclusion

- Developed a new technique (ensemble method) to extract correlated objects in a multi-object background
 - Working closely with theorists pays off big!
 - Rouven Essig (theory GS) thesis on ensemble technique
 - Used it to look at 3jet in multi-jet events
 - Technique will work with other objects.
 - Add leptons, photons, MET?
- Found an excess at top mass. Significance $\sim 2\sigma$
 - Stat. Fluctuation? Boosted tops? PDFs? New physics?
 - Studying this with more data now.
 - Same group doing this analysis on CMS.

Backup

Event: 518 Run: 155393 EventType: MC | Unpresc: 0,1,33,35,4,7,8,9,10,11,43,44,13,45,14,15,17,49,20,23,24,25,26,27,28 Presc: 0,1,33,35,4,7,8,9,10,11,43,44,13,45

Event: 2047 Run: 160823 EventType: MC | Unpresc: 0,1,33,35,4,7,8,9,11,44,13,14,15,17,49,20,23,24,25,26,27,28 Presc: 0,1,33,35,4,7,8,9,11,44,13,14,15,17,49,20,

