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ABSTRACT OF THE DISSERTATION

Magnetic Anisotropy Energy

by Imseok Yang

Dissertation Director: Professor Gabriel B. Kotliar

We calculate magnetic anisotropy energy of Fe and Ni by taking into account the ef-
fects of strong electronic correlations, spin-orbit coupling, and non-collinearity of intra-
atomic magnetization. The LDA+U method is used and its equivalence to dynamical
mean—field theory in the static limit is emphasized. Both experimental magnitude of
MAE and direction of magnetization are predicted correctly near U = 4 eV for Ni and
U = 3.5 eV for Fe. Correlations modify one—electron spectra which are now in better

agreement with experiments.
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Chapter 1

Introduction

One of the long-standing problems that are still short of detailed understanding is to
explain the magneto-crystalline anisotropy energy of magnetic materials containing
transition-metal elements, especially that of Fe, Co, and Ni. The magneto-crystalline
anisotropy or magnetic anisotropy energy (MAE) is the energy difference of ground
states with different directions of magnetic moments. This is the driving force
determining the direction of magnetic moment of ground state without external
magnetic fields. The primary difficulty toward investigating MAFE has been attributed
to the fact that the MAEs of the metals are as small as of the order of 1 peV/atom.
At low temperature (7' = 4.2K), MAE is of the order of 60 peV/atom for hep Co,
2.7ueV /atom for fec Ni, and 1.4 peV/atom for bee Fe.

With advances in the accurate total energy method combined with the development of
faster computers, attempts have been made to calculate MAEs from first-principles
for bulk crystalline Fe, Co, and Ni. While the magnitude of the MAFEs have been
predicted for all the three metals, the correct easy axis for Ni has not been predicted
so far. Here we present new results that predict the correct easy axis for Ni as well as
reproduce the previous results in relevant limits. We also suggest why the previous
approaches have failed in obtaining the correct easy axis for Ni.

Magnetic anisotropy is the dependency of internal energy on the direction of
spontaneous magnetization. Generally, the magnetic anisotropy energy term possesses
the symmetry of the crystal. It is therefore called magneto-crystalline anisotropy or
crystal magnetic anisotropy. In transition metals, most of the magnetic moment
comes from spin polarization. Within the non-relativistic approach, there is no term

coupling to the spin degrees of freedom. The magnetic moment, therefore, can points



to an arbitrary direction. The magnetic anisotropy energy is an relativistic
phenomenon, say spin-orbit coupling. With spin-orbit coupling, the spin degrees of
freedom interact with the spatial anisotropy through the coupling to the orbital
degrees of freedom. This induces a preferred direction of spins. This happens even
though the total angular momentum is completely quenched. Since spin-orbit

coupling couples individual spin degrees of freedom to individual orbital degrees of

freedom, the fact that total orbital magnetic moment is quenched does not affect the

visibility of spatial anisotropy to magnetic moment.

Early attempts to explain magnetic anisotropy are based on the interaction between
the magnetization and the lattice through spin-orbit coupling combined with band
theory [1]. Later, Brooks [2] used an itinerant electron model and orbital angular

momentum quenching in cubic crystals to explain MAE. Treating the spin-orbit
coupling as a perturbation, the nontrivial magnetic anisotropy came out at the
fourth-order. The correct directions of magnetization were obtained for Fe and Ni.
The difference of these metals’ easy axes was attributed to the different lattice
structures of them. Based on the Ni-Fe alloy data, however, a much closer correlation
between the anisotropy and the number of valence electrons was observed. What is
the factor that determines the easy axis has been another unanswered question since
then. In subsequent papers [3, 4, 5] the calculations became more and more refined.
Finally the discussion centered around the importance of degenerate states along
symmetry lines in the Brillouin zone and plausible explanations of the origin of
magnetic anisotropy were provided [6, 7].

Contemporary studies of magnetic anisotropy energy have centered on first-principle
calculations, using density functional theory [8] within the framework of local spin
density approximation (LSDA). Eckardt, Fritsche, and Noffke [9] were able to get the
values of the right order of magnitude for Fe and Ni, but with incorrect easy axis for
Fe. Daalderop, Kelly, and Schuurmans [10] used the force theorem [11] to obtain
correct order of magnitude of the MAEs for Fe, Co, and Ni, but incorrect easy axes
were found for Co, and Ni. They also observed that changing the number of valence

electrons would restore the correct easy axis. This observation is similar to Brooks’



observation of close correlation bewteen the direction of magnetic moment and the
number of valence electrons. Trygg, Johansson, FEriksson, and Willis [12] improved the
method while using fully self-consistent approach. Orbital polarization was also
incorporated, which was suggested by Jansen [13]. While the correct easy axis was
obtained for Co and Fe, in case of Ni the calculation still gave the wrong easy axis.
This the best result before the current work. Schneider, Erickson, and Jansen [14]
used torque instead of energy difference to obtain the same result as that of Trygg,
Johansson, Eriksson, and Willis. They also treated the spin-orbit coupling constant as
an adjustable parameter. They succeeded in restoring the correct easy axis for Ni
with an unphysically large value of spin-orbit coupling. This work suggested a close
relation between magnetic anisotropy energy and the strength of spin-orbit coupling.
We believe that the physics of transition metal compounds is intermediate between
atomic limit where the localized d electrons are treated in the real space and fully
itinerant limit when the electrons are described by band theory in k space. A
many—body method incorporating these two important limits is the dynamical
mean—field theory (DMFT) [15]. The DMFT approach has been extensively used to
study model Hamiltonian of correlated electron systems in the weak, strong and
intermediate coupling regimes. It has been very successful in describing the physics of
realistic systems, like the transition metal oxides and, therefore, is expected to treat
properly the materials with d or f electrons.

We take a new view that the correlation effects within the d shell are important for
the magnetic anisotropy of 3d transition metals like Ni. These effects are not captured
by the LDA but are described by Hubbard-like interactions presented in these
systems and need to be treated by an extension of first principles methods such as

LDA+U [16]. Since, DMFT reduces to LDA+U in static limit, we adopt LDA+4U
method to attack the problem of magnetic anosotropy of 3d transition metals.
The LDA+U method has been very successful compared with experiments at zero
temperature in ordered compounds. By establishing its equivalence to the static limit
of the DMFT we establish a sound theoretical ground for LDA+U. We also see clearly

that dynamical mean—field theory is a way of improving upon it, which is crucial for



finite temperature properties.

Another effect which has not been investigated in the context of magnetic anisotropy
calculations is the non-collinear nature of intra-atomic magnetization [17]. It is
expected to be important when spin-orbit coupling and correlation effects come into
play together. We show that when we include these new ingredients into the
calculation we solve the long-standing problem of predicting the correct easy axis of

Ni.



Chapter 2

Overview of Magnetic Anisotropy

2.1 Experiments

In this section, we briefly overview experimental methods and results. The simplest
form of crystal magnetic anisotropy is uniaxial anisotropy, for example, in hexagonal
cobalt with easy direction parallel to the ¢ axis of the crystal at room temperature.
As the internal magnetization rotates away from the ¢ axis, the anisotropy energy
increases with increase of ¢, where ¢ is the angle between the ¢ axis and the internal

magnetization. We can expand this energy in a series of powers of sin? ¢:
E, = Kysin? ¢ + Kysintop + -+, (2.1)

where K| and K5 are constants.
For cubic crystals such as iron and nickel, the anisotropy energy can be expressed in
terms of the directional cosines (aj, ag, as) of the internal magnetization with respect
to the three cubic edges. Because of the high symmetry of the cubic crystal, the

anisotropy energy can be expressed in a fairly simple way:

E, = K1 (ajaj + aja3 + ajai) + K> (ajajed) + - -, (2.2)

where K| and K5 are constants.

In experiment, torque is measured instead of total energy. The torque measured at
various angles are interpolated to a corresponding analytic expression such as angular
derivatives of Eqs. 2.1 and 2.2. The constants K, obtained in this interpolation is
substituted back to get the expression for the total energy. Magnetic anisotropy
energy is calculated by subtracting energies at two different energy, e.g. [001] and

[111] (See Fig. 2.1).
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Figure 2.1: Three basic directions of magnetization in cubic crystal. The specimens are
used to determine magnetization in [100]. [110], and [111] directions. Specimens are
cut in the form of hollow parallelogram or “picture frame”. The purpose of this form is
to provide a closed magnetic circuit so that the uncertainty of a demagnetizing factor
can be obviated. In a cubic crystal, a parallelogram can always be constructed so that
each side is parallel to a direction of the form < hkl >, the sides being, for example,
[hKkl], [RlK], [RhI], and [RIEK].

To measure torque, specimens are formed into short cylinders, and measurement of
torque is made as shown in Fig. 2.2. The specimens are mounted in a carriage held by
two torsion fibers that are fastened to a rigid support at the top and to a circular
scale S at the bottom. When the field is excited in the electromagnet, the crystal
tends to turn so that the direction of easy magnetization is parallel to the field. The
torque so produced is balanced by turning the bottom of the lower fiber until the
crystal regains its original orientation as determined by reflection of a light beam from
the mirror. The scale reading 55 is then compared with the original reading 57 with
H =0. 5 — 51 is a measure of the torque. The orientation of the crystal axes with
respect to the applied field is varied by turning the electromagnet, which is mounted
on a heavy bearing, and noting its position on a suitable scale, S’. One then plots the

torque against the crystal orientation and deduces from the curve the crystal

anisotropy constant I,,.

2.2 Cubic Symmetry

We shall deal mainly with cubic crystal. A digression to cubic group is presented here.

Cubic group has five irreducible representations with dimensions Iy, ,l5, where
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Figure 2.2: Torque magnetometer. Electromagnet can be rotated so that the field is
in any desired direction in the crystal specimen. The torque induced in the crystal
is balanced by twisting the fiber a measured amount by means of the scale S’ at the
bottom
lh =1, =1,13=2,and 4 = l5 = 3. The corresponding representations are denoted by
Iy, Ty, I's, Ty, I's or Ay, Ag, E, Ty, T;. Under rotations of cubic group, I'y rotates as
{1}, Ty as {xyz}, I3 as {22 — y?, 322 — 2}, Ty as {x, y, 2}, and I'5 as {2y, yz, 22}.
In analogy with half integral angular momentum representation, cubic group has
double cubic group as its ‘covering group’. Double cubic group has eight irreducible
representation. Five of them are the five irreducible representation of cubic group.
The other three with dimensions lg = 2, I7 = 2, [g = 4 are denoted by I'g, I'7, I's or E’,
E"”, U. Under rotations of cubic group, I's rotates as the J = 1/2 representation of
angular momentum, I's as J = 3/2 representation of angular momentum. The direct
product I'y x T'g is I'7, hence I'; rotates as the product of xyz and J = 1/2

representation of angular momentum.



The calculation of matrix elements {(«|V|3), where a belong to T” and 8 to I”, is

facilitated by irreducible decomposition of the direct product " x I", or of T x T"
because I' can be made real. Without loss of generality, we can assume that V'
belongs to I'. Non-zero elements arise only when the decomposition of the direct
product contains one or more representation I', say I'®, I'*, ---, where a, b, --- are
indices to distinguish multiple I'’s. All the matrix elements are uniquely determined
by group theory within proportionality factors ¢,, ¢p, ---: The decomposition of a
direct product of rotation group representations contains each representation at most
once. Thus, there is only one proportionality factor, which is the basis of
Wigner-Eckart theorem. In case of cubic group, I'y X I's breaks into I's + I'7 + 2I's and
I's x I'sinto I'y + I's + I's + 21"y + 2I'5. All the other direct products decomposes into
a sum of representation containing each representation at most once. In the context of
cubic group, a version of Wigner-Wickart theorem can be re-casted as: the magnetic
moment can be written as i = ,uBgf for representations other than I's, as
=up (glf—l— ggJ_é) for representation I's. Two more application are worth
mentioning.

The Decompositions of direct products I'y x I'y and I's X I's have I'y only once, hence
all the matrix elements of a vector quantity are determined within proportionality
factor. Since angular momentum is a vector, we can introduce a fictitious angular
moment af with I = 1 and use it calculating matrix elements of a vector quantity

with the manifold. Also note that the decomposition of I's X I's does not contain 1'4,
hence a vector quantity does not have non-zero matrix elements. This is usually

expressed by saying that the doublet is non-magnetic.

Another application to note is another way to applying Wigner-Eckart theorem to

rotation group. Namely

- [ NI 1y .-
G 3l T1, 153 = G T3 ) (2.3)
where Tl/,ln has the same transformation property as Tl/m' Cubic crystal field can be

written as A(20z* + 20y* + 202z* — 12r*), which in turn is A(Pg + 5P}), where P ’s

are unnormalized homogeneous polynomial proportional to rl(YﬂlﬂL + YTL*) Therefore
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we can use any operator Og + OF transforms in the same way as Py 4+ 5Pf to calculate
the matrix elements up to overall factor. In total angular momentum representation,

the proper orators Og and O read

Of = 35J2—=30J(J+ 1)J2+25J2 —6J(J +1)+3J*J + 1) (2.4)

1
0i = 5(in+Ji). (2.5)

In orbital angular momentum representation, one only need to change J by L.

2.3 Origin of Magnetic Anisotropy

In this section, we overview basic theory of magnetic anisotropy. Theories relevant to
transition metals will be expanded in later sections.
The ordinary exchange energy and super-exchange energy have the form of the scalar
products of two spins, and do not give rise to magnetic anisotropy energy. Two kinds
of anisotropic interactions can be considered: one is the dipolar interaction between
magnetic moments and the other is the anisotropic exchange interaction. The latter
interaction is a combined effect of the spin-orbit coupling and the exchange
interaction. This interaction was proposed by van Vleck [1] as an origin of magnetic
anisotropy and is particularly important in ferromagnetic metals.

In addition to these two anisotropic interactions, the crystalline field acting on each
magnetic ion produces anisotropy energy. Anisotropy in the g-factor usually found in
paramagnetic salts is also a product of the anisotropy of the crystalline field.
Thus, the anisotropy energy can be considered to stem from three sources: magnetic
dipolar interaction, anisotropic exchange interaction, and the anisotropy of the
crystalline field. However, the effects of these three parts are quite different in
different substances.

A brief description of magnetic anisotropy based on the atomic picture will be

presented in what follows.
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2.4 Intermediate Crystalline Field

When a free magnetic ion is brought into the crystalline electric field arising from the
surrounding ions, the directional degeneracy of the angular momentum is removed—
completely or partially—due to the crystalline Stark effect. We shall assume that
spin-orbit coupling is small compared to the crystalline Stark effect, just as in 3d ions,
and that the ground state is a singlet. In this limit, we can treat the spin S as a
parameter. The unperturbed ground states can be any of the five representations of

the cubic group.

2.4.1 Singlet Ground State

Tons in 3d* (V3T Cr*t in tetrahedral field). 3¢* (V2T, Cr3*, Mn** in octahedral
field), 3d” (Fet, Co?t, Ni*t in tetrahedral field), and 3d® (Cot, Ni%t, Cu®t in
octahedral field) configuration have singlet ground state I'y. Denoting energy of the

ground state by Fy, the unperturbed Hamiltonian can be written as
Ho= Eo+2upS - H, (2.6)
where H is an external field. The perturbing Hamiltonian is
V=A-S+upl-H. (2.7)

Since angular moment operator is a complex operator and the energy is real, the
expectation value of angular moment of a singlet state is zero. The first order

perturbation energy is therefore zero. The second order perturbation energy is

2
1 ) .
Ey=—-Y I L, > AN L[0)S, + pp (| Lu0)H, Y (2.8)
i#0 ¢ L

where indices p and v represent Cartesian coordinates z, y, and z. This can be written

Ey==2\up > AwSuH, = N> AwSuS, — up Y Ay HuH,, (2.9)
v v v
where
(O] L[2) (4| Lu|0)
A, = . 2.1
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The effective Zeeman energy becomes
EZeeman = 2,uB E (6;“/ - AAM/) SMHV- (211)
v
Hence, the effective g-value is generally a tensor 2(1 — AA) that can be made real and
symmetric by choosing real unperturbed basis wave functions. Taking the principal

axes of this tensor as the z-, y-, and z-axes, the anisotropic energy takes the form
—AAL 82 — /\szSS — A2A, 52, (2.12)

Thus, the anisotropy energy arising from the crystalline field is of the order of A times
(g —2) = 2)A.
When the ion has cubic symmetry, the principal values of A are degenerate, and

eq. 2.12 is isotropic.
2.9 32
FEy(H =0) = —5/\ (TrA)S™. (2.13)

The third order perturbation energy is zero for the same reason as the first order
perturbation energy is zero. The first nontrivial anisotropy energy arises from the

fourth order perturbation as
A(Sr+ 5,4 57), (2.14)

where A is a constant of the order of A\*
An interesting point is that when S = 1/2, there is no anisotropy energy due to

crystalline Stark effect. This is because (5,)?" = 1/4 for any positive integer n.

2.4.2 Doublet Ground States

Tons in 3d' (Ti*T, V4* in tetrahedral field). 3d* (Cr?*, in octahedral field), 3d° (Fe?T,
in tetrahedral field), and 3d? (Nit, Cu®* in octahedral field) configuration have
doublet ground states I's.

The double I's is ‘non-magnetic’ in the sense that any matrix element of a vector
operator, including magnetic moment and orbital angular momentum, is zero. The

same analysis as in the case of singlet ground state applies to double ground state.
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2.4.3 Triplet Ground State

Tons in 3d* (V2T Cr*t in octahedral field). 3d® (V2*, Cr*T, Mn?* in tetrahedral
field), 3d” (Fet, Co**, Ni*t in octahedral field), and 3d® (Co™, Ni%t, Cu3* in
tetrahedral field) configuration have triplet ground state I'y. Tons in 3d' (Ti*t, V4T in
octahedral field). 3d* (Cr?*, in tetrahedral field), 3d° (Fe?T, in octahedral field), and
3d? (Nit, Cu?* in tetrahedral field) configuration have triplet ground states I's.
We consider now orbital triplets I'y and I's. Within these manifold, every orbital
vector can be replaced by an equivalent fictitious orbital momentum operator af with
I =1. The spin orbital coupling can be written within the manifold as a/\I:- S.
Neglecting the admixture between the ground manifold I';, where ¢ is 4 or 5, and
excited orbital multiplets I';, through spin orbital coupling, we obtain f multiplets,
where the fictitious total angular momentum ftakes values S + 1, 9, or |S — 1]. The
magnetic moment operator can be written as i = ,uBng, where the effective orbital g

factor reads

!}J — (g[_gs) (215)

Spin-orbital interaction to excited orbital states can be took into account through
perturbative analysis. Second order effects does not change the isotropy but the
effective g-factor. They also give rise to small splitting of states with J > 2 in a

manner consistent with group theoretic requirement. Fourth order perturbation would
find anisotropy energy resulting in the form of A(J* + j;l +J.
For mutiplet ground state, it is convenient to use magnetic suceptibility to measure
magnetic moment. Denoting the ground states by |0;a) and the excited states by |n),

the suceptibility reads

0a|,u |0; a)]? |n|,u |0; a)]?
b= N 19 : 2.16

where p, is the fraction of a states in ground states and p = z,y, 2.
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2.5 Weak Crystal Field

When crystal field is weak compared to spin-orbital coupling, we can treat the crystal
field as pertubation. The unperturbed ground state is the manifold with smallest
totoal angular moment for less than half filled ions, largest totoal angular moment for
more than half filled ions. The crystal field effect breaks this manifold into
submanifolds consistent with group theoretic consideration. For non-Kramers ion,
which has even the number of electrons, the totoal angular moment is integr and the
analysis is similar to the case of intermediate crystal field. Kramers ion, having odd

number of electrons, demands another analysis.

2.5.1 Non-Kramers Ions

The ground states are one of the five manifolds I';, where ¢ is 1 to 5. The three
manifolds I'y, 'y, and I's are non-magnetic. The other two manifolds I'y and I's can
be dealt with fictitious momentum operator of with [ = 1. Higher order effect to

excited totoal angluar momentum states can be took into account.

2.5.2 Kramers Ions

The ground states are one of the three manifolds I's, I'7, and I's. The two manifolds
I's and I'; are Kramers douplets and does not have anisotropy in cubic crystal field.
I's consists of four sates. Uimin and Brenig showed anisotropy arises via isotropic

magnetic exchange [18].



15

Chapter 3

Density Functional Theory and Local Density

Approximation

3.1 Density Functional Theory

Being a ground state property, the MAE should be accessible in principle via density
functional theory (DFT) [8, 19]. Density functional theory is the basis of LDA+U
that we employ to tackle the magnetic anisotropy of 3d transition metals. A brief

description of density functional theory is presented here.

We condier a system couples to an external source J(z) with an interaction

Hamiltonian
Hy = /dw%(f)J(f), (3.1)
where p(Z) is the density of particles, the Hohenberg-Kohn theorem [8] states that
e There exists density functional E[p].

e The ground state energy can be obtained by minimizing this functional with

respect to the density.

A derivation of Hohenberg-Kohn theorem can be easily done in functional integration

formulation.

Consider a fermionic system with a fermi field (%) and Hamiltonian

H=Hy+ / Az 1(Z)J(2)(F), (3.2)

where Hg is the Hamiltonian without the external source, i.e., the Hamiltonian when

J(Z) = 0. The partition function

7 = exp(—WI[J]) = (0|T; exp(— /dTH)|O>, (3.3)
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where T’ is the time ordering operator, can be written as

WU 2 / (DYTDe]e 4, (3.4)

where L is the Lagrangian and [[Dw1][D%] is a Grassmannian functional integral.

Explicit form of the Lagrangian is

oy
5

L= /dw3dT¢T(f)a (#) - H. (3.5)

For a system of electrons moving in a crystal potential V.(z) and interacting via
Coulomb interactions V', in the presence of an external source J coupled to the
electron density, the partition function can be written down explicitly as,

2

Z=eal-Wlll = [ Dleeexp |- [dest@or - L+ vielu

_ % / duda' 5+ ()it (@ )V (@ — o' )b(a")ob(x) (3.6)
b [t

Here z = (x,7) denotes the space-imaginary time coordinates.
For time independent system, the effective action W[.J] can be written as a product of
energy functional E[J] and the total time, i.e., W[J] = —E[J] [ dr. Taking a
functional derivative of the eq. 3.4, we obtain the function derivative of the energy

functional with respect to the external source:

75 = (3.7)

Invertibilty of eq. 3.7 is equivalent to the existence of density functional in Density
Functional Theory. Assuming that the eq. 3.7 is invertible , we can express v(&) in
terms of p(Z). Using this relation between v(Z) and p(Z), we can express the energy
functional as a functional of density, called density functional, F[p]. (Calling this
energy functional of density as density functional is a convention. Note that the
energy functional is not a functional of density but a functional of external source.
The energy functional expressed in terms of density by inverting the eq. 3.7 is the

density functional.)
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To show that the ground state can be obtained by minimizing the density functional,
we consider the free energy obtained by Legendre transformation (We can obtain the
same conclusion using Legendre transformation of W[J]. This point of view will be

taken when we are discussing Local Density Approximation and its extentions ),

Flp,J] = Elp] - / 02°p(7)J (). (3.8)

The functional derivative of F|[p] with respect to v(&) is zero:

§Fp, J] SElp]

o7 = 5] p(E), (3.9)
= p(7) - p(¥) (3.10)
= 0. (3.11)

Therefore the free energy functional is a functional of density, i.e., F[p,J] = F[p]. The

derivative of F[p] with respect to p(&) is

= —J(@). (3.12)

Now, using the expression E[p] = Flp] + [ da®p(Z)v(Z), we take the derivative of E[p]

with respect to p(%)

SElp]
op(7)

= 0. (3.13)

Equation 3.13 is the minimization condition. This equation together with the
invertibility of the eq. 3.7 consists of the Density Functional Theory.
We can extend the Density Functional Theory to systems with magnetic moments.

We add an external magnetic field l_”;(f) such that the interaction Hamiltonian reads
i = [ @@ @@ + 2 [ dasl@F0@) - @) (3.14)

where § is the spin operator. For simplicity we assumed that the orbital moment is

quenched, <f> = 0. In the same vein as the case without an external magnetic field,

we obtain
OL[J,h] z OL[J,h] ey
(5J(f) —,0( )7 55(5) = ( )7 (3'15)
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where 7(Z) = —T(Z)S(Z). The free energy is
Flp.ii) = Elp.ii) - [ e*p@)1(@)+ [ doti(a) K. (3.16)

which in turn has the following functional derivatives,

§Fp, m] §Fp, m]
= —o(Z = h(Z 3.17

Assuming the invertibility of eq. 3.15, we can devise “magnetic” density functional

E[p,m]. Taking derivatives of this functional with respect to density and magnetic

moment density, we obtain minimization conditions:

$Elp, m]
op(7)

Therefore, the extension of Density Functional Theory to the case with magnetic

$Elp, m]

=0, 87(7)

= 0. (3.18)

moment is that
e There exists “magnetic” density functional F[p,m]. and that

e The ground state energy can be obtained by minimizing this functional with

respect to energy and magnetization, respectively.

3.2 Kohn-Sham Self-Consistency Equations

Density functional theory can be used in conjunction with functional integration.
When non-trivial interaction is considered, the functional integration is performed
using perturbation theory. In a year after the density functional theory is published,
Kohn and Sham devised a method dealing with the density functional theory in a
computationally implementable way, known as Kohn-Sham self-consistency equations.
In this section, we describe Kohn-Sham self-consistency equations.

Kohn and Sham [19] rewrite the density functional as
Elpiil = Bolpoiil + [ V@)~ [ @) )
1 -

where Vext(Z) is the external potential, i.e., Vo(Z) + J(Z). Ts[p,m] is the kinetic

energy of a noninteracting electron gas in its ground state with density p(&).
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Exchange correlation energy functional Exc[p,m] is implicitly defined by the above
equation. In practice, the exchange correlation energy function is approximated by an
analytic expression.

Applying the minimization conditions, the Kohn-Sham approach boils down to the

Kohn-Sham self-consistent equations:
Hy 0i(¥) = ei(T), (3.20)

p(@) = flei = p) [v(@)l* (3.21)
M) = —po Y fles — pof(E)F0();, (3.22)

N =3 S, (3.23)

where f is the fermi distribution, NV is the total number of particles, pg is the Bohr

magneton, p is the chemical potential, and

S

1 -
Hk = —§V2 + Vks + oo - hks’ (3.24)

= X sl = w I (3.25)

) =~ 3 J(e = )l @03 (3.26)
Vis(®) = Vexe( @) + /d 3|f(_ )@ﬂ + 6EXC([;1) m, (3.27)
iy (7) = F(#) + “f;;;[(’;;)ﬁ”‘] (3.28)

Kohn-Sham’s approach calculates single-electron states v;, called Kohn-Sham
orbitals, using effective potential Vi((Z) + po? - Eks‘ The effective potential in turn
depends on the Kohn-Sham orbitals through density and magnetization. When the
self-consistency of the Kohn-Sham orbitals and the effective potential is reached, the

ground state energy can be found by Eq. (3.19), where T is usually calculated by
=Y e —we - [ ao @@ + [ @ @ 329)

In principle, the Kohn-Sham orbitals 1; are technical devices for generating total

energy. In practice, however, they are used as a first step in perturbative calculations
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of one-electron Green functions. This underscores the single-particle picture and small
corrections around it upon which the standard model of solids is built.
The Kohn-Sham formulation of Density Functional Theory can be summarized to the
following functional,
T(p,Vis) = =T trlogliw, +V?/2 = Vis — 117 - hygg]

[ Vis@p@det + [ @) g @) (3.30)

1 [p@pG) ) 543 Dp(D)da® — [ dedh(T) - m(F
by [ S i+ [Vaop@an - [ i) )
+  Eulp).

The sum of first three terms is the kinetic energy of a non-interacting electron gas in
potential Vi g(Z) and magnetic field Eks‘ Compared with the Eq. (3.19), the Eq.
(3.30) can be identified with the density functional. Extremizing Eq. (3.30) with

respect to p(Z) and m(Z) gives

Vi) = Vess@) 4 [ ay? 204 S5, (331)
() = () + S (3.52)

Therefore the functional (3.30) contains the prescription for Kohn-Sham potential and
magnetic field. The equation of motion part of Kohn-Sham self consistency equations
can be obtained by extremizing this function with respect to p(¥) and m(Z).
Extremizing Eq. (3.30) with respect to p(Z) and m(Z) leads to

7 :Tz<f

1
iwn + V22 = Vig — 108 * Itjeg

f> , (3.33)

m(Z) = —MOTZ <f f> : (3.34)

These equations can be solved using Kohn-Sham orbitals:

—

g

iwn + V22 = Vig — HoG - g

Zf ) [(@)l (3.35)

= =0 Y Sl = ol @0, (3.36)
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where ¢(Z); are Kohn-Sham orbitals obtained by solving effective one-electron

problem,

Hyoi(¥) = etpi(T). (3.37)

Therefore the functional (3.30) contains all the pieces of Kohn-Sham self consistency

equations. When the self consistency is reached, the energy is calculated by

E = Z flei —p)e — / Vies()p(T)da® + / A’ (@) - by (7)

pED) i
+ 5/ 7= 7 SR At dy® -I-/Vext(w)p(ac)dw —/dyc h(Z)-m(T) (3.38)
+ Eulp].

3.3 Local Density Approximation

Density Functional Theory is an exact theory as long as the invertibility condition
holds. ( Density Functional Theory is an effective field theory. All the effective field
theory is exact at the ground state as long as the invertibility condition holds.) Since
the exchange energy functional E..[p]is not known, the usefulness of this approach is
due to the existence of successful approximations to the exchange energy functional.
Kohn and Sham proposed Local Density Approximation (LDA). In LDA, the

exchange energy functional is assumed to be local:

mmz/m%mwmm (3.39)

with €,.[p(2)] being the energy density of the uniform electron gas.
When nontrivial magnetic moment is present, the exchange energy functional is

assumed to be dependent on magnetic moment density also:

Erelp,m] = /dech[p(f)alm(f)l]p(f)+/dw?’fxc[p(f)aIm(f)l]lm(f)l(f)- (3.40)

It is a usual assumption that the magnetic moment density is collinear, in other
words, that the direction of magnetic moment density is independent of position and
aligns with the external magnetic moment. The magnitude of magnetic moment

density is then |7(Z)| = p(Z)4+ — p(Z)—, where p(Z)4 is the density of spin-up
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(spin-down) electrons. Electron spin is quantized along the internal magnetization.
Since the density is sum of spin-up and spin-down densities, the exchange energy is a

functional of spin densities:

Evlpii) = Exlpsap) = [ dechlos(@.p-(@ps(@)+ [ delpe(@).p-(@p-(2).
(3.41)

This approximation is called local spin density approximation (LSDA) [20]. In this
approximation, spin-up and spin-down wavefunctions are used. Then, the Kohn Sham

equation reads
1 " " " "
(—§V2 + Vks(w) + ,uohks(x)> ¢:I:($) = 6i:l:¢:l:($)- (3.42)

Spin densities are calculated as usual
pe(T) = fleix — p) [ ()il (3.43)

When the magnetic moment density may not be collinear, Spinor, in place of spin-up

and spin-down wavefunctions, should be used. For example, when spin-orbit coupling

is incorporated, we can not assume collinear magnetic moment any more. Spin-orbit
coupling is included by adding spin-orbit coupling term to the Kohn-Sham

Hamiltonian [21]:
(—%VQ + Vi (@) + 107 - g (7)) + E(F) - ;)) Vi(7) = ehi(T) (3.44)

where [ and & are one-electron orbital and spin angular moment operator, respectively.
¥;(Z) is Kohn Sham spinor. £ determines the strength of spin-orbit coupling and in
practice is determined[22] by radial derivative of the [ = 0 component of the

Kohn—Sham potential inside an atomic sphere:

2 dVis(r)
¢ dr

£(r) = . (3.45)

The Kohn Sham equation in the form (3.44) can deal with intra-atomic
non-collinearity as well as non-collinearity with the external magnetic field.
The Kohn—Sham parametrization of the density in terms of Vi g is extremely useful

because it expresses uniquely p(Z) in terms of the Kohn-Sham orbitals ¢y ;(#). This is
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a key point for understanding how DFT is truncated in practical implementations.
There are two different philosophies in truncating Eqs.(3.20)—(3.26), one is via the
introduction of pseudopotentials which we will not describe here. All-electron

methods simply introduce a finite basis set X‘;(f) and expand
Uii(F) = Y XE(F)AY (3.46)

keeping a finite set of a. Note that this truncation immediately restricts the active
part of the multiplicative operator associated with the Kohn—Sham potential to have

a form
V= ) Vas(xEl (3.47)
k

Of course, one can add to this contributions from the set which is orthogonal to the
minimal basis set |yX) without changing the truncated density. The requirement of
locality presumably determines the Kohn—Sham potential and the component of
((3.47)) outside the space ofy¥(r) uniquely.

Linear muffin—tin orbitals (LMTO’s) [21] are an optimal minimal basis set. For a
known Kohn—Sham potential this construction can be done once and for all. However,
since V| depends on the density, the basis IxX) is adapted iteratively to the
self-consistent solution.

Finally, it is worth pointing out that in practical implementations of DFT, one also
needs to make a truncation of the degrees of freedom included in the functional. Since
this formalism is based on Kohn—Sham orbitals, this is done by truncating the Hilbert
space from which the Kohn—Sham orbitals are chosen. Truncations similar in spirit

are involved in pseudopotential methods.
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Chapter 4

Local Density Approximation with Strong Correlations

4.1 Introduction

The LDA method is very successful in many materials for which the standard model
of solids works. However, in correlated electron system this is not always the case. In
strongly correlated situations, the total energy is not very sensitive to the potential
since the electrons are localized due to the interactions themselves, and the lack of
sensitivity of the functional to the density, does not permit to device good
approximations to the exact functional in this regime. Furthermore, when the Mott
transition takes place the invertibility condition is not satisfied. Our view, is that this
situation cannot be remedied by using more complicated exchange and correlation

functionals in density functional theory.

4.2 Formulation

LDA+U method[23] is the method proposed to overcome this difficulty of LDA when
strong correlations are present. We will deal with the spin unrestricted formulation
for illustration. This allows us to choose a quantization axis along some direction, say
z, since the total energy is now invariant with respect to its orientation.

The approach requires an introduction of a set of localized orbitals ¢,(Z) which are

used to build an “occupancy spin density matrix”
0% = 3 flew) [ i @0u@)is® [ (@i as’ (4.1)
kj

This intuitively represents the “correlated part of the electron density” as long as we

associate our projectors ¢, with correlated electrons, say d orbitals. The total energy
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now is represented as a functional of the spin densities p7(r) and of n7,. We introduce
spin-dependent Kohn Sham fields V{7 (¥) = Vi (7) + Uu0|ﬁks(f)| and external

potential VI (¥) = Vexe( @) + U,u0|h( 7)|. In complete analogy with Eq. (3.30), one

ext
introduces a Lagrange multipliers matrix A7, to enforce (4.1). The LDA+U functional
then read
Trpatulngy, Aoy Vi p'] = =T trloglisw, + V?/2 = V7 = Y AJ1¢a) (4]

TWn

B E/Vks (#)p”(¥)da” +/Vext(f)p(f)dx3 (4.2)
5 wa?)d 3 Agyng
2 / 17— 7] Y EU: 2 N

n E)E?A[pg] n EModel[n ] EModel[ ]7

_|_

where we have added a contribution from the Coulomb energy in the shell of

correlated electrons

EModel Z Z Uabcdnabncd + = Z Z abed — abcd abnccrd (43)

o abed o abed
Since, part of this energy is already taken into account in LDA, we have to subtract a

double-counting part denoted by E}edel[57].

4.3 Self-Consistency Equations

Extremizing the functional (4.2) with respect to Vi s(#) and hys() yield

=Ty <f f> ent (4.4)

1
iwn + V2/2 — Vﬁs — Zab /\gb|¢a><¢b|

which is equivalnent to

r) = Z f(€kjcr)|¢kjcr(f)|2v (4.5)
kj

=924 Vs B+ D An(@) [ 000505 = e a2 (1)
V7 (Z) is obtained by extremizing the functional with respect to p(Z)”:

ELDA[ ]
po(E)

V@) = V@) + [ 20 2 (4.1

|7 — i
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Extremizing with respect to A7, yield the constraint (4.1). Extremizing with respect

to n?; yield the correction to the potential A7,

dEgi[:Odel[ncr]

4.8
dn?, (4.8)

gb = E Uabcdnc_dg + E(Uabcd - Jabcd)nccrd -
cd cd

The Eqs. (4.5)—(4.8) form self-consistency equations of LDA+U

4.4 Correlation Matrix

The LDA+U functional and the LDA+U equations are defined once a set of
projectors {¢ (%)} and a matrix of interactions Upypeq is prescribed. Formally, the

matrices U and J have the following definitions:

Ut = {acloc]bd) = / 2 (D) (ee (7 — Pon(Dda(de®dy®,  (4.9)

Jabcd

(aclve|db) = / 6u(7) ST 0T — Doa(D)on(Pda’dy’,  (4.10)

where the Coulomb interaction ve(Z — ¢) has to take into account the effects of
screening by conduction electrons. In practice, one expresses these matrices via a set
of Slater integrals. When [ orbitals are used as the projection operators, the matrix is
expressed in terms of Slater parameters F*. For a = Im,b=lk,c=I'm/,d = I'k' and

representing ¢y, (r) = ¢(7)i'Y,,, (), we can express the matrices U and .J in the

following manner:

1 min(27,21')
T ()l// ! =m—k o =k —m!
[N 1.1 _ U m m m m
(Iml'm!|—|KUK) = > s Cinim Ch i ™™ St
1"=0,2,...
1 min(27,21') A
T (‘)l// "o t__ 1t "ot _q._ ot
I 17./ _ J "m"=m—-k" ~"m"=k—m
(bnl'm!|~|I'KTk) = > s b Cinli ChL S k!
1"=0,2,...

where the quantitites F(*) and FU) are given by the following radial integrals

(u)l”

"
r
F}l/ = / m¢%(r)¢%/(rl)drdrl

- l//
B = [ matnierral o drar

When [ = I, the quantites F() and F() are equal and have a name of Slater integrals

which for s—electrons are reduced to one constant F'(9), for p—electrons there are two
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constants: F©), F?) for d’s: FO), F&) P& ete. In this case, the expressions for U

and J reduces to

(m, m" v |m/, m""y = Z ap(m,m',m", m"F* (4.11)
k

where 0 < k < 2]

k
> (I Yag|lm ) (I |V [ 1m"”). (4.12)

q=—k

47
ak(m, m/7 m//7 m///) o

2%k 41

Slater integrals can be linked to Coulomb and Stoner parameters U/ and J obtained
from LSDA supercell procedures via U = F° and J = (F? + F*)/14. The ratio F?/F*
is to a good accuracy a constant ~ 0.625 for d electrons. For f electrons, the

corresponding expression is U = F° and J = (286 F% + 195F* + 250F°)/6435.

4.5 Double Counting Term

When the electron distribution is orbitally symmetric, n?, = nJ, 64,

1 , 1 o
pModelpo] — 52(21+1)2Ungan;f—|—§21(21—|—1)Z(U—J)nganga (4.13)
— Lo lZJ‘H’ lZ(U J) (20 + 1)ng,n’ (4.14)

= FUnn -3 4 n’n 22 Ny aMaa .

= Lonn = LS nmee — el
= §Unn— 5%}]7@ n — self energy. (4.15)
where

0 = S (ab] 2 fab) (4.16)

T T ‘
Jo= 0= 3" ({ab|H]ab) — (ab|~[ba)) (4.17)

- 21(20 + 1) £ VL A, '
R’ = Y ng,, n=n+ab (4.18)

For d electrons, U=Fand J = F? + F*.

Part of the energy added by EMedel[p7] is already included in LSDA functional. The

double counting term E%Odel[ng] is added to subtract this already included part of

EMedel[7] This is done by imposing that LDA+U reduces to LSDA when the electon
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distribution is orbitally symmaetric. It was proposed [24] that the form for E374¢![n]

18

1_ _
F}lodel — SUR(n = 1) = Jal(al = 1) + atwt — 1), (4.19)

N | —

where the subtraction by 1 is made to take the self-interaction into account. This

generates the correction to the potential in the form:
o - o [7( 1 T(m0 1
ab — E Uabcdncd + E(Uabcd - Jabcd)ncd - 6abU(n - 5) + 6ab<](n - 5) (420)
cd cd

As an example, when only the effect of U is under investigation, the U and J matrices
are Ugped = 6apdeqlU, Japed = 6aadeqal, U = U, and J = 0. This simple U and J
matrices make it possible to write down corrections to LSDA functional and LSDA

kohn-sham potential:

1 1.
EMUU ) = By = =0 Y 0y Ungynf, + 5Un (4.21)
o ab
1
gb = zd: Uabcdnc_dg + zd:(Uabcd - Jabcd)nccrd - 6abU(ﬁ - 5) (422)
—0 o o rr/ — 1
= baplU zd:(ndd + 1) = 1y = b U(0 — ) (4.23)
1
= U(5ba — nf,) (4.24)

The question now arises whether double—counting term should include self-interaction
effects or not. In principle, if the LSDA functional contains this spirituous term, the
same should be taken into account in the double—counting expression. Judged by the
experience that the LSDA total energy is essentially free of self-interaction. For
example, the total energy of the hydrogen atom is very close to —1 Ry, while the
Kohn—Sham eigenvalue is only about —0.5 Ry. The construction of El\c/l[gdel is made in
order to be free of self-interaction. However this statement cannot be considered
seriously in general, and alternative form of the double counting may include the

effects of self-interaction.
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4.6 Interpretation of LDA+U Functional

LDA+U can be viewed in several aspects. Frist, ['rpa+p7 could perhaps be viewed as
an approximation to a functional of a projected density matrix. Second, If one uses
the Eqs.(4.7), (4.8) and (4.1) to eliminate Vg, n7,, and A7, as functions of p7, and
substitutes these into (4.2), one obtains a functional of the density alone. In this way,
LDA4U could viewed simply as a different density functional where in addition to
dividing the density into spin up and spin down as in LSDA, one introduced a
correlated component n,, of the density and an uncorrelated one. Third, a different

point of view is to introduce a “correlated part of the one-particle density matrix”

[ [ atrer et o (4.25)
and to consider a functional of this quantity and of the total density by effective
action methods and view Eq. (4.2) as an approximation to this exact functional.

However, the interpretation of

[iwn, + V?/2 = Vg - Z Aopba(r) ey (x")) 7
ab

Tz<r’

TWn

r> ¢iwn0t (4.26)

as a density matrix is not consistent when interactions are present. This is because
Eq. (4.25) describes a density matrix with eigenvalues one or zero, which is
characteristic of a non-interacting density matrix. The density matrix of an
interacting system has eigenvalues less than one. Therefore, Eq.(4.1) can not represent
an interacting density matrix. Last, we have suggested to interpret the LDA4U
method as a static limit of the more powerful DMFT method which we describe later.
The static limit of DMFT is going to be most accurate as more symmetries are
broken. Removing local degeneracies by spontaneous symmetry breaking is the

simplest way of minimizing the energy, hence reducing the correlations [25].

<r’ r> (4.27)

can be viewed as a limiting case of the GW approximation but this is again not clear

It was argued[24] that the Green function

liwn + V2 /2= ViEg = Aapda(r)ef(x')] "

ab

since an interacting Green’s function has poles with residues less than one, and this is
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not the case in expression (4.27) except for the uncorrelated situation where Hartree

Fock theory is exact.

4.7 Extension to Relativistic Cases

Relativistic effects, for example spin-orbit coupling, can be considered. These effects
are important for such applications as magnetic anisotropy calculations. We have
described the extended DFT in the previous section, and here we only discuss the
LDA+4U corrections. If spin—orbit coupling is taken into account, the occupancy

matrix becomes non—diagonal with respect to spin index:

ngy = ng, = Ef(q{j)/zbﬁ?(r)qﬁa(r)dr/¢ﬁ}(r')¢2(r’)dr' (4.28)
kj

The correction to the functional has the form similar to Eq(4.3), and it is given by

EMOdel = E Uabcdnabn 7 U‘I’ Z abcd Jabcd ab ncd E Jabcdnab nc
abcdcr abcdcr abcdcr
(4.29)
which can be figured out by considering a Hartree—Fock averaging of the original
expression for the Coulomb interaction
1 , e? N+t
3 Z Z(aaba |7|cada )Can €y 1€y Cos (4.30)
oo! abed

The correction to the potential takes the same form as Eq.(4.20) when o = ¢/, i.e.,

_ 1 1
ab — E Uabcdncd + E(Uabcd - Jabcd)ngg - U(ﬁ - 5) + J(ﬁgg - 5) (431)

and for off-diagonal elements it is given by

NG ==Y Jabeanyy® (4.32)
To make it more physically transparent we can introduce magnetic moments at the
given shell by

mly = sk nlf (4.33)

oo’
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where p runs over z,y, z for Cartesian coordinates, or over,—1,0,+1 (z,4) for
spherical coordinates. Relativistic correction to the LDA4U energy can be written in
physically transparent form
% Z Japeany “n 70 = % Z miZ)Jabcdmg) + % Z mgg)Jabcdmg) (4.34)
abedo abed abed
and in principle assumes further generalization of exchange matrix J,p.q to be
anisotropic, i.e depend on puu': Jﬁbﬁl'

To summarize, since the density uniquely defines the Kohn—Sham orbitals, and they
in turn, determine the occupancy matrix of the correlated orbitals, once a choice of
correlated orbital in Eq. (4.28) is made, we still have a functional of the density alone.
However it is useful to proceed by analogy with Eq. (4.2), and think of the LDA + U
functional as a functional of p?, n7 V¢ and A7, whose minimum gives better
approximations to the ground—state energy in strongly correlated situations. Allowing
the functional to depend on the projection of the Kohn—Sham energies onto a given
orbital, allows the possibility of orbitally ordered states. This is a major advance over
LDA in situations where this orbital order is present. As recognized many years ago,
this is a very eflicient way of gaining energy in correlated situations, and is realized in
a wide variety of systems.

Those are the formal difficulties of the LDA+U method. From a practical point of
view, despite the great successes of the LDA+U theory in predicting materials
properties of correlated solids (for a review, see book of Anisimov [16]) there are
obvious problems of this approach when applied to metals or to systems where the
orbital symmetries are not broken. The most noticeable is that it only describes
spectra which has Hubbard bands. A correct treatment of the electronic structure of
strongly correlated electron systems has to treat both Hubbard bands and
quasiparticle bands on the same footing. Another problem occurs in the paramagnetic
phase of Mott insulators, in the absence of any broken symmetry the LDA + U
method reduces to the LDA, and the gap collapses. In systems like NiO where the gap
is of the order of eV, but the Neel temperature is a few hundred Kelvin, it is

unphysical to assume that the gap and the magnetic ordering are related. For this
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reason the LDA+U predicts magnetic order in cases that it is not observed, as, e.g., in

the case of Pu [26].
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Chapter 5

Perturbative Analysis

5.1 Introduction

An analytic insight can be gained by treating the spin-orbit coupling as a
perturbation. This section is presented to show how a perturbative calculation can be
performed to find magnetic anisotropy energy. With a perturbative calculation
scheme, we may calculate torque directly avoiding comparing large numbers (total
energies) to get a small number (magnetic anisotropy energy). We divide the
contribution to magnetic anisotropy into two pieces. One is the contribution from

degenerate states and the other is the contribution from non-degenerate states.

When the spin-orbit coupling is taken as a perturbation, the first order correction to
the dispersion relation ez, —equals (kAo |AZ- [[kAc). The matrix elements under
consideration do not vanish only when the corresponding wave vectors are equal to
each other due to the periodicity of the system. Degeneracy enters the perturbation
scheme only when the matrix elements are non-zero. In this context, states with
different wavevectors will be called “non-degenerate”. For generic k the unperturbed
state |lg/\a> is a singlet, hence its wavefunction is real. Since the angular momentum
operator is imaginary and the matrix element must be real, the matrix element must
be zero for singlet states.

When the wave vector points to a symmetric direction, the system contains a subset
of the original symmetry. The states are degenerate, which reflects the residual
symmetry. Also there is an accidental degeneracy when the states with the same wave
vector come to within the magnitude of spin-orbit coupling. In these subsets, the
states are to be diagonalized at the first order. When all these perturbed states are

occupied, their net effect of them is zero since the original matrix is traceless.
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Interesting situations occurs when some of the degenerate states are occupied, while
the other are unoccupied. In this case, the first order perturbation is proportional to
the direction of the magnetization. We will call these states degenerate fermi surface

crossing (DFSC) states.

5.2 Torque and Magnetic Anisotropy Energy

In computational view point, LDA+U self-consistency equations form a set of fixed
point equations. With an appropriate initial guess, the standard fixed point iteration
converges to a solution. We depend on physics for the existence of solution and for
the uniqueness of solution. When the convergence is reached, we get magnetic
moment in direction [klm], total energy with the magnetic moment E[kim], Kohn
Sham orbitals ¢p.  with eigenvalues €. , and occupancy spin density matrix nggl
Magnetic anisotropy energy is calculated by taking difference of total energies with
different direction of magnetic moment, e.g., Fani = E[111] — E]001]. For high
symmetry directions, the direction of magnetic moment can be set by a guess
configuration with a magnetic moment aligned in the direction. When the guess
direction of magnetic moment is not a high symmetry direction, the magnetic moment
rotates to a direction of a nearby local minimum over iterations. For a magnetic
moment pointing to a generic direction, we need to turn on a external magnetic
moment. In general, the magnetic moment is not collinear with the magnetic moment.
The desired direction of magnetic moment, however, can be obtained by adjusting the
external magnetic field.

For Fe and Ni, the total energy is of the order of 10%eV, where the magnetic
anisotropy energy is of the order of 107%¢V. Finding magnetic anisotropy energy by
the difference of two total energy, we are dealing with a quantity of the order of 10!,
In modern 32bit computers, double precision has 17 digit mantissa. Since there are 6
digits to absorb numerical noise, calculating total energy to this precision is a

demanding but doable job. The computational load for this precision calculation is

huge with runtime over a week on 600MHz Alpha machines.
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We may calculate torque instead of total energy. In this way, we don’t need to
compare two huge numbers to find a tiny number. Torque method, therefore, may
reduce computing overhead. Here, we first formulate a prescription of calculating

magnetic anisotropy in terms of torque.

The magnetic anisotropy energy equals,
Eaniso = E(63) — E(67), (5.1)

where 6; and 6 are directions of the magnetic moment. The magnetic anisotropy can
also be found by integrating torque. Consider changing direction of the constant
external magnetic fields from 61 to 6, while keeping its magnitude constant. The

anisotropy energy can be calculated according to what follows.

(02 01 / /d$3(5E v, h
(/ /‘ asT 6E1}M
(5.2)
:/ 80 - x /dx?’*(f)
1
2 - - —
= / 60 -h x M
1
where M is total magnetic moment equal to [ da®m(Z).

A similar expression can be obtained using the free energy. In this case we roate the
magnetization from angle 01 to 6s. Assuming that the magnitude of the external

magnetic field does not change, we can express the difference of free energy

Note that in eq. (5.2) the angle is that of the external magnetic field, while in
eq. (5.3) it is that of the magnetic field. We also get a relation of the magnetic

anisotropy energy and the magnetic anisotropy free energy.

—

AE =AF— A / da®m (%) - h. (5.4)
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Taking high symmetry directions as the initial and the final direction, where the
external magnetic field and the magnetic moment are parallel, we can force the second
term in eq. (5.4) vanish.

We can do LDA+U calculations with several external magnetic fields, say, from [111]
direction to [001] direction. With the resulting magnetic moments, the calculation of
torque is straightforward, and the integration will give the magnetic anisotropy
energy. The question is, now, how much precision we need to get the magnetic
anisotropy to desired precision. Jansen [13] studied this question to find out that we
need to calculate the total energy to the precision needed for direct subtraction

method even when torque method is used.

5.3 Non-Degenerate Perturbation

The analysis for non-degenerate states and fully occupied degenerate states are the
same in perturbative analysis. In this section, we study these states.

We solve the following self consistent equations perturbatively.
HyVxio = €Vkio (5.5)
p(T) = Zf(@' — 1) [nio (B) (5.6)
() = —po 3 flei = 1ilig (7)o (7), (5.7)
Hyo = Hy +H' (5.8)

Taking the spin orbit coupling as perturbation, we denote the unperturbed Kohn

Sham Hamiltonian at self-consistence Hﬁsz
0 0
Hkslb/\l_&r - €AEU¢AEU' (59)

When the spin-orbit coupling is turned on, the eigenvalues and eigenfunctions change,
leading to changes of all quantities including Kohn Sham potential v}, Kohn Sham

magnetic field Eksv and LDA+ band correction A. The perturbation can be written as

H' = 6vg + oo - Shyg + €8 14 62, (5.10)
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where A = >, Aspdrp. Due to the self-consistency of the Kohn-Sham equations, to
perform a rigorous perturbative calculation would be a formidable task. With the
self-consistent solutions obtained without spin-orbit coupling, we may turn on the
spin-orbit coupling in a non self-consistent fashion. This approach has been widely

used and can be justified to a certain degree as an application of the force

theorem [11]. Also, for the shake of discussion, we use spin-orbit coupling constant.

To attack the self consistent equations, we first regard the spin-orbit coupling as the
only perturbation. Expanding the eigenstates upto fourth order in £, we obtain the

perturbed eigenstates (The formula is at the end of this section) .

The correction to energy AE™ can be calculated from the above perturbed wave

functions. For example

- [(Ejoales- MlEio)
AE® = (kio|¢3 - lkio) + ) ' - : (5.11)
- - — €5
710 kio kjoa

There is no first order correction in case of non-degenerate states. The second order

correction equals

—

K (FAG|AF - [[EN @ >< ENo'| A3 - [|kAo) (5.12)

Z Z ( k/\’a’))

A A//

where “occ” denotes occupied states and the primed sum excludes states with
vanishing denominator. With occupied intermediate states, the summation is odd
under the exchange of primed states and unprimed states. The contribution from
occupied intermediate states adds to zero total effect. The second order contribution
can be written as

—»—» —

occ wmoce 7y oz Tl ><kx '|A5 - T[kAa) (5.13)

(Fro
Z AZ ( k/\’a’))

where “unocc” means unoccupied states. Now that we exclude the DFSC states, all &

—

points related by single group symmetry are occupied when one of them is occupied
The summation must reflects this symmetry and we can write down the form of
anisotropy energy consistent with the symmetry. In this subset of states, the energy

would be analytic with respect to the direction of the magnetization as long as the
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subset does not change. In case of cubic symmetry, on which we shall focus

henceforth, symmetry considerations restrict the summation to the form
2
P az(mZ + m, + m?), (5.14)

where a3 is a constant of the order of A2. The second order term turns out to be
spherically symmetric. Hence the anisotropy is of the fourth order. Since the
magnetization comes from spin and the spin enters into the Hamiltonian through
spin-orbit coupling, the magnetic anisotropy energy is apparently of the fourth order.

The term which will generate anisotropy energy at the fourth order is
(kAo ><k/\ 0 AT - 1]kAo)

(EAo) — e(kA O'c))
(5.15)

— - —

occ unocc <k/\0|/\5 [|]g,\ ga><kA Ua|/\ |k/\bUb><k/\bUb|/\

N N
2 2 ( (Fao) — e(k/\aaa)) ( (FAa) — e(Ehyo) ) (

Elo AaTaApOpAcoe

The cubic symmetry in this term is realize in the same way as in the second order

term. After diagonalization the anisotropic energy term appears to be

W _ ag(my + mj + m3), (5.16)

aniso

where a4 is a constant of the order of A\*. This term is not spherically symmetric and
generates anisotropy energy.

We concentrate on systems with cubic symmetry such as Fe and Ni. Using cubic

symmetry, the magnetic moment perpendicular to the external field is simplified to

— kjo,|€5- l|kkab kkab|£s l|klaC
M, = —HOZZ Z Z Z kw|0|||k]0a>< O _ 0 ! O _ o0 >
kio joa kop lo. mog Fio kjoa kio kkoy
(kloe|¢7 - [[kmoyg) (kmog|£3 - [kio)
— T o (5.17)
kio kloe kio kmog

The torque can be calculated by 7 = H x ]\Zﬁ_, and the MAE by integrating the

torque over the expanede angle.

5.4 Torque and Perturbation

At this stage, the torque is calculated disregarding the self consistency of Kohn Sham
equations. Also the cubic symmetry is used on an weak ground. We will discuss these

issues in what following.
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1. The existence of an external magnetic field destroys the cubic symmetry. The
expression for magnetic moment 5.17 is not correct then. Without cubic symmetry we
need to evaluate the magnetic moment from the perturbed eigenfunctions 5.31 and
there is no simplification. This problem can be relieved considering the situation with
small external magnetic field compared to the spin orbit coupling.

2. Since the magnitude of the external magnetic field is too small to determine the
direction of magnetic moment, the direction of magnetic moment must be determined
independently. This brings the need to evaluate the parallel component of magnetic
moment also. The perturbative correction to the parallel component is of the second
order and does not allow any more simplification beyond the vanishing of first order
correction. Moreover, it is uncertain whether such a small external magnetic moment
is able to rotate the magnetic moment from the easy axis to a hard axis.

3. At this stage, we did not take the self consistency of Kohn Sham equation into
consideration. Change of eigenfunctions results in changes of Kohn Sham potential
and magnetic field. Though the magnetic moment gets correction at the second order,
the magnetic moment density, m(Z) gets correction at the first order, so does the
Kohn Sham potential and magnetic field. To incorporate the change of these fields, we
need to calculate the new fields using the new wave functions and redo the
perturbation theory again with changed perturbation:

£5- [ — 0V + poo - 0hy +E5- [+ A. At first order, this leads to the following equation.

. L iko'€5- T4 6 7.6k ik
1) = o33 [ty ST s+ 7S 2
ko J0’ Ako jko! (5 18)
o i k| AT+ vy + & - bRy + A|jko’)
(jko'|| o) e
tko jko!

Even though the change of magnetic moment obtained from this equation does not
generate torque, this equation must be solved self-consistently before considering
higher order perturbation. Only after that, the perturbation Hamiltonian is known
exactly up to the first order and higher order perturbation is possible. In short, the
perturbative treatment of spin-orbit coupling is prohibitive when self-consistency is

taken into account.
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4. There is a possibility that the eq. 5.17 is a good approximation for the purpose of
calculating MAE. This is called “force theorem”. We may check the validity of the
force theorem numerically. First we calculated the energy without the spin orbit
theorem. Then we calculated the energy with spin orbit coupling starting from the
solutions of the case without spin orbit coupling. When there is no on-site interaction,
the new solutions converge very fast hinting that the force theorem is valid. The new
solutions, however, converge very slowly for the case with on-site interaction
suggesting that we can not depend on the force theorem.

5. As has been studied by Mori and Kondorskii, degenerate states have significant
contribution to MAFE at the fourth order, the same order as non-degenerate states.

This is discussed in the next section.

5.5 Degenerate Fermi Surface Crossing States

In this section, we consider states that are DFSC states. Behavior of the other subset

involving DFSC states is quite different. Mori, Fukuda, and Ukai [7] investigated this

subset and concluded that the subset dominates the magnetic anisotropy. In case of
Ni, based on the tight binding model, they found two points on the fermi surface

where degenerate bands cross. One is along the I'X ([001]) direction,

6 =l 1ouef(n), (5.19)
o3 = \/gzxf(r), (5.20)
b5 = 16%(322—7‘2)]‘(7‘). (5.21)

Here, {¢o, ¢3} are exact degenerate states and {¢s} is a state accidentally passing the

same same point. The other lies along the I'L ([111]) direction,

S(61 = 2) + 564~ V30) (5.22)
1

2V/3

L

2V/2
1

(01 + &2 — 2¢3) — ﬁ(\/g@ — ¢3), (5.23)
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where

N ) (521
b = Ao = ). (5.25)

With the direction of magnetization being (I, m,n), the degeneracy along I'X

generates a splitting of energy with magnitude
§ETY = A (3—22)'* (5.26)

and the degeneracy along I'L direction generates,

22 -1
V3

The volume in the Brillouin zone, where the splitting of the degenerate energy level,

SEVE = M+ m + nl. (5.27)

can be considered to be proportional to the third power of the splitting. Summing

over the symmetric points vields a contribution to the anisotropy energy is

Pidie=—CN (32" - (3-24)" - (3-2)") (5.28)

aniso

due to degeneracy around the crossing point along the I'X direction, where CTX is a

constant, and

Bitico = —CTEN (4 m 4 n]* + [ =14 m 4l + |l = m 4 '+ |1+ m —n]")

(5.29)

due to degeneracy around the crossing point along the I'L direction, where CT1 is a
constant.

Neglecting the contributions from non-DFSC states, the difference of energies between

(0,0,1) and (1,1, 1) directions of magnetization is
8
AE = E(1,1,1) = E(0,0,1) = —5(20” — cTE), (5.30)

It would be reasonable to assume that the coefficients CT* and C'™¥ would be equal.
This assumption brings the correct easy axis. A similar analysis has been done for Fe.

The easy axis was found to be (0,0, 1) direction
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The important message in this section is that the contribution of DFSC states to
magnetic anisotropy is of the same order as that of non-degenerate states. Since the
contribution of DFSC states are sensitive to the relative location of band and Fermi
surface, a small change of band structure may affect the magetic anosotropy energy.
In this respect, a proper treatment of bands are of utmost important in predicting
magnetic anisotropy. When strongly correlated electrons are present, LDA4U is the

only known method that treats strongly correlated bands properly.
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Chapter 6

LDA+U as a Computational Method

6.1 Introduction

Being a ground state property, the MAE should be accessible in principle via density
functional theory (DFT) [8, 19]. Despite the primary difficulty related to the
smallness of MAE (~ 1 peV/atom), great efforts to compute the quantity with
advanced total energy methods based on local density approximation (LDA)
combined with the development of faster computers, have seen success in predicting
its correct orders of magnitudes [9, 27, 13, 12, 10]. However, the correct easy axis of
Ni has not been predicted by this method and the fundamental problem of
understanding MAFE is still open.

In this article we take a new view that the correlation effects within the d shell are
important for the magnetic anisotropy of 3d transition metals like Ni. These effects
are not captured by the LDA but are described by Hubbard-like interactions
presented in these systems and need to be treated by first principles methods[16].
Another effect which has not been investigated in the context of magnetic anisotropy
calculations is the non-collinear nature of intra-atomic magnetization [17]. It is
expected to be important when spin-orbit coupling and correlation effects come into
play together. In this article we show that when we include these new ingredients into
the calculation we solve the long-standing problem of predicting the correct easy axis
of Ni.

We believe that the physics of transition metal compounds is intermediate between
atomic limit where the localized d electrons are treated in the real space and fully

itinerant limit when the electrons are described by band theory in k space. A
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many—body method incorporating these two important limits is the dynamical
mean—field theory (DMFT) [15]. The DMFT approach has been extensively used to
study model Hamiltonian of correlated electron systems in the weak, strong and
intermediate coupling regimes. It has been very successful in describing the physics of
realistic systems, like the transition metal oxides and, therefore, is expected to treat

properly the materials with d or f electrons.

6.2 LDA-+U as a static limit of DMFT

for d

Electron-electron correlation matrix Uy, yyyeny, = (mams|ve| mama) 6g,5,05,5,
orbitals is the quantity which takes strong correlations into account. This matrix can
be expressed via Slater integrals F(), i = 0,2,4,6 in the standard manner. The
inclusion of this interaction generates self-energy ., ., (iw,, E) on top of the
one—electron spectra. Within DMFT it is approximated by momentum independent
self-energy Y., (iw, ).

A central quantity of the dynamical mean—field theory is the one—electron on—site

Green function

G%w(iwn) = ZE (iwn + H)O%w(lg) - Hslw(lg)
bt = S i) (6.1)

—.

where HY (k) is the one-electron Hamiltonian standardly treatable within the LDA.
Since the latter already includes the electron-electron interactions in some averaged
way, we subtract the double counting term v, [28]. The use of realistic localized
orbital representation such as linear muffin—tin orbitals [21] leads us to include overlap
matrix O.,., (k) into the calculation.
The DMFT reduces the problem to solving effective impurity model where the
correlated d orbitals are treated as an impurity level hybridized with the bath of
conduction electrons. The role of hybridization is played by the so—called bath Green

function defined as follows:

[go_l]%w(iwn) = G%w_l(iwn) + Emw(iwn)- (6.2)
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Solving this impurity model gives access to the self-energy X ., (iw,) for the
correlated electrons. The one—electron Green function (6.1) is now modified with new
Y, (iwy, ), which generates a new bath Green function. Therefore, the whole problem

requires self-consistency.
In this paper we confine ourselves to zero temperature and make an additional
assumption on solving the impurity model using the Hartree-Fock approximation. In
this approximation the self-energy reduces to

Yy = Z(wamzm - wamma)ﬁwm (6-3)

Y37V4

where 7., is the average occupation matrix for the correlated orbitals. The
off-diagonal elements of the occupancy matrix are not zero when spin-orbit coupling is
included [29]. The latter can be implemented following the prescription of
Andersen [21] or more recent one by Pederson [30].

In the Hartree—Fock limit the self-energy is frequency independent and real. The
self-consistency condition of DMFT can be expressed in terms of the average
occupation matrix: Having started from some 7.,,, we find X, ., according to (6.3).
Fortunately, the computation of the on-site Green function (6.1) needs not to be
performed. Since the self-energy is real, the new occupancies can be calculated from
the eigenvectors of the one—electron Hamiltonians with X, ., — v4. added to its dd
block. The latter can be viewed as an orbital-dependent potential which has been
introduced by the LDA+U method [16].

The LDA+U method has been very successful compared with experiments at zero
temperature in ordered compounds. By establishing its equivalence to the static limit
of the DMFT we see clearly that dynamical mean—field theory is a way of improving

upon it, which is crucial for finite temperature properties.

6.3 Precision of the calculation

In this work we study the effect of the Slater parameters Fy, F3 and Fy on the
magnetic anisotropy energy. The latter is calculated by taking the difference of two

total energies with different directions of magnetization (MAE=F(111) — E(001)).
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The total energies are obtained via fully self consistent solutions. Since the total
energy calculation requires high precision, full potential LMTO method [31] has been
employed. For the k space integration, we follow the analysis given by Trygg and
co-workers [12] and use the special point method [32] with a Gaussian broadening [33]
of 15 mRy.

The validity and convergence of this procedure has been tested in their work [12]. For
convergence of the total energies within desired accuracy, about 15000 k-points are
needed. We used 28000 k-points to reduce possible numerical noise, where the
convergency is tested up to 84000k-points.

Our calculations include non-spherical terms of the charge density and potential both
within the atomic spheres and in the interstitial region [31]. All low-lying semi-core
states are treated together with the valence states in a common Hamiltonian matrix
in order to avoid unnecessary uncertainties.

These calculations are spin polarized and assume the existence of long-range magnetic
order. Spin-orbit coupling is implemented according to the suggestions by
Andersen [21]. We also treat magnetization as a general vector field, which realizes
non-collinear intra-atomic nature of this quantity. Such general magnetization scheme

has been recently discussed in [17].



48

Chapter 7

The Effect of Coulomb Parameter

7.1 Introduction

The effect of strong correlations is captured in the Coulomb parameter U = F°. When

only the Coulomb parameter U is considered, the correction to LSDA functional is

[

1
Model[, o Model o,
and the correction to the LSDA Kohn-Sham potential is
aby = —Uni,. (7.2)

In this chapter, we study the effect of strong correlations using only the Coulomb

parameter U

7.2 Magnetic Anisotropy Energy

We now discuss our calculated MAE. We first test our method in case of LDA
(U = 0). To compare with previous calculations, we turn off the non-collinearity of
magnetization which makes it collinear with the quantization axis. The calculation
gives correct orders of magnitude for both fcc Ni and bee Fe but with the wrong easy
axis for Ni, which is the same result as the previous result [12].

Turning on the non-collinearity results in a a larger value of the absolute value of the
MAE for Ni but the easy axis predicted to be (001), which is still wrong. The
magnitude of the experimental MAE of Ni is 2.8 ueV aligned along (111)
direction [34].

We now describe the effect of strong correlations, which is crucial in predicting the

correct axis of Ni (see Fig. 7.1). As U increases, the MAE of Ni smoothly increases
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until U reaches 2.5 eV and then smoothly decreases up to the value 3.8 peV. Around

U =3.9 eV, the MAE decreases abruptly to negative value. Around U = 4.0 eV, the
experimental order of magnitude and the correct easy axis (111) are restored. The
change from the wrong easy axis to the correct easy axis occurs over the range of

60U ~ 0.2eV, which is the order of spin-orbit coupling constant (~ 0.1eV).

3.0 " T " T . T . T
15 r .
—
>
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=
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0 1 2 4 5
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Figure 7.1: Experimental and calculated magnetocrystalline anisotropy energy MAE =
E(111) — E£(001) for Ni. Experimental MAEs are marked by arrows for Ni (—2.8 peV').

For Fe (see Fig. 7.2), the MAE decreases on increasing U to negative values, where

the magnetization takes the wrong axis. From U = 2.7 eV, it increases back to the

correct direction of easy axis (positive MAE). Around U = 3.5 eV, it restores the
correct easy axis and the experimental value of MAE is reproduced.

It is remarkable that the values of U necessary to reproduce the correct magnetic
anisotropy energy are very close (within 1.2 eV) to the values which are needed to
describe photoemission spectra of these materials [35, 36]. The correct estimation of
U is indeed a serious problem. Different estimates based on different methods give a

range of values from 1 eV to 6 eV. The work of Katsnelson and coworkers used a
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Figure 7.2: Experimental and calculated magnetocrystalline anisotropy energy MAFE =
E(111) — E(001) (square) for Fe. Experimental MAEs are marked by arrows for Fe

(1.4 peV).
dynamic approach utilizing finite temperature Quantum Monte Carlo method whereas
we use a static approach at zero temperature. Considering this discrepancy, an
agreement within 1.2eV shows an internal consistency of our approach and

emphasizes the importance of correlations.

7.3 Correlation between MAE and the difference of magnetic

moments

We find direct correlation between the dependency of the MAE as a function of U and
the difference of magnetic moments (AM = —(M(111) — M(001)) behaving similarly.
For Ni (see Fig. 7.3, the difference of magnetic moments is nearly U independent up
to U = 3 eV. For large U, it smoothly decreases from the positive value to the
negative one. It also decreases rapidly around U = 3.9 eV in accord with MAE.

For Fe (see Fig. 7.4 , the difference is positive at U = 0. It decreases slightly to the
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negative values and then increases to the positive value over the range of U < 2.7 eV
where MAE decreases. For larger U’s, where MAFE is coming back to positive value,

its slope is significantly larger than that at smaller U’s.
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Figure 7.3: Calculated the difference of magnetic moment AM = M(001)— M(111) for
Ni(bottom).

This concurrent change of MAE and the difference of magnetic moments suggests why
some previous attempts based on force theorem [10] failed in predicting the correct
easy axes. Force theorem replaces the difference of the total energies by the difference
of one—electron energies. In this approach, the contribution from the slight difference
in magnetic moments does not appear and, therefore, is not counted in properly.
Unfortunately, we could not find any experimental data of magnetic moments to the
desired precision (10™*up) to compare with. We also have problems in reaching the
convergence of the total energy with desired accuracy for large values of U in both Fe

and Ni.
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Figure 7.4: Calculated the difference of magnetic moment AM = M(001)— M(111) for
Fe.

7.4 X pockets

We now present implications of our results on the calculated electronic structure for
the case of Ni. One important feature which emerges from the calculation is the
absence of the Xy pocket (see Fig. 7.5). Notice that the band candidate for X, pocket
is way below the Fermi surface. This X5 pocket has been predicted by LDA but has
not been found experimentally [37]. The band corresponding to the pocket is pushed
down well below the Fermi level. This is expected since correlation effects are more
important for slower electrons and the velocity near the pocket is rather small. It
turns out that the whole band is submerged under the Fermi level.

There has been some suspicions that the incorrect position of the X5 band within
LDA was responsible for the incorrect prediction of the easy axis within this theory.
Daalderop and coworkers [10] removed the X3 pocket by increasing the number of

valence electrons and found the correct easy axis. We therefore conclude that the
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Figure 7.5: The X pockets of LDA4U at U = 4 eV and J = 0 eV. Inspecting the
figures, we see that there is X5 pocket. Note that the X5 pocket is not present. The
solid lines represent bands with dominating up-spin. The dotted lines represent bands
with dominating down-spin. X = (0,0,1), A = (1/16,1/16,1), B = (2/16,2/16,1),
C =(3/16,3/16,1). .

absence of the pocket is one of the central elements in determining the magnetic
anisotropy, and there is no need for any ad-hoc adjustment within a theory which
takes into account the correlations.
Notice that as we move away from the I' X direction, we see that one band, which is
above the Fermi surface in I'X is submerged below the Fermi level. The is the

experimentally confirmed X5 pocket.

7.5 L neck

Experiments found a a spin-down dominated L neck. From the Fig. 7.6, we see a

spin-down dominated band is below the Fermi level in I'L direction. As we mover

away from the I'L direction, we see that the band is surfacing up above the Fermi
level. This is the experimentally confirmed L neck.

Unlike LDA, we have found two extra very tiny L pockets in LDA+U. Both of them
are dominated by sp orbital with opposite spins. Being small, these extra pockets may
be artifacts of LDA4+U. As U increases L-neck appears first and then X-pocket
disappears. There no such U at which X pocket disappears without presence of I

necks.
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Figure 7.6: The I neck and pockets of LDA+U. Inspecting the figures, we see that
there is a L neck and two L pockets. The pockets are dominated by s orbital and
spin up and spin down respectively. The points are: N = (29/64,29/64,19/32),
O = (30/64,30/64,18/32), P = (31/64,31/64,17/32, Q = (125/256,125/256,67/128),
R = (126/256,126/256,66/128), S = (127/256,127/256,65/128), L =
(128/256,128/256,64/128).

7.6 Band structure near the Fermi level

We now describe the effects originated from (near) degenerate states close to the
Fermi surface. These have been of primary interest in past analytic studies [6, 7]. We
will call such states degenerate Fermi surface crossing (DFSC) states. The
contribution to MAE by non-DFSC states comes from the fourth order perturbation.
Hence it is of the order of \1.

The energy splitting between DIFSC states due to spin-orbit coupling is of the order of
A because the contribution comes from the first order perturbation. Using linear
approximation of the dispersion relation €(EA), the relevant volume in k-space was
found of the order A®. Thus, these DFSC states make contribution of the order of A*.

However, there may be accidentally DFSC states appearing along a line on the Fermi
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surface, rather than at a point. We have found this case in our LDA calculation for
Ni. Therefore the contribution of DFSC states is as important as the bulk non-DFSC
states though the degeneracies occur only in small portion of the Brillouin zone.
For Ni, the change from the wrong easy axis to the correct easy axis occurs over the
range of 6U ~ 0.2¢V, which is the order of spin-orbit coupling constant
(~ 0.1eV).This suggests that the easy axis depends on a quantity linearly proportional
to spin-orbit coupling constant rather than on the higher order bulk effects.

The only quantity which changes linearly in spin-orbit coupling constant is the
magnitudes of energy splitting of DFSC states by spin-orbit coupling. When the
on-site repulsion changes by amount of the order of spin-orbit coupling constant, a
state formerly just below the fermi surface would cross the surface making the
splitting effective.

This rapid change of MAE with respect to spin-orbit coupling constant would explain
why previous attempts failed to get the correct easy axis for Ni. Since non-magnetic
DFSC states exert their contribution at a higher order, another criterion for the
crossing band to be effective is their band character to be magnetic. We tracked down
the band character to find that the crossing bands are magnetic bands. Since all the
states are combinations of various orbital states, we draw a kind of fat band as
darkened area when the crossing band contains substantial amount of ¢5;, band, which
is shown in Fig.’s A.1-A.6.

The importance of the DFSC states leads us to comparative analysis of the LDA and
LDA+U band structures near the Fermi level. In LDA (see Fig. 7.7), five bands are
crossing the Fermi level at nearly the same points along the I' X direction. Two of the
five bands are degenerate for the residual symmetry and the other three bands
accidentally cross the Fermi surface at nearly the same points. There are two sp
bands with spin up and spin down, respectively. The other three bands are dominated
by d orbitals. In LDA+U (see Fig. 7.5), one of the d bands is pushed down below the
Fermi surface. The other four bands are divided into two degenerate pieces at the
Fermi level (see Fig. 7.8): Two symmetry related degenerate d| bands and two near

degenerate sp; and sp| bands. In sum the correlation weakens the effect of degenerate
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Figure 7.7: The X pockets. Inspecting the figures, we see that there are X5 and X,
pockets. The solid lines represent bands with dominating up-spin. The dotted lines
represent bands with dominating down-spin. Notice that as we move away from the
I'X direction, we see that two bands, which are above the Fermi surface in I'X, are sub-
merged below the Fermi level. One of them is the experimentally confirmed X5 pocket.
The other is the LDA artificial X5 pocket that has not been confirmed experimentally.
X =(0,0,1), A=(1/16,1/16,1), B = (2/16,2/16,1), C' = (3/16,3/16,1). .

bands along I'X direction.

In LDA (see Fig. 7.7), we found that two bands are accidentally near degenerate along
the line on the Fermi surface within the plane I'X L. One band is dominated by d;
orbitals. The other is dominated by s| orbitals near X and by d| orbitals off X. This
accidental DFSC states persist from I'X direction to I'L direction. (Along I'L
direction, the degeneracy is for the residual symmetry). In LDA+U, these accidental
DFSC states disappear(see Fig. 7.8). With the correlation effect U, this accidental
DFCS states along a line on fermi surface move away from the fermi surface leaving
only the states along 'L direction DFSC. This degenerate states” moving away from
fermi surface makes the first order perturbation effect sums up to zero as described
above. Instead, there is new two-fold DFSC states along I'L direction, both of which
are dominated by d| orbitals.

Comparing the bands of LDA and LDA+U, we see that turning on of U removes
five-fold degeneracy to two two-fold degeneracy along the I' X direction, and generates
a two-fold degeneracy and an effective two-fold degeneracy along the I'L direction. In

other words, the on-site repulsion U reduces the effect of splitting along I'X direction
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while increase the effect of splitting along I'L direction. Based on the tight binding
model of Mori and coworkers [7], degenerate bands along I'L direction prefer (1,1,1)
direction of magnetic moment and that along I'X direction prefer (0,0, 1). Therefore
we can conclude that the change of DFSC states, induced by the strong correlation

effect, makes the magnetic moment prefer (1,1,1) direction to (0,0, 1) direction.

X U

SpT

Pockets:
S
p¢

Degenerate in LDA

T ' K

Figure 7.8: Calculated Fermi Surface of Ni with the correlation effects taken into ac-
count. The solid and dotted lines correspond to majority and minority dominant spin
carriers. Dominant orbital characters are expressed. Both experimentally confirmed X5
pocket and L neck can be seen. The X5 pocket is missing, which is in agreement with
experiments. There are two small L pockets, which has not been found by experiments.

As we have seen, the on-site repulsion U reduces the number of DFSC states along
I'X direction while increasing that of DFSC states along I'L direction. Based on the
tight—binding model, Mori and coworkers [7] have shown that DFSC states along 'L
direction result in the magnetization aligned along (1,1,1) direction and DFSC states
along I' X direction result in the magnetization aligned along (0,0, 1) direction. Since

the strong correlation does precisely this, we conclude that disappearance of DFSC



states along I'X direction and their appearance along I'L direction is another

important element that determines the easy axis of Ni.
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Chapter 8

The effect of double counting term

8.1 Introduction

We discussed an ambiguity of double counting term in section 4.5. This ambiguity is
associated with the self energy in double counting term

Eg/{;del[na] _ %Um _ %zg: Jn’n’ — self energy. (8.1)

Normally the self energy term is assumed to be
1f 1U’+12J’U (8.2)
self energy = —Un + = n’. .
&Y =3 22

Double counting term is designed so that the strong correlation effects already
included in LSDA functional is not added by LDA+U correction. Judged by
experience, LSDA functional is essentially free of self-interaction. Taking the self
energy term (8.2) makes sure that this non-existent self energy is not subtracted by
the double counting term.

There is, however, no theoretical ground guaranteeing that the LSDA functional is
free of self-interaction. Since double counting term is spherically symmetric, change of
double counting term would not change magnetic anisotropy energy, but will change
other quantities such as magnetic moment. The study of the effect of Coulomb
parameter in chapter 7, did not predicts magnetic moments within desired accuracy.
Change of double counting term resolved this problem for Ni. In this section, we
discuss the effect of double counting term. For the purpose of discussion, we call this
double counting term as the new double counting term while the double counting
term in chapter 7 as the old double counting term.

For simplicity, we consider only the Coulomb parameter UU. The correction to LSDA
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functional is then

1
EModel[na] B Egi[:odel =-3 E Z UnZyng., (8.3)
ab

[

and the correction to the LSDA Kohn-Sham potential is

8.2 Fe

We now discuss the calculated MAE of Fe (see Fig. 8.1). The MAE at U = 0 is the
same as in the case with the old double counting term (0.5 ueV'). The change of MAE
as U is turned on is very similar to the case with the old double counting term. This
confirms our motivation that change of double counting term would not change MAE
much. As U increases to 2 peV till U = 0.5 eV. Then MAE decreases, changing the
easy axis to (111) direction at U =1 eV, till U = 2.5 eV. Around U = 2.5¢V, MAE

increase back, changing the easy axis to (001) direction at U = 3.1 eV. The
experimental value of MAE with the correct easy axis is predicted at 3.4 eV.

The difference of magnetic moments (m[001]-m[111]) again shows close relationship

with MAE (see Fig. 8.3). It increases till U = 0.5 ev. Then it decreases to negative

value till U = 2.5 eV. It goes back to positive value and increases rapidly as MAE.
This concurrent change of MAE and the difference of magnetic moments confirms our
claim explaining why previous attempts using force theorem has failed in predicting
magnetic anisotropy energy.

We found that the magnetic moment is still outside a desired accuracy (see Fig. 8.3).
On increasing U, magnetic moment rapidly increaes till U = 1.5 eV. Then it
converges to 2.7 ug. At U = 3.5 eV, the magnetic moment is 2.7 ug, which is 23% off
from the experimental value. We correct this problem in later sections by considering

the effect of Stoner parameter J as well as the Coulomb parameter U.
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Figure 8.1: Experimental and calculated magnetocrystalline anisotropy energy MAFE =
E(111) — E(001) for Fe. Experimental MAEs are marked by arrows for Fe (1.4 peV).
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Figure 8.2: Calculated difference of magnetic moment AM = M(001) — M (111) for Fe.
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Figure 8.3: Calculated magnetic moment of Fe.
8.3 Ni

We now discuss the calculated MAE of Ni (see Fig. 8.4). The MAE at U = 0 is the
same as in the case with the old double counting term (2 peV'). The change of MAE
as U is turned on is fairly different from the case with the old double counting term.
As U increases, MAL increases to 9.5 peV till U = 1.2 eV. Then MAE decreases to
3 peV till U = 2.5 eV. MAL increase back to 6 peV till U = 3.3 eV. From the MALE
decreases, changing the easy direction from (001) to (111) at U = 4 eV. The
experimental value of MAE with the correct easy axis is predicted at 4.2 eV.
Compared to the case with old double counting term, MAE changes more for U less
than 4 eV'. The magnitude of change is in this range of U is three times larger than
that in the case with old double counting term. Moreover, there are fluctuations of
MAE in this range. An interesting thing is that the MAL is strictly positive for U less
than 4 eV. Therefore the correct easy axis is far off from LSDA as in the case with
the old double counting term. This explains why it’s been so hard to predict the

correct easy axis of Ni and why unphysical values of parameters had to be used even
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when the correct easy axis is predicted.
The value of U(4.2 eV') with the correct prediction is near that (4 V') of the case with
the old double counting. The change from the wrong easy axis to the correct easy axis
occurs over the range of §U ~ 0.3eV, which is again of the order of spin-orbit coupling.

This implies the important of DFSC states in predicting magnetic anisotropy.
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Figure 8.4: Experimental and calculated magnetocrystalline anisotropy energy MAFE =
E(111) — E£(001) for Ni. Experimental MAEs are marked by arrows for Ni (—2.8 peV').

The difference of magnetic moments (m[001]-m[111]) again shows close relationship
with MAE (see Fig. 8.3). It increases till U = 0.7 eV. Then it decreases till
U =1.8¢eV. It increases again till U = 2.7 eV. From there, it decreases, changing its
sign at 4 eV. This concurrent change of MALE and the difference of magnetic moments
confirms our claim explaining why previous attempts using force theorem has failed in
predicting magnetic anisotropy energy.

Compared to the case with the old double counting term, the difference of magnetic
moments changes more for U less than 4 eV'. Moreover, there are fluctuations of the
difference in this range. Here,we observe that the comparison of difference of magnetic

moments is also in line with the comparision of MAE. This strengthens the claim that
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the magnitude of magnetic moments is a decisive factor in determining magnetic

anisotropy.

0.1

0.0 -

-0.1 -

m[001]-m[111]: 107,

-0'2'l'l'l'l'l'l'l'l'l‘—l
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0

U(eV)

Figure 8.5: Calculated difference of magnetic moment AM = M(001)— M (111) for Ni.

We find that the magnetic moment is within a desired accuracy (see Fig. 8.6). On
increasing U, magnetic moment slightly increases till ' = 0.5 eV'. Then it decreases
At U = 4.2 eV, the magnetic moment is 0.589 pp, which is within 3% off from the
experimental value.

With new double counting term, the correct magnetic anisotropy and the correct
magnetic moment is predicted at U = 4.2 eV. A remaining question is that there is no
theoretical ground on which we prefer the new double counting term. As with other
computational approaches, the agreement with experimental values is a compelling
reason to choose a method in preference to another method. Though LDA+U with
the new double counting term works for Ni, it makes no difference for Fe. It is,
therefore, very hard to choose the new double counting term in preference to the old

double counting term.
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Figure 8.6: Calculated magnetic moment of Fe.
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Chapter 9

Effect of Stoner Parameter J: Old Double Counting

9.1 Introduction

We studied the effect of Coulomb parameter U in the last two chapters. We found
that the correct magnetic anisotropy with the correct magnetic moment can be
predicted simultaneously for Ni. In the case of Fe, however, we could not predict the
correct magnetic anisotropy and the correct magnetic moment simultaneously. In this
chapter, we remedy this undesirable result incorporating Stoner parameter as well as
Coulomb parameter.

We first exam Coulomb interaction between 3d electrons. The Coulomb interaction

between 3d electrons is described by

{m, m"|vc|m/, m") = Z ap(m,m’,m", m")F*, (9.1)
k
4T ul
ag(m,m',m",m") = — — Ek<lm|qu|lm/><lm"|Yk*q|lm"’>. (9.2)
q=—

where 0 < k < 4, and m is magnetic moment quantum number of 3d electrons . By
symmetry, only those ag(m,m’',m”, m"") with odd k have non-zero values. The
Coulomb interaction bwteen 3d electrons, therefore, can be described by three
paramteters F°, 2, and F*. These three parameters be linked to Coulomb and
Stoner parameters U and .J obtained from LSDA supercell procedures via U = F° and
J = (F? 4+ F*)/14. The ratio F?/F* is to a good accuracy a constant ~ 0.625 for d
electrons. With this relation between F? and F*, we have two free parameters U and
J in describing Coulomb interaction between 3d electrons.
We use these two parameters, U and J, to tackle the problem of predicting magnetic

anisotropy and magnetic moment at the same time. We use the old double counting
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term in this section.

9.2 Fe

J(eV)

0 0.5 1 15 2 2.5 3

Figure 9.1: Fe. Contour plot of magnetic moment as a function of Coulomb parameter
U and Stoner parameter .J. The contour is drawn at 0.063 up interval, which is 2.9%
of the experimental value of magnetic moment 2.2 up

We first find magnetic moment as a function of U and J (see Fig. 9.1). The magnetic
moment changes at similar rates for both U and J. Out of the contours, we pick the
contour with experimental magnetic moment 2.2 up, to study magnetic anisotropy.
This makes sure of predicting the correct magnetic moment.

Since we expect the magnetic moment a continuous function of U and J at least for
small U and J, it is not surprising to have a contour with the experimental magnetic
moment. It is, however, very exciting observation that the contour lies within
reasonable ranges of U and J. For example, it is possible that the contour is confined
within a narrow range of U, say 0 < U < 1 eV for a reasonable range of J, say
J <2 eV, or vice versa. As we see later, this confinement happens in case of Ni.

Magnetic moment increases as U increases, but decreases as J increases. At first
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sight, it is counter-intuitive for magnetic moment to decrease as .J increases. Note
that what we are increasing is F'? and F* at a certain proportion, not .J. The sum of
F? and F* is linked to J. This linkage is established by observing their appearance in
double counting term. Unlike F° that has a tight link with U, the link of F? and F*
to J is very weak. The terminology J must be take with some grains of salt.
We restricted the value of U less than 3 eV and the value of J less than 2 eV. Since
the strong correlation effects are described not only by U but also J, we expect that
the value of U where the correct magnetic anisotropy is predicted is less than the case
with only U. As we seen in short order, this is the case.
We describe the calculated MAE. The MAE is calculated along the contour with
magnetic moment 2.2 ug. At U =0 eV and J =0 eV, the MAE is 0.5 peV. It
increases as we move along the contour in the direction of increasing U and J. Unlike

the case with only U, MAE is monotonically increasing to 6 peV at U = 3 eV and

J=18¢€V.
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Figure 9.2: Fe. Magnetic Anisotropy Energy, £(111) — E(001). The contour with
magnetic moment 2.2 upis followed. The magnetic anisotropy energy is plotted as a
function of U. The corresponding value of J can be found in the contour plot Fig. 9.1.
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The correct MAE with the correct direction of magnetic moment is predicted at
U=12¢eV and J =08¢eV.

We find concurrent behaviours of MAE and the difference of magnetic moments (See
Fig. 9.3). The difference of magnetic moments moderately increases till U = 2 eV and
then rapidly increase. There is no change of increase rate in MAE. If we restrict our
interest into physically meaningful range of U (0 < U < 2 eV'), then we observe the
concurrence in good agreement. This again confirms that the magnitude of magnetic
moment is a determining factor in magnetic anisotropy.
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Figure 9.3: Fe. Difference of Magnetic Moments, m(001) — £(111). The contour with
magnetic moment 2.2 upis followed. The magnetic anisotropy energy is plotted as a
function of U. The corresponding value of J can be found in the contour plot Fig. 9.1.

9.3 Ni

We now discuss the effect of Stoner parameter J as well as U. We first find magnetic
moment as a function of U and J (see Fig. 9.4). The magnetic moment changes much
faster for J than for U. This situation is quite different form that of Fe, where the

magnetic moment changes at similar rates for U and J. Note that for a magnetic
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Figure 9.4: Ni. Contour plot of magnetic moment as a function of Coulomb parameter
U and Stoner parameter .J. The contour is drawn at 0.018 ug interval, which is 2.9%
of the experimental value of magnetic moment 0.606 up

moment, the available value of U is restricted to 6 ~ 1 eV,

Magnetic moment increases as U increases, but decreases as J increases. Note that
what we are increasing is £ and F'* at a certain proportion (F* = 0.526F?), not .J.
We restricted the value of U less than 5 eV and the value of J less than 2 eV
For magnetic anisotropy, we walked along three paths. We now discuss the results.
The first path we walk along is the constant magnetic moment contour passing the
origin. MALE increases to 13 peV as we move along the contour in the direction of
increasing U and J till U = 0.4 eV and J = 0.25 eV. Then it decreases, changing
from the wrong easy axis to the correct easy axis at U = 1.5 eV and J = 1.2 eV.
The correct anisotropy energy is predicted at two points. One is at U = 1.2 eV and
J = 1.3 eV, and the other is at U = 1.6 eV and J = 1.7 eV. As discussed, comparing
the absolute values of U and J with experiments need some caution. We can, however,
compare relative values with experiments. In experiments, J is much smaller than U.

Since, we predicted the correct magnetic anisotropy when U and J are similar, the
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result is not desirable. Moreover, we find that there is LDA artificial X5 pocket.
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Figure 9.5: Ni. Magnetic Anisotropy Energy, £(111) — E(001). The contour with
magnetic moment 0.59 ugis followed. The magnetic anisotropy energy is plotted as a
function of U. The corresponding value of J can be found in the contour plot Fig. 9.4.

Compared the result with only U, we brought more than solve problems. Therefore
we try another path to walk along. This time we walked along another constant J
path, where J = 0.3 eV. We learned in case of Fe that larger J would make the
necessary value of U smaller to predict the correct magnetic anisotropy. We see this
again in the previous case with constant magnetic moment. These are the motivations
to walk along the path with J = 0.3 eV.

MAE increases to 15 pueV as we move along the contour in the direction of increasing
U and J till U = 0.7. Then it wiggle down to 0.3 peV till U = 2eV. From there it
slightly increases to 1 peV and stays around till U = 3.1 eV. It then decreases,
changing from the wrong easy axis to the correct easy axis at U = 3.3 eV, to
—14 peV till U = 3.8 eV. From there it increases again, chnageing from the correct
easy axis to the wrong easy axis at U = 4.3 eV

The correct anisotropy energy is predicted at two points. One is at U = 3.4 eV, and
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the otheris at U = 4.2 eV. For U = 4.2 eV and J = 0.3 eV the magnetic moment is
larger than that at ' = 4 eV and J = 0 eV. For this reason, we prefer the point
U=34¢eV and J = 0.3 eV. The magnetic moment at this point is 0.67 up, off by
11% from the experimental value.
The Fermi surface does not contain the LDA artificial X5 pocket. However, there are
still LDA4U artificial L pockets. In conclusion, turning on a small J improved the
result. The Fermi surface is basically the same as that with J = 0. The magnetic

moment is closer to the experimental value. The magnetic anisotropy is correctly

predicted.

20

Experimental Value

MAE(10°eV)

T T T T T
0 1 2 3 4

U(eV)

Figure 9.6: Ni. Magnetic Anisotropy Energy, F(111)— E(001). The path with Stoner
parameter J = 0.3 eV is followed.

From the previous two studies, we see that turning on J reduces the necessary U to
predict the correct magnetic anisotropy. We also see that small U makes the
calculated magnetic moment closer the experimental value. This insight takes us to
working on several points with reasonable values of U and J. Form this study, we find

the best result at U = 1.9 eV and J = 1.2 eV. Now we discuss this result.

We walked along a line connecting the origin and the point with U = 1.9 eV and
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J =1.2 eV. The calculated MAE is plotted in Fig. 9.7. As we walk along the line in
increasing J and J direction, MAFE increases to 60 peV till U = 0.5 eV and
J = 0.3 eV, then decreases. While decreasing it makes a flat area from U = 1.4 eV
and J =09 to U =1.7eV and J = 1.1 eV where MAE is positive and around
10 peV. After the flat area, MALE changes from the wrong easy axis to the correct
easy axis. The correct magnetic anisotropy is predicted at U = 1.9 eV and
J = 1.2 eV. At this point the magnetic moment is 0.61 ug, which is in good

agreement with the experimental value 0.606 up

Experimental Value

MAE(10°eV)
o
1

-60 T T T T T T T T T T T
0.0 0.5 1.0 1.5 20 25

U(eV)

Figure 9.7: Ni. Magnetic Anisotropy Energy, F(111) — £(001). The line connecting
the origin and U = 1.9 eV and J = 1.2 eV is followed. The corresponding value of

magnetic moment can be found in the contour plot Fig. 9.4.

We also study the difference of magnetic moments (m(001) — m(111)). We find again
the concurrent behaviour of MAE and the difference of magnetic moments. The
calculated difference of magnetic moments is plotted in Fig. 9.8. As we walk along the
line in increasing J and J direction, the difference increases to till U = 0.4 eV and
J =0.2 eV, then decreases. While decreasing it makes a flat area from U = 0.9 eV

and J =0.6toU = 1.7 eV and J = 1.1 eV. After the flat area, the difference decrease
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rapidly. Now, it is clear that the magnitude of magnetic moment is a determining

factor in magnetic anisotropy.
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Figure 9.8: Ni. Difference of Magnetic Moments, m(001) —m(111). The line connecting
the origin and U = 1.9 eV and J = 1.2 eV is followed. The corresponding value of
magnetic moment can be found in the contour plot Fig. 9.4.

We now present implications of our results on the calculated electronic structure for
the case of Ni. One important feature which emerges from the calculation is the
absence of the X3 pocket (see Fig. 9.9). This has been predicted by LDA but has not
been found experimentally [37]. The band corresponding to the pocket is pushed
down just below the Fermi level. This is expected since correlation effects are more
important for slower electrons and the velocity near the pocket is rather small. It
turns out that the whole band is submerged under the Fermi level.

In LDA, we see that five bands are passing through the Fermi level in I'X direction.
Note that two bands are degenerate due to the residual symmetry in the direction. As
we move away from the ['X direction, we see that two bands are submerged below the
Fermi level. These two bands are the two X pockets in LDA. Experiments confirm
that there is one only X pocket. One of the two X pockets is, therefore, an LDA

artifact.
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Figure 9.9: The X pockets of LDA+U. Inspecting the figures, we see that there are X5
and X, pockets in LDA and that there is a X5 pocket in LDA+U. The X, pocket was
found in LDA, but no experiments has confirmed it. The X5 pocket, present in both
LDA and LDA+U has been confirmed in experiments. The solid lines represent bands
with dominating up-spin. The dotted lines represent bands with dominating down-spin.

X =(0,0,1), A = (1/16,1/16,1), B = (2/16,2/16,1), C = (3/16,3/16,1). .

In LDA4U, we see that four bands are passing through the Fermi level in I'X
direction. Note that two bands are degenerate due to the residual symmetry in the
direction. As we move away from the I'X direction, we see that one band is
submerged below the Fermi level. The is the experimentally confirmed X5 pocket.
A very important point to notice is that the band that makes Xy pocket in LDA is
just below the Fermi level. This brings a suspicion that the point U = 1.9 eV and
J = 1.2 eV is where the X5 pocket just disappear. For this reason we study the X
pockets at U = 1.7 eV and J = 1.1 eV (see Fig. 9.10).

At this point we see that five bands are passing through the Fermi level in I'X
direction. As we move away from the I'X direction, we see that two bands are

submerged below the Fermi level. These are X5 and X3 pockets.
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Notice that the band that makes X9 pocket is just above the Fermi level in I'X
direction. We we mover away from the I' X direction, the band is submerged below
the Fermi level immediately. This confirms that the point U = 1.9 eV and J = 1.2 eV

is where the X, pocket just disappear.
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Figure 9.10: The X pockets of LDA+U at U = 1.7 eV and J = 1.1 eV. Inspecting
the figures, we see that there are X5 and X, pockets. Note that the X5 pocket is
extremely small. The solid lines represent bands with dominating up-spin. The dotted
lines represent bands with dominating down-spin. X = (0,0,1), A = (1/16,1/16, 1),
B =1(2/16,2/16,1),C = (3/16,3/16,1). .
There has been some suspicions that the incorrect position of the X5 band within
LDA was responsible for the incorrect prediction of the easy axis within this theory.
Daalderop and coworkers [10] removed the X3 pocket by increasing the number of
valence electrons and found the correct easy axis. We see that the correct magnetic
anisotropy with the correct magnetic moment comes when this artificial X, pocket
just disappear. We therefore conclude that the absence of the pocket is one of the
central elements in determining the magnetic anisotropy, and there is no need for any
ad-hoc adjustment within a theory which takes into account the correlations.

In the study of the effect of Coulomb parameter, we have found two extra very tiny I
pockets as well as L neck in LDA+4U (see Figs. 7.8 and 7.6). This L neck has been
confirmed by experiments. There is, however, no experimental confirmation on this L
pockets. In this study, we see that there is the experimentally confirmed L neck and

that there is not these artificial L pockets (see Fig. 9.11.)

We now discuss the L neck. The experimental L neck is a spin-down dominated band.
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From the Fig. 9.11, we see one spin-down dominated band is just below the Fermi
level in I'L direction. As we mover away from the I'L direction, we see that the band

is surfacing up above the Fermi level. This is the experimentally confirmed L neck.
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Figure 9.11: The I neck of LDA+4U. Notice the absence of L pockets. Inspect-
ing the figures, we see that there is a L neck. The solid lines represent bands
with dominating up-spin. The dotted lines represent bands with dominating down-
spin. The points are: N = (29/64,29/64,19/32), O = (30/64,30/64,18/32), P =
(31/64,31/64,17/32,Q = (125/256,125/256,67/128), R = (126/256,126/256,66/128),
S = (127/256,127/256,65/128), L = (128/256, 128 /256,64 /128).

We now discuss the absence of the artificial I pockets. Notice that there is another
band just below the Fermi level in I'Q) direction, I'R direction, I'S direction, and I'L
direction. This band was above the Fermi surface in I' L direction in the study of
Coulomb parameter. In this case, we see that the band is below the Fermi surface
always and does not form a pocket. Regarding the other artificial L pocket, we see
that no other band is near the Fermi surface, this band is well below the Fermi surface
and does not form a pocket.

We now describe the effects originated from (near) degenerate states close to the

Fermi surface. These have been of primary interest in past analytic studies [6, 7]. We
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will call such states degenerate Fermi surface crossing (DFSC) states. The importance
of the DFSC states leads us to comparative analysis of the LDA and LDA4U band

structures near the Fermi level. In LDA, five bands are crossing the Fermi level at

Near Degeberate
in LDA

Figure 9.12: Calculated Fermi Surface of Ni with the correlation effects taken into
account. The solid and dotted lines correspond to majority and minority dominant spin
carriers. Dominant orbital characters are expressed. Both experimentally confirmed X5
pocket and L neck can be seen. The X5 pocket is missing, which is in agreement with
experiments.

nearly the same points along the I' X direction. Two of the five bands are degenerate
for the residual symmetry and the other three bands accidentally cross the Fermi
surface at nearly the same points. There are two sp bands with spin up and spin
down, respectively. The other three bands are dominated by d orbitals. In LDA+U,
one of the d bands is pushed down below the Fermi surface. The other four bands are
divided into two degenerate pieces at the Fermi level (see Fig. 9.12): Two symmetry
related degenerate d| bands and two near degenerate sp; and sp| bands. In sum the
correlation weakens the effect of degenerate bands along I' X direction.

In LDA, we found that two bands are accidentally near degenerate along the line on
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the Fermi surface within the plane I'’X L. One band is dominated by d| orbitals. The
other is dominated by s| orbitals near X and by d,| orbitals off X. This accidental
DFSC states persist from I'X direction to I'L direction. (Along I'L direction, the
degeneracy is for the residual symmetry). In LDA+U, these accidental DFSC states
disappear(see Fig. 7.8). With the correlation effect U, this accidental DFCS states

along a line on fermi surface move away from the fermi surface leaving only the states
along I'L direction DFSC. This degenerate states’ moving away from fermi surface

makes the first order perturbation effect sums up to zero as described above. Instead,
there is new two-fold DFSC states along I' L direction, both of which are dominated

by d| orbitals.

Comparing the bands of LDA and LDA4U, we see that turning on string correlation
removes five-fold degeneracy to two two-fold degeneracy along the I'X direction, and
generates a two-fold degeneracy and an effective two-fold degeneracy along the I'L
direction. In other words, strong correlation reduces the effect of splitting along I'X
direction while increase the effect of splitting along I'L direction. Based on the tight
binding model of Mori and coworkers [7], degenerate bands along I'L direction prefer
(1,1,1) direction of magnetic moment and that along I'X direction prefer (0,0, 1).
Therefore we can conclude that the change of DFSC states, induced by the strong
correlation effect, makes the magnetic moment prefer (1,1,1) direction to (0,0, 1)
direction.

As we have seen, strong correlation reduces the number of DFSC states along I'X
direction while increasing that of DFSC states along I'L direction. Based on the
tight—binding model, Mori and coworkers [7] have shown that DFSC states along 'L
direction result in the magnetization aligned along (1,1,1) direction and DFSC states
along I' X direction result in the magnetization aligned along (0,0, 1) direction. Since
the strong correlation does precisely this, we conclude that disappearance of DFSC
states along I'X direction and their appearance along I'L direction is another
important element that determines the easy axis of Ni.

To conclude, we find that the correct magnetic anisotropy and the correct magnetic

moment is predicted when we incorporate strong correlation effect. We also find that
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the correct Fermi surface is also predicted at the same time. This is the first work
predicting the correct magnetic anisotropy, the correct magnetic moment, and the

correct Fermi sufcace simultaneously.
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Chapter 10

Effect of Stoner Parameter: New Double Counting Term

10.1 Introduction

Our study of the effect of Stoner parameter J as well as the Coulomb parameter U in
the last chapter gives the perfect result. In this section, we would like to study the
effect of double counting term when both U and J are turned on. Since the old

double counting term has been studied in the last chapter, we study the new double

counting term in this section with both U and J.

J(eV)

Figure 10.1: Fe. Contour plot of magnetic moment as a function of Coulomb parameter

U and Stoner parameter .J. The contour is drawn at 0.058 ug interval, which is 2.7%
of the experimental value of magnetic moment 2.2 up
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10.2 Fe

We first find magnetic moment as a function of U and J (see Fig. 10.1). The magnetic
moment changes at similar rates for both U and J. Out of the contours, we pick the
contour with experimental magnetic moment 2.2 up, to study magnetic anisotropy.

This makes sure of predicting the correct magnetic moment.

MAE (10°eV)

Experimental Value

v T
0.0 0.5 1.0 1.5 2.0 25 3.0

U(eV)

Figure 10.2: Fe. Magnetic Anisotropy Energy, E(111)— E(001). The contour with
magnetic moment 2.2 upis followed. The magnetic anisotropy energy is plotted as a
function of U. The corresponding value of J can be found in the contour plot Fig. 10.1.

As in the case with the old double counting term, the contour lies within reasonable
ranges of U/ and J. It is not confined within a narrow range of U, say 0 < U <1 eV
for a reasonable range of J, say J < 2 eV, nor vice versa. As we see later, this
confinement happens in case of Ni.

Magnetic moment increases as U increases, but decreases as J increases. Note that
what we are increasing is F? and F* at a certain proportion, not J. The sum of F?
and F* is linked to J by observing their appearance in double counting term.

We restricted the value of U less than 3 eV and the value of .J less than 2 eV. As we
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have seen in the last chapter, the value of U/ where the correct magnetic anisotropy is
predicted is less than the case with only U. This parameter space turns out more than
enough for the current study.

We describe the calculated MAE. The MAE is calculated along the contour with
magnetic moment 2.2 up (see Fig. 10.2) At U = 0 eV and J =0 eV, the MAE is
0.5 ueV . we move along the contour in the direction of increasing U and J. MAE first
slightly decrease to 0.3 peV till U = 0.7 eV and J = 0.6 eV. It then increases. The
correct magnetic anisotropy is predicted at U = 1.9 eV and J = 1.3 eV. Compared to
the care with the old double counting, the correct magnetic anisotropy is predicted at

larger values of both U and J.
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Figure 10.3: Fe. Difference of Magnetic Moments, m(001) — £(111). The contour with
magnetic moment 2.2 upis followed. The magnetic anisotropy energy is plotted as a
function of U. The corresponding value of J can be found in the contour plot Fig. 10.1.

We find concurrent behaviours of MAE and the difference of magnetic moments (See
Fig. 10.3). The difference of magnetic moments moderately slightly increases and then
slightly decrease till U = 1.4 eV and J = 1 eV. From there, it rapidly increase. This

again confirms that the magnitude of magnetic moment is a determining factor in
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Figure 10.4: Ni. Contour plot of magnetic moment as a function of Coulomb parameter
U and Stoner parameter .J. The contour is drawn at 0.005 up interval, which is 0.9%

of the experimental value of magnetic moment 0.606 up

magnetic anisotropy.

10.3 Ni

We now discuss the effect of Stoner parameter J as well as U for Ni. We first find
magnetic moment as a function of U and J (see Fig. 10.4). We see that the magnetic
moment is nearly constant over the parameter space for physically meaningful area,
say 0.5969 up < m0.6232 up.
This result is in accord with the previous studies. With new double counting, we find
that the magnetic moment is nearly independent of U in the study of the effect of
Coulomb parameter. We also find that magnetic moment does not change much as J
changes in the study of the effect of Coulomb parameter U and Stoner parameter J
with the old double counting. Here with the new double counting and .J, nothing

special happened and the result is a combination of the previous studies.
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Figure 10.5: Ni. Old Double Counting. On the Curve

For magnetic anisotropy, we walked along two paths. We now discuss the results. The
first path we walk along is the constant magnetic moment contour passing the origin.
MAE increases to 20 pueV as we move along the contour in the direction of increasing
U and J till U = 0.8 and J = 0.8. Then it decreases, changing from the wrong easy
axis to the correct easy axis at U = 1.1 eV and J = 1.2 eV, to —5 pelV till
U=14¢€¢V and J = 1.4 eV. From there it increases again, chnageing from the correct
easy axis to the wrong easy axis at U = 1.7 eV and J = 1.5 eV
The correct anisotropy energy is predicted at U = 1.7 eV and J = 1.5 V. As
discussed, comparing the absolute values of U and J with experiments need some
caution. We can, however, compare relative values with experiments. In experiments,
J is much smaller than U. Since, we predicted the correct magnetic anisotropy when
U and J are similar, the result is not desirable.
We now study the Fermi surface (see Fig. 10.6). We see that four bands are passing
through the Fermi level in I'X direction. Note that two bands are degenerate due to

the residual symmetry in the direction. As we move away from the I' X direction, we
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see that one band is submerged below the Fermi level. The is the experimentally
confirmed X5 pocket. A very important point to notice is that the band that makes
X5 pocket in LDA is just below the Fermi level and does not form an pocket.
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Figure 10.6: The X pockets of LDA+U at U = 1.7 eV and J = 1.1 eV. Inspecting
the figures, we see that there are X5 pocket. Note that the X5 is not present. The
solid lines represent bands with dominating up-spin. The dotted lines represent bands
with dominating down-spin. X = (0,0,1), A = (1/16,1/16,1), B = (2/16,2/16,1),
C =(3/16,3/16,1). .

We now discuss the L neck. From the Fig. 10.7, we see one spin-down dominated
band is just below the Fermi level in I' L direction. As we mover away from the I'L
direction, we see that the band is surfacing up above the Fermi level. This is the
experimentally confirmed L neck.

We now discuss the absence of the artificial I pockets. Notice that there is another
band just below the Fermi level in 'R direction, I'S" direction, and 'L direction. This
band was above the Fermi surface in I'L direction in the study of Coulomb parameter.
In this case, we see that the band is below the Fermi surface always and does not form
a pocket. Regarding the other artificial I, pocket, we see that no other band is near the
Fermi surface, this band is well below the Fermi surface and does not form a pocket.
The configuration of Fermi surface and the degenerate states near the Fermi level is
the same as in the case with old double counting.

In conclusion, we find the correct magnetic moment, the correct Fermi surface, and

the correct magnetic anisotropy simultaneously at U = 1.7 eV and J = 1.5 eV
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Figure 10.7: The I neck of LDA+4U. Notice the absence of L pockets. Inspect-
ing the figures, we see that there is a L neck. The solid lines represent bands
with dominating up-spin. The dotted lines represent bands with dominating down-
spin. The points are: N = (29/64,29/64,19/32), O = (30/64,30/64,18/32), P =
(31/64,31/64,17/32,Q = (125/256,125/256,67/128), R = (126/256,126/256,66/128),
S = (127/256,127/256,65/128), L = (128/256, 128 /256,64 /128).

Except that the value of J is of the same magnitude as U, the result is perfect.
We try another path to walk along. This time we walked along a constant J path,
where J = 0.3 eV. MAE increases with a wiggle to 15 peV as we move along the

contour in the direction of increasing U till U = 1.5. Then it decreases, changing from
the wrong easy axis to the correct easy axis at U = 3.8 eV, The correct anisotropy
energy is predicted at U = 4.2 eV.

We now study the Fermi surface (see Fig. 10.9). We see that two bands are passing
through the Fermi level in I'X direction. Notice that there is no X pockets. The two
bands, one of which would make a X5 pocket is way below the Fermi level. The band

that makes LDA X, pocket is also below the Fermi surface. The LDA4+U improved
LDA in the sense that it removes the artificial X9 pocket. However, the improvement

is surpassed by the absence of experimentally confirmed X5 pocket.
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Figure 10.8: Ni. Magnetic Anisotropy Energy, F(111)— E(001). The path with Stoner
parameter J = 0.3 eV is followed.

We now discuss the I neck. From the Fig. 10.10, we see that two bands are crossing
the Fermi level. The spin-down dominated bands is the candidate for the L neck. As
can be seen from the figure, this band is already above the Fermi level in I'L
direction. It therefore does not form a neck. The other band is the candidate for the
L pocket. As can been seen, this band is not submerged as we move away from I'L
direction. It does not make a pocket. The two degenerate bands below the Fermi level
is supposed to cross the Fermi level. In sum, the band structure near the L point is
not in good agreement with the experiments.

In conclusion, the prediction of the correct magnetic moment and the correct
magnetic anisotropy at U = 4.2 eV and J = 0.3 eV is an LDA4U artifact. Its Fermi

surface is not in accord with the experiments and we discard the result.
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Figure 10.9: The X pockets of LDA+U at U = 4.2 eV and J = 0.3 eV. Inspecting
the figures, we see that there is no X pockets. The solid lines represent bands with
dominating up-spin. The dotted lines represent bands with dominating down-spin.
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Chapter 11

Introduction

LDA+U is a static limit of dynamic mean field theory (DMFT). The DMFT approach
has been extensively used to study model Hamiltonian of correlated electron systems
in the weak, strong and intermediate coupling regimes. It has been very successful in
describing the physics of realistic systems, like the transition metal oxides and,
therefore, is expected to treat properly the materials with d or f electrons.

The model Hamiltonian of DMFT is Hubbard model. Most of the research efforts on
Hubbard model have been devoted to single band models. In actual materials, one is
frequently faced with the issue of multi-bands. A scheme able to deal with general
multiband Hubbard model or its DMFT cousin, general mutiband impurity model, is
lacking. This is also a prerequisite for the development of ab initio DMFT scheme[49].
Present techniques based on either non-crossing approximation or iterative
perturbation theory are unable to provide the solution due to the limited number of
regions where these approximation do not break down[15]. Heavy Quantum Monte
Carlo technique is the only method that can cope with orbitally degenerate situation,
but its applicability is limited singlets at high temperature[50].

A new approach to this problem is suggested[51]. In this approach, two physically
different limits are considered: limit of low frequencies, iw — 0, and limit of high
frequencies, iw — oo. With the Green functions for each limits, an interpolation
scheme is used to find the full Green functions.

Green functions in low frequency limit can be obtained using slaveboson
method[52, 53]. We study slaveboson method in the next chapter. Green functions in

high frequency limit is the topic of the last two chapters.
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11.1 The Hubbard model

The Hubbard model was first proposed in 1963 independently by Hubbard [?] and
Gutzwiller [44] in an attempt to describe the effects of correlations for d electrons in
metals. Transition metals where the d-band is partially full display characteristics
which in some circumstances can be best understood in terms of localized atomic-like
electrons but in other cases the experimental features are better described in terms of
band theory. The Hubbard model is essentially the simplest model that captures this
duality and it can be derived from the full electronic Hamiltonian for the metal by
keeping only interaction terms between electrons that are situated on the same site, or
more specifically between electrons of different spins which are in the same Wannier

state. For an s-band the Hubbard Hamiltonian is given by:

H=-— Z tijc;»l;cj‘g + UanTn]‘l. (11.1)
(ig)o J
Here c;»l; creates an electron in a Wannier state localized at site ¢ with spin o, U is the

local on site interaction between different spins and ¢;; is the hopping integral between
sites ¢ and 7. For our purposes we will want to generalize this Hamiltonian by
increasing the spin degeneracy from 2 to N and since we will be working in the grand
canonical ensemble we introduce a chemical potential that we add to the Hamiltonian.
Thus we have:
U
H=— Z tichTng + B Z NjoNjor — uang. (11.2)
(if)o jo#a! jo

Here o runs from —j to j where 25 4+ 1 = N. This model has a higher spin degeneracy

than the original Hamiltonian of Hubbard and can thus be expected to be a better
representation of the physics in the materials of interest, i.e. compounds of transition
and rare earth metals which have partly filled d and f bands. In spite of being one of
the simplest model of correlated electrons on a lattice the Hubbard model has proven

to be quite difficult to tackle theoretically. It is only during the last few years that
some real progress has been made, especially with the development of the dynamical

mean field theory [15].
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11.2 An overview of dynamical mean field theory

The dynamical mean field theory can be regarded as the quantum analog of the
classical Curie-Weiss mean field theory for magnets. As its classical counterpart it can
be shown to be the exact formulation of the model in question in the limit when the
number of dimensions or the coordination number of the lattice goes to infinity, with
an appropriate scaling of parameters. When the number of neighbors of a given
lattice site increases it is reasonable to assume that its interactions with the neighbors
can be replaced by an effective interaction with some average field that represents the
dynamic state of the neighbors. These ideas can be concretely realized in the
following way: A given lattice site is selected, o say, and an effective action is derived
for the degrees of freedom living on this site by integrating out the degrees of freedom

of the other sites in the lattice. The effective action can be represented in terms of the

0
75

Green’s functions, 7., of the so called cavity Hamiltonian, i.e. the lattice Hamiltonian
obtained by deleting the site o and all the bonds associated with it. By scaling the
hopping integral such that z'i_ﬂt?j is a constant, where z is the coordination number
of the lattice and |i — j| is the Taxi-cab distance between the sites ¢ and j, and then
taking the limit when z — oo the action simplifies tremendously and we obtain:

Seff=— /Oﬁ dr /Oﬁ dr' > e, G = 7)o + %/Oﬁ dr > Mog oo (11.3)
o ofo!
where the function G is the so called Weiss function and plays the role of the Weiss
field of the Curie-Weiss theory and is given by,
G (iwn) = iwn + = Y lioljo G (iwn). (11.4)
(i)
Given an explicit form for the action, the on-site interacting Green’s function G can in

principle be calculated (in practice this is a nontrivial problem) by evaluating the

following expectation value:
Gir—1")= —<Tco(7')cj(7")>geff. (11.5)

The self consistency condition that is now imposed is that this Green’s function be

the same as the diagonal, on site lattice Green’s function, G,, = Gj,.. To compute the
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full, lattice Green’s function it is useful to switch over to momentum representation
and introduce a self energy > which is momentum independent in the infinite

dimensional limit and given by,
Y(iw,) = G iw,) — G iw,,). (11.6)

Then the momentum dependent Green’s functions are given by,

. 1
G(k,iw,) = FENTT— E (11.7)

where ¢}, is the dispersion relation of the lattice. The general inter-site lattice Green’s
function can be computed from this expression by Fourier transform and the diagonal
term is of course simply the momentum integral of the expression above. At this point
it is useful to stop and look over the equations that we have so far. Let us for a
moment assume that we have a guess for the self energy, .. From there we can
compute the local Green’s function by momentum integration over G(k,iw) and then
the Weiss field can be computed from equation (11.6). We now have all the
ingredients to compute the local Green’s function from the action, and then we can
use equation (11.6) again to get a new solution for the self energy. This process can
now be started over and iterated until self consistency is attained. Thus it seems that

we have all that is necessary to solve our problem but we still haven’t used the cavity

0

Green’s function, GV. In the limit z — oo the cavity Green’s function, G, is very

simply related to the full lattice Green’s function , ;. This relation is,

_ GioGjo

G = Gy o

(11.8)

and it is quite simple to understand: using the interpretation of the Green’s function
as the likelihood of finding an electron at site j if it is created at ¢ we see that this
likelihood is the same in the full lattice as in the lattice with a cavity at o, except that
in the cavity lattice we cannot go through the site o and thus we must subtract those
contributions off after normalization for processes that start at o and come back to o.
Putting this relation into the equation (11.4) and using the form for the momentum
dependent Green’s functions we end again up with equation (11.6). So, somehow this

relation between the cavity Green’s function and the full Green’s function seems to be
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equivalent to the momentum independence of the self energy. Here it is useful to use

the representation of the local Green’s function in terms of the density of states:
D(e)d
Gliwy,) = / % (11.9)
—¢€

where D(¢) is the bare density of states of the lattice and ¢ = iw, + p — X(iw,). We
see that G is essentially given by a Hilbert transform over the density of states and if
we can invert that we can express the self energy in term of the Green’s function and
then the Weiss function can be expressed solely in terms of the Green’s function
through equation (11.6).
In the calculations that follow we will use the Bethe lattice of infinite connectivity
with only nearest neighbor hopping given by t,, 2t2 = ¢2. In that case the self

consistency condition becomes especially simple and we get,

GTHiw) = iw + p — G oe(iw) — G 1 (iw). (11.10)

loc

Given the physical picture embodied in the DMFT, i.e. of an electron on a single site
interacting with a bath of electrons on the rest of the lattice it is not surprising that a
connection can be made between the dynamical mean field theory described above
and impurity models like the Anderson impurity model,

FAIM _ zékczgckg — ,qu;'fg + Z(chzgfg + h.c.)+ % Z nengr  (11.11)
ko o ko oto!
by noting that if the conduction electrons cg, are integrated out an action of the form

(11.3) is obtained with

Ale)

W — €

GHiw) = iw 4+ pu — /de where A(e) = Z VZ26(e — &) (11.12)
k
is the hybridization function of the Anderson model. The full impurity Green’s
function will now be equal to G, provided A is chosen such that the self-consistency

condition is fulfilled. On the Bethe-lattice that requirement gives us

t?
Ale) = ¥ pioc(e) = —=—Tm Glog(e + 0). (11.13)

The impurity model connection is very fortunate since impurity models have been

studied intensely in the past, their physics is well known and many tools and methods



exist to deal with such models such as quantum Monte-Carlo methods, exact
diagonalization methods, iterated perturbation methods and the so called

non-crossing approximation (NCA) which we will mainly focus on here.
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Chapter 12

Slaveboson Method

12.1 Introduction

The correlation-driven metal-insulator transition, or Mott transition [38], observed in
materials such as V503 [39, 40] and NiSy_,Se,. [40, 41, 42], is a nonperturbative
problem usually tackled within the Hubbard model of strongly correlated electrons.
This model describes itinerant electrons subject to an on-site repulsion U comparable
or greater than the bare bandwidth 2D.

In an early work, Brinkman and Rice [43] investigated the Mott transition from the
metallic side using Gutzwiller’s variational scheme [44, 45]. In this approximation, the
metal is described as a strongly renormalized Fermi liquid.

A low-energy scale ZD (7 is the quasiparticle residue) collapses linearly in U as the
Mott transition, occuring at a critical Upg, is approached from the metallic side. ZD
is a measure for the renormalized Fermi energy.

Kotliar and Ruckenstein devised a slave-boson method in which the approximation of
Gutzwiller, Brinkman, and Rice is recovered on the saddle-point level, but which at
the same time is open to various generalizations [46].

An example is the subject of this paper: We investigate the possibility and
implications of antiferromagnetic long-range order on either side of the Mott
transition. To this effect, we introduce magnetic frustration, which helps stabilize an
antiferromagnetic metallic phase for not too large degrees of frustration and causes
the insulating side to favor antiferromagnetic long-range order.

We also determine the orders of the various transitions involved. We expect our

results to be qualitatively correct on the metallic side, for temperatures well below
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Z D, and in the limit of large lattice coordination. The reason is, that in the absence
of long-range order, the Brinkman-Rice scenario for the Mott transition is known to
be the correct description of the coherent low-energy excitations in the limit of infinite
dimensions [47]. In this limit, the dynamical mean-field theory (DMFT) becomes
exact [15] and provides a unified framework for describing the various phases and
features of the Mott transition [47]. The influence of antiferromagnetic long-range

order on the Mott transition has been recently addressed within DMFT [48].

12.2 Formalism

The single-band Hubbard model is given by
H==) tijeheie + U haghiy, (12.1)
ijo i
where we take the amplitudes ¢;; to be nonzero only between nearest and next-nearest
neighbors, in which cases they equal ¢ and t’, respectively. c;»l; and ¢;, are creation and
annihilation operators for an electron of spin ¢ at site ¢, and n;, = c;»';cig. In this
work, we consider the two-dimensional cubic lattice and restrict ourselves to half
filling and zero temperature.
In the Kotliar-Ruckenstein approach, two aspects of a physical electron are separated:
that it is a fermion and that it affects the occupancy of some site. The first aspect is
taken into account by a fermionic field f;,, while the possible occupancies of the sites
are described by bosonic fields: e; describes empty, p;, singly occupied, and d; doubly
occupied sites. The physical electron field is represented as ¢;, = %, fir With
Zio = (L= phpis — dF d) ™Y 2(ef pis + ph dP) (1 — efe; — pi, pics )71/, while
appropriate constraints eliminate unphysical states [46]. Thus, the problem posed by
the Hubbard interaction is shifted to that of keeping track of the backflow of bosonic
excitations, 2;;2”, accompanying the itinerant fermions, f;;fjg.
Proceeding along the lines of Ref. [46], we first set up the functional-integral
representation of the Hubbard model in terms of the above-mentioned auxiliary fields,
integrate out the fermions, and solve the remaining problem in the saddle-point

approximation. To describe antiferromagnetism, we divide the lattice into two
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sublattices, A and B, and look for solutions satisfying the following relations between
the sublattice Bose fields: eg = €4, pBs = Pa_s, dB = d4, and m = pin — pil, where

m is the staggered magnetization. For our result, we need the dispersion relations

[X] = —4t' cos k, cos ky + nt\/X2 + 4(cosky 4 cosky)?, (12.2)

where the lattice spacing has been set equal to one, X is some dynamically generated
staggered magnetic field, and 7 = +1. The equations for the density per site (which at

half filling is equal to one) and the staggered magnetization,

L= Y e X - ), (123)
Fn
o1 X
m( X ) N z]_; \/X2 + 4(cosky + cos ky)?
X | e 1X] = ) = fleg, [X] = )] (12.4)

can be solved unambiguously for X and the effective chemical potential i, to yield
functions fi(m) and X (m). In Eqgs. (12.3) and (12.4), N is the total number of lattice
sites, the sum is over the first Brillouin zone, and f(¢) = ©(—¢) is the Fermi function

at zero temperature. From the mean-field equation

dq(m,d?)

K (m) + U =0, (12.5)

where the functions ¢(m,d?) and K(m) are given by

4d*

am. @) = —— [1—2d2 + V(1= 287 =2, (12.6)
K(m) =+ 3 e X ()] f(eg, [X (m)] — fi(m))
kn
+tmX(m), (12.7)

we obtain the average portion of doubly occupied sites as a function of the staggered
magnetization, d?(m). This function along with Eqgs. (12.6) and (12.7) allow to write

the ground-state energy per site as a function of the staggered magnetization as
e(m) = q(m)K(m) + Ud*(m). (12.8)

This result has an intuitive interpretation: K(m) is the kinetic energy of

noninteracting lattice fermions with nearest and next-nearest neighbor hopping,
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subject to an internal staggered magnetic field X (m). The renormalization factor
g(m) accounts for the reduction of the hopping amplitudes due to the local
correlations and is characteristic of the Gutzwiller approximation. In our scheme, ¢
arises from the expectation value (7 %;,) and thus represents the average effect of the
backflowing slave bosons. The second term in Eq. (12.8) is the contribution of the
Hubbard interaction to the energy. For U = 0, Eqs. (12.5) and (12.6) yield
d?> = (1-m?)/4 and ¢ = 1,50 (m) = K(m). For t' = m = 0, Eqs. (12.2)-(12.7)
imply: X =p=0; K =2 fi)oo de Do(€)e, where Dg(€) is the density of states for
noninteracting electrons; d? = (1 — U%) with U, = 8|K|; and ¢ = 1 — (U%)2 We thus
recover a result of Ref. [46].
We have also considered the Hubbard model in the Hartree-Fock approximation,

which turns out to be tantamount to taking ¢ = 1 and d?(m) = (1 — m?)/4 in Eq.
(12.8), while the function K(m)is again determined by Eqs. (12.3), (12.4), and (12.7).

12.3 Example

In the following, we determine the ground state for given model parameters U and
a = t'/t by minimizing the energy function (12.8). « is a measure for the degree of
magnetic frustration and is varied from zero to one. Furthermore, the evolution of
e(m) as a function of U and a reveals how the transitions between the various phases
take place. Whether the system is metallic or insulating depends on the value of the
ground-state magnetization: If it exceeds a certain value, mppr, @ gap opens up in the
single-particle spectrum and the system goes insulating. This can be seen from kq.
(12.2) if we use that m increases monotonically as a function of X. Consequently, the
insulator is always antiferromagnetically ordered. From Eqgs. (12.2)-(12.4), we further
infer that myr does not depend on U, but on the degree of magnetic frustration:
Due to perfect nesting, lim,_omuyrr = 0. As a is turned on, mprT increases
monotonically as a function of a. In the following, we discuss our results. We must
distinguish between three regimes of magnetic frustration and may restrict the
discussion of e(m) to positive magnetizations. Fig. 12.1 illustrates how e(m) evolves

as a function of U and «. The resulting phase diagram is displayed in Fig. 12.2.
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Figure 12.1: The function e(m) as a function of U and the magnetic frustration. The
columns from left to right correspond to the small-, intermediate-, and large-a regimes,
respectively. The respective values are a = 0.02, 0.1, and 0.5, corresponding to myT =
0.09, 0.26, and 0.61, respectively. Each column displays how e(m) changes qualitatively
upon increasing U, from the paramagnetic metal (top row) to the antiferromagnetic
insulator (bottom row). The middle row shows examples in the antiferromagnetic metal
(first two plots), and one after the metal-insulator transition has taken place but before
the local minimum at m = 0 turns over into a local maximum (plot on the right). The
plot in the center has its minimum at a nonzero magnetization, which is not discernible.

For small degrees of magnetic frustration, 0 < o < 0.06 (first column of Fig. 12.1), we
first find a second-order transition from the paramagnetic to the antiferromagnetic
metal at a critical value Upag. Upon further increasing U, the resulting minimum is
continuously shifted towards higher magnetizations until it crosses mpr at a second

critical value, Unr. Consequently, the metal-insulator transition is also of second
order. Since mpr vanishes as @ — 0, both transitions coincide in this limit.

For intermediate levels of magnetic frustration, 0.06 < o < 0.14 (middle column of
Fig. 12.1), mar is sufficiently large for the metal-insulator transition to take place
differently: Before the ground-state magnetization of the antiferromagnetic metal
reaches myr upon increasing U, a second minimum at a magnetization above mprr
has emerged and become the absolute minimum of e(m). Consequently, the
metal-insulator transition is now of first order. The transition lines Upyr(ar) from the

small-a and intermediate-a regimes meet at o = 0.06 (full circle in Fig. 12.2). At this
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point, the two degenerate minima of the first-order transition merge at myr. Finally,
the antiferromagnetic metallic phase disappears gradually as o — 0.14 (full square in
Fig. 12.2).

For large degrees of magnetic frustration, o > 0.14 (right column of Fig. 12.1), the
antiferromagnetic and metal-insulator transitions coincide, Uniir = Umag, because the
second-order transition is now preempted by the first-order one: By the time the
minimum at m = 0 bifurcates, the one above myr has already evolved into the
absolute one, and remains to be so, as U is further increased.

In Hartree-Fock approximation, the function e(m) evolves, for all values of a and
upon increasing U, as follows: After a second-order transition from the paramagnetic
to the antiferromagnetic metal, the minimum is continuously displaced towards higher
magnetizations, until it exceeds myyr. Thus, both transitions are of second order and

never coincide.

Figure 12.2: The various phases and transitions as a function of @ = ¢/t and U.
The small-U phase is the paramagnetic metal, while the large-U phase is the antifer-
romagnetic insulator. In between, an antiferromagnetically ordered metallic phase is
sandwiched that disappears at a tricritical point (full square). The dotted and full lines
indicate second- and first-order transitions, respectively. The full circle marks the point
where the metal-insulator transition changes its order.
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Figure 12.3: The function m as a function of U. The columns from left to right cor-
respond to the small-, intermediate-, and large-a regimes, respectively. The respective
values are a = 0.02, 0.1, and 0.5, corresponding to mpypr = 0.09, 0.26, and 0.61, respec-
tively. shown as dotted lines. Fach column displays how m changes qualitatively upon
increasing U, within Hartree Fock approximation (top row) and within Slave boson
approxiamtion (botton row).
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Figure 12.4: The function ¢(m) (top row) and the function d*(m) (bottom row) as
a function of m at Upspr. The columns from left to right correspond to the small-,
intermediate-, and large-a regimes, respectively. The respective values are a = 0.02,
0.1, and 0.5.
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Chapter 13

Momentum Expansion Method

13.1 Introduction

We develop self consistency equation in high frequency limit. In this chapter we
develop self consistency equations using moment expansion method. This method is
appealing particularly because of the small matrix size of Green functions. This naive
moment expansion method, however, does not yield a self consistency equation up to
the desired order. In the next chapter, we use equation of motion method with
Hubbard operators that would give those equations.

Consider a Green function of fermion operators, G(7) = —<T7fa(7')fg(0)>. Expanding
the Fourier transform of this Green function in 1/iw,, we express the Green function

in terms of moments M(”), n=12,---:

1) @ () (4)
MY M® ME M
Gaplion) = T8+ 2 + G55 + Gy

iwy, o (wy)? (lwy

e, (13.1)

where the moments can be obtained in the following way[54, 55].

MY = ({far I1}) = b, (13.2)
M%) = ({{fan ). 1), (13.3)
MY = {lf.. BV £, (13.4)
MY = (. B HLH f1). (13.5)

When these moments can be expressed in terms of Green functions, the Eq. 13.1is a
self consistency equation with the expression of moments. In general, the moments
can be expressed in terms of Green functions up to a certain order n. Then the Eq.

13.1 is a self consistency equation that is exact up to 1/(iw,)".
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In following sections, we derive expressions for the moments in terms of Green
functions. Two models will be considered: N band impurity model and N band

lattice Hubbard model, both with density-density on-site interactions.

13.2 Impurity Model

We consider N-band Anderson impurity model. The Hamiltonian of this impurity

model consists of three parts,
H = Hatom + Hband + thb, (136)

where H,iom is the Hamiltonian of the impurity, Hband is the Hamiltonian of the
surrounding bands, and Hyyy, is the Hamiltonian hybridizing the impurity and the

bands. Explicit forms of the component Hamiltonians read

Hatom = Z €ozf;r¢foz + Z Uaﬁnoznﬁv (137)
(3 aﬁ
Hband = Y el e o (13.8)
ok
Hyy, = E Vgﬁ (fctcmg + Cl,;fﬁ) ) (13.9)
ozﬁlg

where V;ﬁ = ( Eﬁa)*, Uel = Ubf> and U~ = 0. The band indices o and § run from
0to N.

We write Green functions as
G;é(zwn) = (twp, — €4)00p — Aaﬁ(iwn) — Yop(iwy,), (13.10)

where the hybridization matrix is A,p(iw,) = >R Vgawvgﬁ/(iwn - GWE). We expand

the Eq. 13.10 in 1/iw,,, assuming the expansion of the self energy in 1/iw, as

o E5 IO
Eag(zwn) = Eaﬁ + ? + (iwn)Q. (1311)

Identifying this expansion with the Eq. 13.1, the moments of self energy can be
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written as
2O = M) — b, (13.12)
L _ ® 2)\?
Eaﬁ - Mag o (M( )) of B Aaﬁ’
2
_ Mc(f;) — e M@ _ eﬁz(jﬁ) N (E(O))aﬁ — Aup (13.13)
(2) _ (4) 2)\? 2 1 1 2 cat a8
5 = M — (M< ))a[f (M< (2 £ A) £ (=M 4 Al >)aﬁ _ Z%EVE vl
ak
_ (4) 3 2 aay el
= M) - M@ - (AM( >)aﬁ . Z%EVE Vi
ak
_ (E(l)M(Q) +M(1)E(2)) , (13.14)

_ IR Ve A vais)
where Ay = Ewk VE VE )
Now we derive explicit expressions for M (™ and £(™). The first moment M 1) is

straightforward. The second moment can be calculated as

MO {[far H], F13),

GQ(SQQ + Z Ua’y<{fozn'yv fg}>7
Y

€abap + 6ap D U™ (ny) + U2 (fo f1). (13.15)

~

Then the zeroth moment of self energy Egoﬁ) follows from the Fq. 13.12:
S = bap U na) + U (£ fh). (13.16)
gl

Since <fafg> = —Gop(r = 0%) and n, = <f;rfw>, the Eq. 13.1 is a self consistency
equation up to 1/(w,)%.

For an impurity model with general on-site interactions, It can be shown that the
second moment can also be expressed in terms of Green functions . At this order,
however, the Green function is in fact the Green function of the atomic Hamiltonian,
as can be seen in the Eq. 13.16. Since the Green function is that of atomic
Hamiltonian, the many body physics can not be captured. For many body physics,

therefore, we need to incorporate the third moment in a self consistency equation.
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To calculate the third moment, we need to calculate > U*"({[fan, H], fg}> first:

E Ua’y<{[foén’vv H]v fg}> = GaE(aOﬁ) ‘|‘ 6aﬁ Z UaWUa5<nwn5>
~

~&

+ 200 U fufiny) + USPUP(fu f1)
Y

+ Uaﬁ (<éafg> - <fozég>)

— g U (G = (D) (13.17)

where C\, = > Veie, cl = >V IE As shown in the next chapter, <C~'afg>
and <faC~'g> can be expressed in terms of Green functions using equation of motion
method. However, (n,ns) <fafgnw> can not be expressed in terms of Green functions.
To devise a way to express these terms in terms of Green functions, we need to
introduce projected Green functions with proper projection operators. A good
candidate for the project operators is the project operator formed from the
eigenstates of atomic Hamiltonian. This consideration leads us to Hubbard operators.
Construction of self consistency equation using Hubbard operators is discussed in the
next section.
Here we write down the third moment and the first moment of self energy for
completeness. Since Hubbard operators introduce Hilbert space, hence large matrix
size, it is important to find a limit where a self consistency equation can be

constructed without them. The following equations can be used as a first step toward
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such endeavors.

M) = {{lfa, HIH 1),
= (U HL AN+ S VE ey HIL D) + 3 UL famy H, 1),
al; Y

= @M+ Ao+ U ({[fany. H]. 1)), (13.18)

~

2

s = M9 — e u® gz - (2<0>)aﬁ — Aug,

= U ) £ - =) - (50) (13.19)
d
= (e =) UP(fuf})

b S UTTU () — () (ms))

~&

+ s Z (2U0W<fafgnw> — U0W<fafg><nw> _ Uﬁw<fafg><nw>)

+ UPUP(fa f5) = YU U (fu ST

~

£ U ((Cafl) = (1)) = Bas YU (o) = (5 CD) - (13:20)

(2)

Finding the second moment of self energy Y5 Is important in studying ferromagnetic
materials. As we could not set up a self consistency equation for the first moment of
self energy, we would not be able to find a way to a self consistency equation for the
second moment of self energy. An explicit expression is, however, may find its use in
finding a limit where a self consistency equation can be constructed and in

understanding the difficulty involved. Similarly to the case of the first moment of self
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energy, we need to calculate > {{[[fon,, H], H], fg}>

> {llfany, H], H], f1}) = (13.21)
-
QU af 1)+ 6agel D U () 4 2805 Y €U U (nyms)
¥ ~&

+ 46U U fofing) + 2, UPUP (£, £1)
Y

+ 5aﬁ Z UaWUa5UaE<n7n5nE> + UaﬁUaﬁUaﬁ<fafg>

~ée

+ 3u*fpe’ Z U foflns) + 300" U0 fo finyms)

~&

T QBZUM( )+ AL + ZA SU ()
+ €aUaﬁ (<Cafg> - <faC};>) + bap ZGWUQW (<wa;r> - <fwé$>)

= 266 > U ((Coff) = (1)

~

£ Ut ((Cagl) = (£Ch)) + 2027 3 U ((Caflng) = (fuClns))
¥

— 2645 Z o rod (<C‘Wf;rn5> - <f76~’$n5>) - 26aﬁz e grey ((wab _ <fwél>)
¥

~&

— (ea+ UL LY = U S0 + U fuClny)

.

b 3 UTTU ((Chns) +(Cofing) ) = bup 30 U0 (£, CTns) +(Cy flns) )
8 6

+ 2005 Y UC,CYy = 20°7(C.Ch)

d
b0 (€l +1CatD)) = b S0 ((1CD + (€011
Y
3003 70 (<fafngTCy> - <fafgc~*$fw>)
Y

= YU ((fu L) + L SCLE))

~

where C, = Dok €aEV;;‘aaCaE7 ¢l = Dok €aEV~ c o First we meet the same difficulty as
in the case of the first moment of self energy. We need to introduce projected Green
functions to cope with such terms as (On,), where O is an operator. Moreover there

are four fermion operators such as <fafgc~'$fw> We need to find a limit where these

terms cancel each other, or Wick-like decomposition is valid. Another challenge is the
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presence of operators C, and Cl. Tt is very unclear how to cope with these operators.
When > ({[[fan, H], H],fg}> can be expressed in terms of Green functions, the

fourth moment and the second moment of self energy can be found in the following

way.
MY = ({lllf., H), H], H], 1)),

= Ofﬁ—l_zg Vozav_il ( Ml) —I'Z foznwv J; ]fg})‘322)
29 = E<{[[fanw H], H], f1}) - ( ()+M() ())aﬁ. (13.23)

~

13.3 Impurity Model: Special cases

13.3.1 Diagonal Hybridization

Diagonal hybridization A,z = Anqdsp is a natural candidate for a limit where a self
consistency equation can be written down. In this case, the off-diagonal components
of the Green function vanish. Since the hybridization matrix is real, we see that
(C, Ay = <fWCT> Using these properties, the moments of self energy can be found

from the expressions for the case with general hybridization:

M) = qbap+ 30, 29 =6, U0, (13.24)
M) = Ebupt 2apea Y U () + Aup + 30, (13.25)
Y

20 = 60s Y U0 ((nyns) — (n)(ns))

~§

— bap 3 U ((Cy )y = (£CD)) (13.26)

= bap > UTU ({nyns) = (ny){(ns)). (13.27)
~§

At this order, though it is not possible to express the term (n.ns) in terms of Green
functions, the moments can be found using Hartree expression. If Hartree
approximation is used, however, the Green function is that of mean field theory and

dynamic aspects of the physics can not be captured. Even with diagonal
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hybridization, it is not possible to construct a self consistency equation for Green

functions able to capture dynamic aspects of physics.

13.3.2 SU(N) case

SU(N) case is the simplest case among the multi-band impurity models. By SU(N),
we mean that 1) the hybridization is diagonal and flavor-independent, é,3 = Adag,
and 2) the energies of non-interacting fermions are the same, ¢, = €. For easy
comparison with the result of Hubbard operator method, the €, is rescaled to ¢, + U.
This amounts to restoring the diagonal on-site interaction U*“ = U. As in the case of
diagonal hybridization, there is no improvement for fourth order moments especially
because of the presence of the operators C, and Cl. Up to the third order, the

moments and self energy can be written as

M = b +39, 2O = 6,0(N) (13.28)
M) = Ebup+ 20peaU(N) + 625U (N?) + Aug + 51 (13.29)
= s ) UMTU (nyms) = () ()
6
= s 2 U (ol = (1)) (13.30)
Y
= bapU? ((N?) = (N)?) (13.31)

where N = Y _n,. As in the case with general hybridization, the term (N?) can not
be expressed in terms of Green functions. Using Hartree approximation reduces to
mean field theory. Equation of motion method using Hubbard operators open a way

to overcome this difficulty. We discuss equation of motion method in the next chapter.

13.4 Lattice Hubbard Model

We consider N-band Lattice model. The Hamiltonian of this model is,

of
_ aB g ot Uim i
H=> 1 fiafli+ > ST (13.32)
ijaf a3
where 2, j, k,--- are lattice indices and a, 3,+,--- are band indices. We assume that

Uiaﬁ = Ufa, and U = 0. The band indices run from 0 to N. We expand the Fourier
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transforms of Green functions Gjap(7) = —<T7fm(7')f;r (0)) in 1/ww,,

(1) (2) (3) (4)
Gijop = Mias  Misop | Mijas  Mijos . (13.33)
J W, (iwn)?  (iwy)?  (iwy)? ’

where the moments can be found by the following equations.

MYy = (i Fl5)) = bijbas, (13.34)
MO = (e H I, (13.35)
M = Ul HIH). 1), (13.36)
MY = (e B HLHL ). (13.37)

We write the Green function as
[Gijas] ™ = iwnbijbap — 17 = Sijug, (13.38)

and the self energy as

©) s, B
- ja ja

Expanding the Eq. 13.38 using the Eq. 13.39, the moments of self energy can be

written as
(0) _ (2) of
Yias = Mijas—tij (13.40)
2
S = ME = (M) — (301505 — (E(O))ijaﬁ7 (13.41)
(2 _ (4) N
Siap = Mijap— (IMD)ijag = (E(O)M(3) + E(I)M(z))mﬁ . (1342)

Now we present the expressions of moments. The first moment is trivial. The second

moment can be straightforwardly calculated:

e

o

EE%B = 8y Y US{ fiomls 153,
Y

_ o8 w0
= L+ N (13.43)

= biibap U (nL) + 85U fia f15)- (13.44)

~

Up to this order, a self consistency equation can be written. However, the Green

function is that of atomic Hamiltonian. To capture the many body physics, we need
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higher order moments. To calculate the third order moment, we need

S UL ool HY, 1531

S U, 1, £ = ZU” )+ ZU”t?f fiaf})

~

+ 62]6aﬁ Z Uia’ina6<n'yn5>

8
+ 28,0 > UZ'QW(fmf]TgnQ + 6ij UiaﬁUiaﬁUmfZ%
Y
+ 55U (oo ls) = (fia 1))
— dyjbap y U (<f~mf%> - <fmf%>) 7 (13.45)
Y

where f, = Z]ﬁ By fjg, fch = Z]ﬁ t]ﬁlaf 5 Here we meet the same problem as that of
impurity model: the term <fmf]ﬁn;> can not be expressed in terms of Green
functions. This problem can be overcome by introducing projection operators such as
Hubbard operators. We discuss this possibility in the next chapter. Assuming an
expression for Ew Uﬁu{[fiang, H], f}ﬁ}> is available, the second moments and the

first moment of self energy read

MO, = ({{lfw H1H]. f11), (13.46)
= Zt fk’W ]Tﬁ}> + ZUiaw<{[fian§7H]vf]Tﬁ}>v (1347)
Y
= (tMD)ijop + > U fionl, H], f153), (13.48)
Y
2
E(alﬁ) — Mi(j?)o)zﬁ — (tM(z))ijaﬁ — (E(O)t)ijaﬁ — (E(O))Z’jaﬁ’ (13‘49)
= Y U {[fiond H] 153 = (5010 — (E(O));g’ (13.50)
Y

= bijbap z USTUS ((nnf) — (nd ) (nf))
+ 252]Ucvﬁz( U fiaflm >—Uf”(fmf}gﬂ"ﬁ_Uf”(fiaffgﬂnﬁ)
+ 62]UcvﬁUcvﬁ<fm 5”ZUMUW fzafijfwf ) (13.51)

+ 607" (<f}afm> - <fz'afm>) —bijbap Y U ( Fn kLY - <fmﬁw>) -
Y
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The fourth order moment can be found in a similar way. We need an expression for

> U { fiany HY, H], f13):
EU?N{Hfmw H], H], fl1) (13.52)
= 6”Uaﬁ Z )5 Fenfls) + Z UL ()P () + 26 Z UL U (0l )
+ 5UUWZWU”5 (i S1onk) + 5UU“52 ( U it ) = U0 i)
t E thaéUw (fisFlamb) + 5ijU¢aﬁ<fiaf¢Tﬁ> = 26U fiaf15)
+ 252]%52 U (Jir 1) + QZU”t“ﬁ (¢ dly = (T fL))
¥ zéijvﬁﬁz U fafiom) + Wﬁﬁvfﬁ ((Faafio) = (fiaT1)
5

+ B65ULURTS U fiafipnt) + 365U T USTU fia fimimh)

vy vé
+ 0ijbap z USTUSOUS(nmgng) + 5ijU¢aﬁUz’aﬁUz’aﬁ<fmf}ﬁ>
~ybe
— 36;6a5 E Upugt (<fi5f;5"§> - <fi5ﬁ5 ) +3 E UMUZM 55 fmf >
8

= 365U UM fiaflynl) = 261605 z umue (<fmf%> + <fmf%>)
Y

+ 20i0ap > USTUR (Ui S + 67 1) ) 42 Z USUSG 1)

~&

- Z USPUT fio S ) + 6436050707 (<fmfmnfs> + {finfim))

+ %%azU”U”‘S( 0= fisf Ly = 65U UMY fia flnd)

v6 ¥
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bijbap Yy U (<fmf%> (fin T ) + > U FafT)
Y

k~é

bijbap E Uuge (tzzf<fk5fmnf> - tiﬂfmfkén@)

k~be
YU + U fia fioynd) + 835y U UM o fL)
Y
36,073 (o To 8 Ty = (o £ 7L )
Y
i; Z U0 (il fh i) = ot 1o 1))

ZU”U‘W( iad b Fis f15) = B Frais £l 1))

where F;, = Em(ﬂ)aﬁf]ﬁ We face similar problems as in impurity models. We need

an projections scheme to deal with terms such as <fmfjgnw> and we need to deal with

four fermion terms such as <fmfj5f;rﬁf;rw>. When an expression of

>, U l fiany, H, H],f}ﬁ}> is available, the fourth moment and the second

5(2)

moment of self energy can be found by

= {{[[fiar H), H], H], 1) (13.53)
= Et (Ui B HY, £13) + 3 U (L froms, H) D, f1}) (13.54)

= (tMP)ijap + Z U ([ fiamsy, H], H), £153) (13.55)

= EUﬁW[[fm% ], 1), £l = (3Ou + s0u ())aﬁ.(13.56)
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Chapter 14

Equation of Method

14.1 Multi-band Hubbard Model

As seen in the previous chapter, finding a scheme able to construct self consistency
equations of Green functions for general multi-band model is important. In this
chapter, we use equation of motion method with Hubbard operators. Unlike the

moment expansion method, we successfully construct self consistency equations for

both multi-band models: multi-band lattice Hubbard model and multi-band impurity
model.

We consider N-band Hubbard model with Hamiltonian,

H=> Hiom+ Hnop, (14.1)

where H,. is the Hamiltonian of an atom at site i, and Hy,p is the Hamiltonian

describing fermion hopping between sites. Explicit forms of the component

Hamiltonians read

Hi = > ebnl + > 1070 L L fi fis. (14.2)
o aBvyé
Hop = Y V5" (ffaferf}ﬁfm), (14.3)

tjaf
where f;,( f;ra) is a fermion annihilation(creation) operator of flavor a at site ¢ and
Vi?ﬁ is a hopping amplitude between flavor a at site ¢ and flavor 3 at site j. The
on-site interaction satisfies U797 = (Uéwa)*. The flavor (band) indices a, 3, v, and
6 run from 0 to V.

In DMFT, the lattice model maps into an impurity model with Hamiltonian

H = Hatom + Hband + thb7 (144)
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where
Haom = Y ¢ana+ Y D001 L f fis, (14.5)
o aBvyé
= 502 (e 1) o
ozﬁlg
Hband = ZGQECTECQE. (14.7)
ok

The annihilation(creation) operators c_z

z(c_z) describe band fermions. The

hybridization amplitude V;ﬁ satisfies V;ﬁ = (VE a)*.

In this section, we present self consistency equations for Green functions applying
equation of motion method to Hubbard operators. We find Green functions for atomic
Hamiltonian first to introduce the method and set up notations. Then we find a self
consistency equation of Green functions for lattice model. This is only possible in
DMFT limit in the sense that the coordination number z approaches to infinity.

Finally, a self consistency equation of Green function for impurity model is presented.

14.2 Atomic Case

To see how the Hubbard operator approach works, we solve the atomic case with

Hamiltonian
Hatom = E€ana —I_ Z Faﬁ,wsflfgf’vf& (148)
o aBvyé

where o runs over the band index from 1 to N, and T'*?7 satisfies the relation to make

the Hamiltonian self conjugate. A bases can be setup as the set of states |n,Z), where

n,Z) =[] f1,10), ax <aifork<i, n=0,1,2,---,N (14.9)
k=1

Since the atomic Hamiltonian conserves the number of electrons, an eigenstates is a

linear combinations of the states |n,7) with the same number of electrons n,

Ncn
Hatom|n, I) = €nr|n, I), |0, I) = cfrln, ), (14.10)
=1

where C?I are constants.
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The Hubbard operators are defined as
X777 = |n,I){(m, J|. (14.11)

A subset of the Hubbard operators, {X}J'} is a complete set of projection operators
summing to the identity, > ; X7/ = 1. Using these operators, the creation and

annihilation operators can be projected into eigenstates of the atomic Hamiltonian,

Joo = 30 XIS = YO FRTIXET E = (0| fuln 4 1,))
nmlilJ nlJ

o= N XXy = N Epptiex e pett = (0 g 11| fn, ).
nmlilJ nlJ

Since the Hubbard operator X74" is fermionic (bosonic) when m — n is odd (even), we
use different commutators for different Hubbard operators depending on their

statistical nature:

(X7 XiE e = X7 XqE, — (—)0m WX X, (14.12)

14.2.1 General On-site Interaction

In terms of the Hubbard operator, the Hamiltonian reads

Hatom = E €nIX?[n- (1413)
nl
Green functions of Hubbard operators, G/ (7) = —(T, X7 (1) X7, (0)), can be

calculated by taking time derivative of Green functions,

D e (e = X X ) — (T XX (14.14)
= X X))
(LX), Haonl X (0) (14.15)

The commutator of a Hubbard operator and the Hamiltonian is found

straightforwardly,
(X757, Hatom] = (€ns — €mn) XTJ". (14.16)
Substituting the eq. 14.16 to the eq. 14.15, we obtain

0 Mmno mn 0 Mmno
aTGIJKpL(T) = _6(T)<{XIJ 7X]\?L}:I:> - (€nJ - €mI)CTY[JKpL(T)- (1417)
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Taking Fourier transform of eq. 14.17 yields the Green functions of Hubbard operators,

grnen () = AT X b (14.18)
" Wpn — (€nJ - GmI)

IJKL =

The Green functions of fermion operators Gog(7) = <T7fa(7')fg(0)> can be obtained

by summing the Green functions of Hubbard operators

Gopliwn) = Y Y Fpy " R G (i), (14.19)
mlJ nJK
where G717 (4w,) can be easily evaluated to
—Bens —Bent1s
. € +e +
G i, ) = B8 811 (14.20)

Wy — (€nJ - €mI)‘
14.2.2 Density-Density On-site Interaction

When the on-site interaction has the form of >°_, UPn,ng, the states |n,T) are the
eigenstates by themselves. In this case, the index for the number of fermions n does
not give an extra information. We drop out the index and let the index Z scan all the
eigenstates. Introducing new notations |Z 4+ a) = fct|I>, the fermion operators can be

expressed as

fa = ZXII-I—OM fl= ZXI-l—aI (14.21)
T T

The Green functions of fermion operators read

Goplivon) =Y Grrvagragliv,), a¢I, 5¢J (14.22)
77

where the Green functions of Hubbard operators are evaluated, similarly to those of
General on-site interaction case, to
({X1740, X740 }s)

iwy, — (€7 — €1)
e—Pez + e PeTta

G1rog+ag(iwn) = (14.23)

= 1 (14.24)

iwp — (€740 — €1)
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14.3 Lattice Model

14.3.1 Generic on-site interaction
Self consistency equation

We consider N-band Hubbard model with Hamiltonian,
H= Z Hipom + Huop, (14.25)

where H! is the Hamiltonian of an atom at site 7, and Hpp is the Hamiltonian

atom

describing fermion hopping between sites. Explicit forms of the component

Hamiltonians read

H;tom = Z ‘I’ E Faﬁ,wsf fi’yfi& (1426)
afBvyé
Moy = S VS (fh i+ flafia) (14.27)
ijaf

The site indices ¢ and 7 run over the lattice and the flavor indices a and 5 run over
the N bands. The Hubbard operators X7} = |i,m, I){¢,n, J|, where |i,m, I)is an
eigenstate with energy 6371[ of the atomic Hamiltonian at site ¢ with n particles, are
defined at each site similarly to those of atomic case except that the operators act as
the identity operator on all the other sites. The fermion Green functions can be

expressed as a sum over the Green functions of Hubbard operators,

amm n+1n ~mm+In+lng;
Goplivn) Z Z Firy —HFJBBL G (iwn), (14.28)
mIJnKL
where
G (r) = (L X G )X 0)), (14.29)
Fy = (ion I fuolion + 1,0), Pt = (on+ LIl ljon T). (14.30)

Since the coeflicients Fﬁz}”"’l and Fﬁ}"’ln are fixed once the atomic problem is solved,

we concentrate on finding the Green functions of Hubbard operators GZ?J‘EIEH”(T).
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Taking time derivative of the Eq. 14.29, we obtain

8 mm i3 i3 mm i3 i3 mm i3 i3
GiIJj-II—(lL-I—l (1) = —é(r)({X777 +17Xﬂiti ) = (T:[X7T7 +17H](T)Xﬂi% (0))

or

= =8(NUXTTTL XM — (s — (T X7 (DXL (0)

- <TT[XZL§H+17 HhOP](T)X;I;I%n(O»-

(14.31)
We approximate [X/77" !, Hyop] by a linear combination of ng"]\'/[l:
mm mm~+1pp+1 +1
RS Hthop] = Yiren Xemn- (14.32)
kpMN
Substituting the Eq. 14.32 to the Eq. 14.31 yields
8 Gmm—l—ln—l—ln _ (5 Xmm—l—l Xn—l—ln
or KL (r) = —o(r){{ ildJ KL )
(Em1s = G T-XTT (D)X L (0))
+1 n+ln
— Y YT X (DX EN0). (14.33)
kpMN

Using the definition of the Green functions of Hubbard operator and Fourier

transform, we obtain
mm—+1 n+ln _
X777 s XKL )=

: ' ' +1pp+1y ~pptlintln
> [iwn = (€p1s = Gur))binbmpd N — Yk G IN L, (10n)-

kpM N
(14.34)
Taking anticommutator the Eq. 14.32 with Xijle:”, we obtain
mm n+ln mm+1pp+1 +1 n+ln
{IX77H, Huop), ﬂiti )= YN <{X£§4N7Xﬂi% ). (14.35)

kpMN

Solving this equation gives the Y matrix.



Introducing matrix notation

G lim I {jn LK}
Yiimrn (jnLK)
Yiim I {jnL K}

Zlim IV jnLK}

O€(im I} {(jnL K}

1gmiay{jnLKy

mm-+1ln+ln
GZIJ]BL

mm-+1lnn+1
1/ZIJ]LIX

XTI Hiopls XTRE77Y)
{XGPTL X
8:i6m (81 (XITT) + 610( XT3 HY)
(€hng1s — €1 )8isOmnb106K

0i;0mn 010 5K,

the Eq. 14.34 can be written in matrix form as

(G

= 7 iw,1 — 6e = Y]

or
B Z
w1l —be—=Y’

where the division implies matrix inversion.
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(14.36)
(14.37)
(14.38)
(14.39)
(14.40)
(14.41)

(14.42)

(14.43)

(14.44)

The expectation value of a 0-particle Hubbard operator can be found from a

corresponding Green function at 7 = 0:

{

mim

Il >

mm+1lm+1m _
=Gl (T =0),

(14.45)

where M is a state with m + 1-particles. To complete a self consistency equation for

the Green functions of Hubbard operators, we need to express ¥ matrix in terms of

the Green functions. For site diagonal Y matrix, this expression can be obtained

without further approximation. For site off-diagonal Y matrix, we need to take a

DMFT lmit to express the Y matrix in terms of the Green functions of Hubbard

operators. In DMFT limit, the site off-diagonal Y matrix is given by

Fozm—l—lm

mm—+1 n+ln
<{[X21J Hhop] X]AL
mm—+1 —
Grg = iJC
n+ln
Ixr1 = JLC

c

Fﬁnn-l-l Xn—l—ln—l—l

_ e g +1_n+1
)= Z(‘/z? VIO T L
af
where

mm ozm—l—lm m+1m-+1
ZIO Z F;CI X’LCJ >

ﬁnn—l—l
o)+ ZF]CB JOL)-

(14.46)

(14.47)

(14.48)
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The site diagonal ¥ matrix is given by

<{[XZL§H+17 Hhop ]7XZ;I'—L1n >

— +1m pBeg+l v b Bo ~vagtlm42m+1l, o o4
=202 bmprn AT (VT A VERVGIEL RS (= 0F)
jaB aCD

1m pfBeg+1 B 54 +1n+1 _
N Z Z 6m”+1FffTIrXL"+ ijCq% (Vi? + ij’a)G?qcDgL "(r=10%)
jap qCD

F20 2 D bnbrn FRH B VS 4 VGG (= 07)
jafB qCD M

=30 D b ES T E (VT 4+ VA G A (- = 0)
jafB qCD M

+1m+2 pBetla y a8 Bayymm+lgtlge A+
- Z Z S iy " e (VT V) Gaep (T =07)
jap qCD

DD S PP SR VE” + VGRS (= 0%)
JjoB qCD

=3 D D bnbare F T R VST VG (= 0%)
jaBqCD M

30D D b E RS VST + VI GRRSEE  (r = o).
jafB qCD M

(14.49)

This expression for site diagonal Y matrix holds without DMFT approximation.
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Derivation of Y matrix

Site off-diagonal ¥ matrix is given by
ﬁTJZ?IiCILan = ({[X7, Huopl, ;ﬂ’in ) (14.50)

A straightforward but tedious calculation yields for # j

Yt = NN Rt PN VT 4 VI X XL (14.51)

aB CD

+ 3OS EGERm EE VAT £ VX FEX R
aB CD

DD FE TR VT 4+ VXS )
8 CD

+ E PR 7R AR AR U IO oS ¢ !
aB CD

— DO Fgpttma pr VAP L VI X R EX I
aB CD

— O Eypttm R s (Ve p v (X et X e
aB CD

= YN mgtm R VAT V(X X )
aB CD

= YN Egtrm TN VA VX X .
aB CD

In DMFT limit, the only components that are of the first order in V;; are relevant for

Y matrix. Since all the terms in the Eq. 14.51 contain Vi; + Vji, we only need to take
zeroth order expectation values of two Hubbard operators into consideration. In this
limit, the expectation value of two Hubbard operators at different sites decomposes

into product of two expectation values of each Hubbard operator:

(X7 X i) = (XN XRL), i#7 (14.52)

Using these two properties, we can write site off diagonal ¥ matrix in DMFT limit as

mm4lnt+ln am+1m pfnn+1 af Bo mm nn
YKL = EEFZ'JO Fopr (V" + VEOXTENX D) (14.53)
aB CD
am+1m pfnntl g a8 Bor mm n+lnt1
+ ZZFZ'JO Foop (V57 + VEONXGENX /™)
aB CD
am+1m pBnn+1 af Bo m+1m+1 nn
+ EEFZCI Fipr (V7 +VEIX ey HXTDr)
w3 CD
am+1m pfnn+1 of Lo m+1m+1 n+1n+1
+ ZZ‘F;CI+ Fop™ (V" + V5 Xy ><XjI;I:D .
w3 CD



omm+t1ln+ln
1/HJZ'KL
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Arranging terms in the Eq. 14.53, we obtain

Vbt = S (VES 4 VI g, i # g, (14.54)
af
where
gyttt o= > FyEtXGE) + > Feptrxpie (14.55)
C' C'
gt = Y FIETHX Y Y PR (X ). (14.56)
C' C'

The site diagonal ¥ matrix is defined by
Vg = (X Haopls X (14.57)
A straightforward calculation yields

DD b T EART (VST 4 VXN
a3 qCD

Jz Z St FipiE T EIELT (VS? 4 VIO X T X I

i gCD

]Z Z > bt F T R (VS + VWX R X
jaB qCD M

JE z > bunba Fapi mE AR (VST + VX G X )
a3 qCD M

Jz Z Bmsin Fipict PR EE (VT 4+ VIEUX G XA
i gCD

]Z Z b F7H EERY (VT + VXX I

jaf qCD

D2 D b P AR (VT + V(X G X )
jaBqCD M

1m+2 pBg+1 B &) 1m+2 v g+l
S0 D b FR Y ERAE VS 4 VN XA X ).
jaBqCD M

Using
m+2m +1 +1m+2m+1
<Xilx’j:12 +1X%D ) = G%Dﬂw (r=0%), (14.58)

we express Yi; in terms of the Green function of Hubbard operators.
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14.3.2 Density-density on-site interaction

Self consistency equation

We consider N-band Hubbard model on lattice with Hamiltonian,

H = Z H;tom + Hh0p7 (1459)
Huop = SV (1 Fi6 + flsfia) - (14.60)
o
H;tom = Z Gan + Z Uiaﬁniozniﬁ- (1461)
o of

The site indices ¢ and 7 run over the lattice and the flavor indices a and 5 run over
the N bands. The Hubbard operators X7} = |i,m, [){¢,n, J|, where |i,m, ) is an
eigenstate with energy 6371[ of atomic Hamiltonian at site ¢ with n particles, are
defined at each site similarly to that of atomic case except that the operators act as
the identity operator on all the other sites. Due to the simple on-site interaction, the
eigenstate of atomic Hamiltonian can be found easily as |i,n,7) = fiTm .. .f;an|0>. In
this basis the F' numbers of general Hubbard model reduce to delta functions
Fommtl = 7,7 and Fﬁ”}"’lm = 07407, where |i,m, T+ a) = f;ra|i,m,I>. This
property simplifies the expression of Green functions and it is better not to keep track
of number of particles.

The fermion Green functions can be expressed as sums over the Green functions of

Hubbard operators,

Goliwn) =Y Girrrajgepa(ion), (14.62)
7
where
Giatrajrrsr(t) = —(T-Xir o ()X T, (0). (14.63)

A self consistency equation for Gizrya; 7457 (iw;, ) requires much smaller matrix size
than a self consistency equation for Gﬁ}@?ﬁ“”(iwn). However, expressing
expectation values of Hubbard operators need extra care since such states as |¢,7 — a)

appear. In this situation, we need to take care of the sign of the state |i,Z — a) in
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expressing in terms of a representative state. Moreover, there are Green functions in
need that are not of type Gizr4a; 7457 (twy). It, therefore, is safer to use the self

consistency equation of general Hubbard model. In what following, we formulate a self

consistency equation for Gi774q;7+87(twy,), but the expectation values of Hubbard

operator are not expressed in terms of Green function for these problems.
We approximate [X;7744, Hhop) by a linear combination of Xy 774+
[Xizztas Hhopl = > YitT4akd 747X kg T4+ (14.64)
kT~
Using the definition of the Green functions of Hubbard operator and Fourier

transform, we obtain

E[(iwn — (€ 174a = €z ))8ikbmpdT7 608 — VirTtankcktny | Grxkrig T+p(iwn)
kK

= ({Xiz740, Xj7187))-

(14.65)

Taking anticommutator the Eq. 14.64 with X; 7437, we obtain

{[Xizz1a> Hnopls X748}y = > Virzramcxsr({ Xoxxty, Xjzasz}). (14.66)
kK

Solving this equation gives the Y matrix.

Introducing matrix notation

Glitapigsy = GiTlvajg+sg (14.67)
Yiizar(kkry = YiIZ4okKK+y (14.68)
Vigayiosy = {[Xizzya> Huopls Xj7457}) (14.69)
Zigayiosy = {Xizrta, Xjz4ss}) (14.70)

= 0077 Xig1p74a) T 0710 +8(Xi17)) (14.71)
betiray(jopy = (€rpa = €1)8ij01760p (14.72)
Vitay(japy = 8ij81560p, (14.73)

the Eq. 14.65 can be written in matrix form as

[ = Z7iw,1 — 6e — Y], (14.74)
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or

A

where the division implies matrix inversion.

The expectation value of a 0-particle Hubbard operator can be found from a

corresponding Green function at 7 = 0:

(Xiz7) = —Gizr1sig160(T = 07), (14.76)

where § is a flavored not included in [¢Z) state. To complete a self consistency
equation for the Green functions of Hubbard operators, we need to express ¥ matrix
in terms of the Green functions. For site diagonal Y matrix, this expression can be
obtained without further approximation. For site off-diagonal ¥ matrix, we need to

take a DMFT Imit to express the Y matrix in terms of the Green functions of

Hubbard operators. In DMFT limit, the site off-diagonal ¥ matrix is given by

¥, 1) I} . .
Virryajzgs = Y (Vi + Vi irrsantissogs, i # (14.77)
~&
where
GizTror = (Xirto—y) + (XiT4r114), (14.78)

Gig+pay = (Xigrs—sq) + (Xigprts)- (14.79)



Yz} (i7s)

The site diagonal ¥ matrix is given by

EZ5JI+w VW -I-V N XigsrraXjccys)

Jvé qC

oY brragsst (Vi) + VO Xizs Xicers)

Jvé qC

YOS b (VY 4 VI X izt s74a-n Xjcoss)
7786 qC

Yo brragra(Vi 4 VO W Xirpa Xjecs)

Jvé qC

D22 irponres(Vil + Vit WX iz Njese)

Jvé qC

ZZ(SJ—I—’VI V’y ‘|‘V )< zj-|—ﬁI-|—oszC-|—5C>
Jvé qC

Yo brrags(V 4 VN Xizong Xjeanc)

Jvé qC

YD b1 (VY + VI N Xigtprratn Xictsc)-

Jvé qC

This expression for site diagonal Y matrix holds without approximation.

Derivation Site off-diagonal ¥ matrix

A straightforward calculation yields

& &
{[Xizz4or Huop)s Xjz407}) = D (Vi + Vi W Xizrra—y Xja1-57)

~&

+ Y (VP VWX Trra—n X 7487 +6)

~&

+ Y VA VINUX 740 X jT46-57)

~&

+ Y (VA VINUX 70 X 7487 +6)

~&

1) 1)
— YV VN Xizrpaun Xjgtp45T)

~&

1) 1)
YV VN Xirrpaun X jgtp7—s5)

~&

1) 1)
Y OV VUK i rra X gt psT)

~&

129

(14.80)

§ §
B Z(Vi} + Vi W Xizo14a Xjg467-6)-(14.81)

~&
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In DMFT limit, <XiII—I—osz.7—|—ﬁ.7> = <XiII—I—oz><Xj.7+ﬁ.7> and only the terms with

0-particle Hubbard operators survive.

& &
{Xizzros Hhopls Xjrasa}) = Y (Vo' + ViU Xirrpay (X 74 0-57)
~&

1) 1)
+ Y (VI VUK izzpae N X 7457 15)
6
1) 1)
+ Y (VI VIONXizprzra XX 74 5-57)
~&
+ YV VU X izanra ) (X s745)(14.82)

~&

Arranging terms in the Eq. 14.82 , we obtain

\/ § & . .
Virryajzgs = Y (Vi + Vi irrsantissogs, i # (14.83)
~&
where
Gi1T+ar = (XilTta—y) + (XiT4y744), (14.84)
Gig+pay = (Xigrs—sq) + (Xigprts)- (14.85)

14.3.3 Diagonal hybridization with density-density on-site

interaction
Self consistency equation

When the hybridization is diagonal and the on-site interaction is a density-density
interaction, there is no flavor change. Hence, flavor off-diagonal Green functions
vanish. The hopping Hamiltonian reads

Hyop = S VE" (L fia + 1L fia) - (14.86)
o
Due to the simple on-site interaction, the eigenstates of atomic Hamiltonian can be
found easily as |i,n,Z) = f;al .. .f;an|0>. In this basis the F' numbers of general
Hubbard model reduced to delta functions Fﬁ?mﬂ

= 07_o7 and = 0T4aTs

+1
F
where |i,m,Z + a) = f;a|i, m,T). This property with flavor conservation simplifies the

expression of Green functions and it is better not to keep track of number of particles.
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The fermion Green functions can be expressed as sums over the Green functions of

Hubbard operators,

G iwn) = Girtrajarad(ion), (14.87)
7
where
Cirrraigssr(t) = —~(Te Xtz (1) X7 7(0)). (14.88)

We approximate [X;7744, Hhop| by a linear combination of X7 744:

(Xi7T+a, Hhop| = ZYZ'IIWMJWXMJM- (14.89)
kT

Using the definition of the Green functions of Hubbard operator and Fourier
transform, we obtain

Y [iwn = (Guprzao — Eur))irbrx = Yirrrarcx+alGikkrajsa+aliwn)
kK (14.90)

= ({Xiz740, XjT4a7})-

Taking anticommutator the Eq. 14.89 with X; 74,7, we obtain

{[Xizz10, Hhopl, Xj 7407 )) '

YiTTtajgg+a = (14.91)
! ({Xjz7405 Xj7100})
Solving this equation gives the Y matrix.
Introducing matrix notation

Gl = GiTajgted (14.92)
Y{c;z}{kj} = YirrtokTT+a (14.93)

g ({[Xizz4a, Hnopl, Xjg4ar})
Yingn = 14.94
U7 ({Xizztor Xit4at DX 7740, XjT+0T}) ( )
Zingny = {Xarte Xjgrag}) (14.95)
= b077((Xizgazta) + (Xjz71)) (14.96)
b€l = (€40 — €5)6ij017 (14.97)
Lirarosy = 0ijorg, (14.98)

the Eq. 14.90 can be written in matrix form as

[Go') = 2 [iwal — be] - Y, (14.99)
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or

Z
Gy = = , 14.100
wpl —be, — Y, ( )

where the division implies matrix inversion.
The expectation value of a 0-particle Hubbard operator can be found from a

corresponding Green function at 7 = 0:

(Xizg) = —Girysises(T = 0), (14.101)

where § is a flavor not included in |¢Z) state. To complete a self consistency equation

for the Green functions of Hubbard operators, we need to express Y matrix in terms

of the Green functions. For site diagonal ¥ matrix, this expression can be obtained
without further approximation. For site off-diagonal Y matrix, we need to take a
DMFT Imit to express the Y matrix in terms of the Green functions of Hubbard

operators. In DMFT limit, the site off-diagonal ¥ matrix is given by
Yingn = (V5T + Ve, i#5. (14.102)

The site diagonal ¥ matrix is given by

<{[XiII-|—oz7 Hhop]7 Xi.7+oz.7}>

Y = , 14.103
BT ™ ((Xizzga, XizgoT N {Xi7740- Xigtas }) ( )
where
{[Xitz4as Hhopls Xigrar}) = =D Y 8714 (Vi] + Vi WXisanzra Xjocts)
v qC
+ Z Z‘SI+a.7+a+w VW + VW)< Xigivg Xjcctr)
v qC
+ YD bV + VI Xirparha— Xjectn)
v qC
= > > g (VY + VI Xizsz Xjce )
Jv qC
= YD brgarg oV + VI Xizz 40 X 4mc)
v qC
+ E Zéj-l"YI VW + VW)< 2.7+a.7+a+joC+wC>
v qC
+ YD bra (VT VI Xirag Xjegne)  (14.104)
v qC

- ZZ‘SIJ VW‘I'VWX Xigtaz+atyXjc+re)

v qC
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This expression for site diagonal Y matrix holds without approximation.

Derivation Site off-diagonal Y matrix
A straightforward calculation yields

({[Xir7+a> Hhop)s Xj7407])) = E(Vw F VWX itz X710 7)
+ Z VI VI XizTraon XjT+ad+s)

+ Z VW + VW (XiT4vT+0X; T4a—nT)

+ Z (VI 4+ VI X 240 X Thad +n)

(14.105)

Z VW + VW Xitzsain Xirsas)

E Vi + Vi WX g T oty Xy pag—)

Z VW + VW XiT T4 X T4at~nT)

Z (Vi + Vi N Xizrrra X 4ag—)-

In DMFT limit <XiII—I—osz.7—|—ﬁ.7> = <XiII—I—oz><Xj.7+ﬁ.7> and only the terms with

0-particle Hubbard operators survive.

({[Xiz740s Hhopl, Xj7t+a7}) = (V5 +VIONUXizz (X 77)
+ (V5 + VX (X 7raT+a)
+ (Vz?a + ‘/j?a)<XiI—|—ozI—|—a><ijj> (14.106)

+ (V3" + VI Xizpazra ) (XjT4aT+0)-
Arranging terms in the Eq. 14.106 , we obtain

{[Xizz40s Hhopl, Xj710}) = (V5 + Vi )aizatjga, ©# 7, (14.107)

where

G170 = (Xiz1) + (Xit4aTta)- (14.108)
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Therefore

Yooy = V5o + Vs (14.109)

14.3.4 SU(N)

Self consistency equation

For SU(N ), the fermion Green functions are flavor diagonal and independent of
flavors. Therefore we only need to find G'(;4)(jo) With a fixed a. Throught this

section, a means a pre-fixed favor. Using Hubbard operator the Green function can

be found by
Gliaygioy = 0 »_ ~(Tr Xt (M X £ (0)), (14.110)
mn IT.J

where 7 and J scan CY~! m-particle state without particle @ and CV=! n-particle
state without particle a, respectively.
We need to see the Hubbard operator Green function as a matrix. The appropriate
index consists of site ¢ and number of particles n. The Hubbard operators under

consideration are of type Xgﬁ_z:l and X;f'alzm. The matrices under consideration are

Glmpiny(7) = ) (T XEFE ()X £(0)), (14.111)
T
Diimypgny = Sigbmn Y {XFTHL XGTITY) (14.112)
T

befimpfny = Sijbmn(€ar =€) (14.113)
X7 s Hnopl, X770

Yimpny = 2ol Lite hpiﬂrfj*” b (14.114)
ZI<{XjII+a7XjI+aI}>

It is convenient to introduce new notations lem‘i'l and sz"'lm, where

DA P A NS Sl S e (14.115)
T T
The Green function reads
twpl — §é
({x et xmttmyy

[G™ iy i (H0n) = 8i36mn = Yimy(in}s (14.116)

where
V. o <{[Ximm+17Hh0P]vX]n+1n}>
{zm}{]n} <{)(imm-|—17 )(im—l—lm}><{)(]7jm-|—17 X]n-l—ln}> .

(14.117)
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The renormailzation constant ({X™™+1 X1} can be found from site-diagonal

Habbard operator Green function by

(XL XYY = ORI + (X)), (14.118)

where K is a m-particle state without the particle a. For a state K, The expectation

values (X77) and (XML Y are

IK+aK+a
m+1m 1
<X2}C—|—I——loz}C-I|——1a> CN 1 G{Zm—l—l}{zm—l—l}(T =0t ) (14120)
m+1

For site off-diagonal Y, it can be shown that
Yiimytiny = Vij + Vi, 17 J. (14.121)

For site diagonal Y, we need to evaluate ({[X™™ ! Hyp], X 1"} using

X ol XIFY) = =D bmgan(Vig + Vi)nG gy iny (7 = 0F)
Jq

Y St (Vi + Vi) (N = 0= 1)G gy iy (7 = 07)
Jq

+ Y bmn(Vij + Vi) ()G gy inp(7 = 0T)
Jq

= D bun(Vig + Vi) (N = n = 1)G o7 = 0F)
Jq

+ Z5m+1n(vm‘ + Vi) (N —m = 1)G iy gjor(7 = 07)
Jq

N bt (Vi + VimG iy iy (7 = 0%) (14.122)
Jq

= ) (Vi + Vi) (N = m)G i1y gy (T = 0F)
Jq
Jq

The fermion Green function G ;41(;ja1(iw,) can be found by summing all the Hubbard

operator Green function:

Giay (jap(iwn) = D Gimy(jn}(iwn) (14.123)

mn
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As an example, we consider N = 2 and U = oo case. Then the fermion Green function

G iy {jo}(T), where 0 = %1 is the flavor index, is

Glio}jor = —{TrXipo(T)X50(0)) = Grioyjoy(7). (14.124)

The Hubbard operator Green function can be found by Fourier transform of
G{io}{jo}(iwn) that can be found by inverting [G_l]{io}{jo}(iwn) given by

_ . Wy, — €, -
(G 1]{i0}{j0}(lwn) = W%‘ - Y{Z’O}{]‘O}- (14.125)

The components of Y{io}{jo} matrix are

Yimygmy = (Va+ Vi), i# 3.
; (Vij + Vi (X7°X77)
Y{ZO}{ZO} = - Z <X00 _I_ Xgrcr><XQO —|-]X»UU> .

J

Derivation of Y matrix

The Y matrix for SU(N) case can be calculated from the Y matrix for diagonal
hybridization with density-density on-site interaction case taking flavor independent
hopping amplitudes.

In DMFT limit, summing <{[XZ;-?_I_+;, Hhop],X;}'_ll_ZjH over CN=1 m-particle states 7

and Cé\f_l n-particle states [J we obtain

S X EEE Hopl, XIE 1 = DN (Vi + Vi X B o sH X o)

TJ 77 8
S Vi Vi X e o WX )
g p
+ 2D Vi + Vi X (X ) (14.126)
g p
O Vi Vi (XX ) i
g p

Since (Xxr) = dxc(Xke), we see that the summation over 5 in the Eq. 14.126 is
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restricted to 3 = a. The Eq. 14.126 now reads

S HIXFEE Huopl, XTE2 1) = D (Vi + Vil XFFNX T )

IJ 7
+ > (Vi + Vi XX )
IJ
D (Vi ViXEREI(GS ) (1420
IJ
D Vi + Vi X B (X ). i #
IJ

Summing over Z and J yields

I, Hiopl, X7H"}) = (Vi + Vi) ({7 L XTI ) (XL X, i .
(14.128)

Dividing the Eq. 14.128 by <{Ximm+1,Xfl+1m}><{Xf”+l,Xf+1”}>, we obtain
<{[Xgnm+17Hh0p]vX;}—ln >

Yim n = mm m m nn n n
L m) = X A (A Y e
= Vi+ Vi, i#] (14.130)

(14.129)

Summing <{[XZ§L-?_I_+;, Hop), Xf}igjb of diagonal hybridization with density-density

on-site interaction case over CY =1 m-particle states 7 and O ~! n-particle states 7

with favor independent hopping amplitudes, we obtain

X Hnopl XY = =300 D S Vig + Vidk Xl X1 5)
I 4B qC
+ 3D b (Vi Vi (X XL
J jB#a qC
i3 i3 1
+ E E E 6mn(‘/2] + ‘/]i)<XiI—|:|—1aI+a—ﬁX](¥gg+ﬁ>
I 38 qC
= DD Vi Vi (XX L)
I 38 qC
- E z E dmy1n(Vij + Wi)<Xg'?++ﬁlX;;jqﬁC>
T jB#a qC
mm 1
+ Z Z E Omn+1(Vij + Vji)<Xz'.7+-clv—.17+a+ﬁX;C++%C>
J  jo qC
20002 bV H VXXX ) (14131
I 8 qC

- Z Z Z Omn(Vij + Vji)<X¢Iiijii+ﬁX;C+%C>‘
I 48 qC
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Using a SU(N) property that <X%"_'|_1§IX%2'_|1_5> is independent of Z and C, the

summation in the Eq. 14.131 over Z, J and 3 can be carried on to yield

X Mgl XPFE) = =3 03 ) b (Vig + Vi (XX L)
K 7 qC

+ E E E 6mn—|—1(‘/2] + ‘/]Z)(N -—n- 1)<in}C+—|}2}CX]qgg——ll—a>
K j qC

NS b (Vi Vi X X L)
K j qC

= YD (Vi + Vi) (N = = D(XRR XL
K j qC

- Z E E 6m—|—1n(‘/2] + ‘/]Z)(N —m-= 1)<XZT}rLCT}giizX]qC-I——|}iC>
K j qC

+ YD B (Vi + Vim{ XERTAX L) (14.132)
K 7 qC

DTS bV Vi) (N = m)(X G XA )
K ¢ qC

= 220> bl Vi Viad(m + D(XGREEXIE ),
K j qC

where K restricted to states with corresponding number of particles without particle

(a8

Rewriting the Eq. 14.132, we obtain

(X7 Hyop), X)) = —Zém+1n(%]« + ‘/ﬁ)n<X?+1”X}‘m+l>
Jq

Y Saa (Vi + Vi) (N = m = (X4 20
Jq

+ D bn(Vig + Vi XX 1T
Jq

- Zémn(% + Vi )(N —n — 1)<X?+1”qu+1>
Jq

- Zémﬂn(% + Vii)(N —m — 1)<X3”m+1X}1+1q>
Jq

Y b (Vi + Vi ym (XX TEE)
Jq

+ ) (Vi 4 Vi) (N = m) (X1 X T (14.133)
Jq

- Zémn(% + Vi) (m + 1)<XZ”+M+2X5+”>-
Jq

Dividing the Eq. 14.133 by <{Ximm‘|'1,Xgn‘|'1m}><{X27m‘|'1,Xg”“"l”}>7 we obtain site
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diagonal Y matrix:

o AP Hugl XM
{im}{jn} — <{)('mm-|—17 )(m—l—lm}><{)(nn-|—17 X@+1n}> ’

(14.134)

An explicit expression of ({[X" ! Hy.p], X T} in terms of site off-diagonal

Green function is

X Hiopl XY = = 3 bmgn(Vij 4 Vi) nGigy iy (m = 0F)
Jq

+ Z 6mn+1(‘/ij + ‘/]2)(N -n- 1)G{]q}{m}(7— = 0+)
Jq

+ Y mn(Vij + Vi) nG gy giny(m = 01)
Jq

= > bun(Vig + Vi) (N = 1= DG gy pimy (7 = 0%)
Jq

+ Y bmatn(Vig + Vi) (N = m = 1)G iy gy (T = 0T)
Jq

N bt (Vi + Vi)mG iy iy (7 = 0F)  (14.135)
Jq

= D 8mn(Vi + Vi) (N = m)G (i1 oy (7 = 0T)
Jq

+ Y S Vig + Vi) (m + DG iy iy (7 = 0F).
Jq

14.4 Impurity Model

14.4.1 General On-site Interaction

The Hamiltonian of the model reads
H=H,om+ Z €kozczackoz + Z Vkaﬁ (fctckﬁ + Czafﬁ) ) (14.136)
ko ka3
The Hubbard operators are defined similarly to that of atomic case except that the
operators act as the identity operator on the band states. The Green functions of
fermion operators can be expressed as sums over the Green functions of Hubbard
operators,

. amm n+ln ~mm+ln+lng
Gapliw,) = E E Fry +1F£’L GIJI«’:IJ—LI i (iwn), (14.137)
milJ nJK
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where
G (1) = ~(T X [ () X (0) (14.138)

The Greend functions of Hubbard operators in Eq. 14.137 can be obtained by taking

Fourier transform from the following equation,

8 mim n n mm n n 8 mm n n
EGIJK—IJ_LI i (r) = _6(T)<TTXIJ +1(0)XKJZI (0)) - <TTEXIJ +1(7')XKJZI (0))

= =0 {XTTL XL — (LX), Harom( 7)1 XLT(0))

= —o({XTTL X = (engrs — e (TX T () XE(0)

T X (), B DIX 7 (0)). (14.139)
In static limit, we approximate [X}Zm‘i'l, Hy,yp) by linear combination of Xﬁff'l and
Chat
(X7 Huge] = Y0 YR X 4+ Y AT e (14.140)
nKL ko

Then the Fq. 14.139 reads

8 mm n n mm n n mm n n
EGUK? ) = —o(UXTL XY = (g — enn) G T (T)
mm+1pp+1 +1n+1n
N Z Y GhiNkL (T)
pMN
=Y AT Tk (1) X (0). (14.141)
ko

The coefficient matrices Yff}}”{zlmﬂ and AT};;I can be obtained by taking

commutator of the Eq. 14.140 with X}}'El” and cza, respectively,

mm n+1n mm-+1pp+1 +1 n+1n
XY Hu, X510 = 0 Yo gt X, (14.142)
pMN
X7 Hg)yeh ) = ATt (14.143)

To find a self-consistency equation for the Green function of Hubbard operator, we
need to know the Green function of a Hubbard operator and a band fermion (mixed
Green function). This Green function can be expressed in terms of the Green

functions of Hubbard operators. Taking time derivative of mixed Green function
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GEM = (Trerp(r)X7517(0)) , we have

n+1n n+1n 9 n+1n
5-Gant, = =8(T){ews, XET) = (Tro—ens(1)XE(0))

8 n n
= _<TTECW(T)XKEI (0))

—erp(Trera(T) XJL(0)) = VT £(1) X 57(0))

n+ln mm+1 mm n+1ln
= _GkaGkEIi'L - E VIEWFIWJ (TX77 ()X EE(0)
pmlJ

(14.144)

Taking Fourier transform of Eq. 14.144, multiplying hybridization amplitude Vkaﬁ ,

and summing over all the intermediate band states k and 3 yields

G iwn) = ) Aaqliwn) F7 T GTRA T (o), (14.145)
ymlIJ
where G (1) = —(T.Co(T)X 7MY and A, (iw,) = doks VBV [ (iw, — exp).

Using these equations, Eq. 14.141 reads after Fourier transform

(iwn, — (€ny10 — €nI))GTJT?(—IJ—:1n+1n

_ mm-+1 n+ln mm-+1pp+1 ~pp+1in+ln, -
=({X7TL XD+ Z Yiun' ' Gunkr (1)
pMN

mm+1 A : vpp+1 ~pp+lnting .
‘|‘E Z AT Dan(iwn) Fy v Gunvgr ().
ka ypMN

(14.146)

The equation 14.143 can be solved easily to

ATl = D oMN F&p]jf'lp({XEmH,Xﬁ}\lfp ). Then the equation 14.146 reads

(iw, — (€nt10 — €nI))GTJT?(—IJ—:1n+1n

_ mm-+1 n+1ln mm+1pp+1 ~pp+1n+lin
= <{XIJ 7XKL >‘|‘ Z YIJMN GMNKL
pMN
A ap+1p 8qq+1 mm41 p+1p qq+1n+1n
+ ZZ Z AcvﬁFMN FOP <{XIJ 7XMN }>G0PKL :
af qOP pMN

(14.147)



Introducing matrix notation

Glurnrxy =GRy "
Yiminosy = Vil "
f/{mIJ}{nLK} = <{[Xffm+lvﬂhyb]sz'Jiln>
Apminyexy = 9 2 BagFafy PFLE T (XL XERY)
afB pMN
Zimingnrry = (XL XET
= b (Or (XTE™) + 01 (X))
O€tminyinik}y = (€mt1J — €mI)0mndILésK
Loty nLky = Omnl1néjk,

the Eq. 14.147 can be written in matrix form as

(G = Z7 [iw,1 — 6e — A = Y]

or

7z
iwnl—ég—A—Y7

where the division implies matrix inversion.
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(14.148)
(14.149)
(14.150)

(14.151)

(14.152)
(14.153)
(14.154)

(14.155)

(14.156)

(14.157)

The expectation value of (X74™) can be found from a corresponding Green function at

7T =0:
(XT) = = > G i, e~ 0"

Wn

(14.158)

To complete a self consistency equation for the Green functions of Hubbard operators,

we need to express Y matrix in terms of the Green functions. The ¥ matrix is given
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by Y =Y Z71, where Y is given by
f/{mIJ}{nLI(} = 6mn-|—1 E (F}}?+1m<éryX?E—ln> - 6m+1an;fb+1m<C~v’yX}z{|—]1n>)
¥
b 3 (8o FRT X TE) — en F O X )
vy M
nn+1 ;5 mm mm41 ;5 mm
gt Y (Fgl FUCTX Ay — 6,1, (O X +1)>
7y

b 3 3 (S FIRTHCIX G — s BT HEEX )
vy M

(14.159)
where
~ n+ln A . mm+1 ~ymm+1n+ln, -
(CaXpi'™) = —Z Z Ao (iwn ) Fyfy " Ghrntr " (iwn), (14.160)
twn ymMN
~ nn A . m+1m ~m+1mnn .
<C;erLI+1>:Z E Awa(lwn)F]&N-I— Gy (iwn). (14.161)
iwn ymMN

14.4.2 Density-Density On-site Interaction

As seen from the atomic case, the eigenstates for density-density on-site interaction
case are |Z) = [[}_,4 fctk|0>, n=0,1,2,---, N. Introducing new notation

17 + o) = f1|Z), fermion Green function can be written as

Goplivwn) = Y G55 (iw,), (14.162)
IJ
where
GI(7) = (T X174 (7). X 745.7(0)). (14.163)

We approximate [X774q, Hhyb),

TT a
[X774as Hugpl = Y Yo X s + > Affers, (14.164)
7B kB
where
ALS = ({[X1z4as Hupls cf5}), (14.165)
KK
X174 Hyypls Xrao7}) = Y Yirgs (X ik Xiaa}). (14.166)

Ky



Using

Gagolivn) = Y DanGliw,),
Ky
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(14.167)

where G 75(7) = —(T:Co(T)X 7457(0)), a self-consistency equation for the Green

functions can be written down as

. KK
(iwn = (140 — 1)) Grrragisg = {X1Tye, Xg4873) + D Yirph Grxand+87

Ky

30 As([Xtrpas Xkt Georsgp

N6 KL

(14.168)

where Yz}-czﬁzw can be obtained by solving Eq. 14.166, which involves evaluating

H{[X17+0a> thb],Xj+ﬁj}> in terms of the Green functions.

Introducing matrix notation

Gizay(gsy = Gir+eg+s7
Yizayoy = Yiryd!
Yizayizsy = {[Xizzta, Hoypl, Xjris})
Aizoyzsy = Y Avpl{Xrrras Xxpox})
Ky

Zizayigsy = (U Xoz4a, Xg4sa))

= (017(Xig+p7+a) + d14a7+p(Xj17))
beirap(gpy = (€140 — €1)d1700p
Lizaygey = 0170ap,

the Eq. 14.168 can be written in matrix form as
(G = Z7 iw,1 — A — 6e - Y]
or

7z
_iwnl—A—(SG—Y7

where the division implies matrix inversion.

(14.169)
(14.170)
(14.171)

(14.172)

(14.173)
(14.174)
(14.175)

(14.176)

(14.177)

(14.178)
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The Y matrix is given by ¥ = Y Z~!, where Y is given by

Yizayiao) = Z (5I+a7+ﬁ+w<éwXIJ> - 6I+77<CWXJ+BI+a>)

+ E (5I—|—a.7+ﬁ CoX14v7) — 25I751+aM+w<éwX.7+ﬁM>)

M (14.179)
> (617(CIX 74 871017) — 674agra45(CT XIJ>)
+ E 671-7(CIX 7457 4a) Z5M+ﬂ5r+aj+ﬁ<é$XMj>) ;
M
where
(CoXzipr) ==Y Auy(iwn)Gggszrpr(ivn), (14.180)
wwn T
(CUXrr15) =YY Avaliwn) G aimrisr(ion). (14.181)
twy ’Yj
We extended the meaning of delta function to
S7rag = (T + a|lT) = £1,0. (14.182)

For example 67444p74+5+0 = —1.
14.4.3 Diagonal Hybridization With Density-Density On-site
Interaction

When the hybridization is diagonal, there is no flavor change. The off-diagonal Green

functions vanish. We concentrate only on diagonal Green functions.

Gooliwn) = Grrragias(ivn), (14.183)
17
where
G1r40g+67(T) = —(1: X1710(7), X 7407(0)). (14.184)

We approximate [X774q, Hhyb),

[X7740 Hugh) = Z YT X g rpa + Y Afckan (14.185)
ko
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where
AL = ({[X1r4as Hugh)s el 1), (14.186)
X OMH 7X o4
ygggte = Wz Muph Ag4eg)) (14.187)
({X1r40: X7tas})
Using
GaIa(iwn) = AaazG}%%+aj+aj(iwn)7 (14188)
K

where Go70(7) = —(T,Co(T)X 7107(0))(iw,), a self-consistency equation for the

Green functions can be written down as

(iwn — (er40 — €1)) Grrtagtod = {X1T4a Xaras}) + O YT Grxsagsas

K
+ Z A (X140, X110 ))GKKtaT+aT-
K

(14.189)

Introducing matrix notation
Gingrny = Grrtadtes (14.190)
Vi = Yoy (14.191)
Y{%a}{ja} = <{[XII-I—oz7 Hhop]7 X.7-I—oz.7}> (14192)
A?I}{j} = A({X1z4as X74az}) (14.193)
Zirygsy = ({Xorta. Xotag)) (14.194)
= r7({Xityazta) +(Xj11)) (14.195)
56?1}{j} = (740 —€1)017 (14.196)
1{1}{j} = (517, (14.197)

the Eq. 14.168 can be written in matrix form as
(G2 = 23 iwnl — —8eAy] = Y (14.198)
or
Zy

Gy = , (14.199)
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where the division implies matrix inversion.
The Y, matrix is given by Y, = Yachl, where Y, is given by

Vi =-2 (6IJ+W<CWXJ+WJ> — 874y 7 {C X Tt +a>)

~

+ E (6IJ<CWXI+WJ> - 6IJ<CWXI+aI+a—w>)
5

(14.200)
( (CIXTtozratn) + SThataalCl XII+w>)
~
-y (5.7-I—WI CIX 7vadtaty) + 617(CIXT w>)
~
where
(CoXtyor) = =YY Asaliwn)G 77 sarror(ivn), (14.201)
i T
(CIX1110) = D0 Avaliwn)G 77 yattor(icn). (14.202)
i T

14.4.4 SU(N)

For SU(N ), the fermion Green function is flavor diagonal and independent of flavor.

We concentrate only a diagonal Green functions with representative flavor a.

OZOZ an szn an (14203)
where
Gun(7) = = D AT XFANT), X FL5(0)). (14.204)
T

T and J scan CN~1 m-particle state without particle a and CN~1 n-particle state
without particle a, respectively.

It is convenient to introduce new notations lem‘i'l and sz"'lm, where

mm+l _ mm+1 m+lm _ m+1m
Xi - Z XzII—I—oz ’ Xz - Z X21_|_az . (14205)

T T

We approximate [ X"+ Hy],

(X7 Hygp) = Vi X" 4 A (14.206)
k
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where

Ang = (X" Hyg], el 1), (14.207)

{xX™mH, Hyyp], X103

Yn = 14.2
<{Xnn—|—17Xn—|—1n}> ( 08)
Using
Gotlivn) = Aua > GR5(iwn), (14.209)
K

where Go7(17) = —(T,Co(7) X1307(0))(iw,). A self-consistency equation for the Green

functions can be written down as

(iwn — (€™ — ™)) G {X L XN £ VoG (14.210)
l

+ Y AT XT L XTI G,. (14.210)
l

Introducing new notation A,,, = A% ({X™m+l X7m+1m) anq

Yiun = Yoo [({X 771, X7 H170Y the eq. 14.211 can be written in matrix form as

[G™Y = Z Y iw,1 —6e —A] - Y (14.212)

or

7z
G = - _ , (14.213)
wpl —be— A=Y

where the division implies matrix inversion.

The Y matrix is given by

C (6n+1m - 6nm))~/n(1) + (6n—1m - 6nm))~/n(2))

oS L XX, X)) S
v = (n 4 )Yt — (N —n— 1)Y,, (14.215)
V2~ pY, — (N — )Y, (14.216)

Yo = =T A(iw) Y Gupliw)e 0" (14.217)
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Appendix A

Pictures of Band Structures
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Figure A.7: The LDA Band structure. The direction of the wave vector moves from
I'X, through I'U and I'L, to I' K. The other sheets are directions between them. The
first sheet I'X shows accidentally degenerate five bands on the fermi surface. From
the nine sheets from I'X to I'L, the accidental DFSC states along a line on the fermi
surface can be seen. From the three sheets from I'X to I'B, the two pockets X5 and X5
can be identified. From the three sheets from I'F to I'H, the L neck can be identified.
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Figure A.8: The LDA+4U Band structure. The direction of the wave vector moves from
I'X, through I'U and I'L, to I' K. The other sheets are directions between them. The
first sheet I'X shows accidentally degenerate four bands off the fermi level. From the
nine sheets from I' X to I'L, we see that the accidental DFSC states of LDA along a line
on the fermi surface moves off the fermi level leaving no accidental degeneracy. From
the three sheets from I'X to I'B, We see that the two X, pocket is removed.



158

Vita

Imseok Yang

1989 - 1995 Attended Department of Physics, Seoul National Univer-
sity, Seoul, Korea.
Majors: Physics and Mathematics.

1993 Bachelor of Science in Physics.

1995 Master of Science in Physics.

1995 - present Graduate Studies in Physics, Rutgers University, New Brunswick,
New Jersey.

1996 - 2000 Teaching Assistant.

2000 - 2001 Graduate Assistant.

2001 Ph.D. in Physics.

Publications

2000 Impact of magnetic frustration on the Mott transition within a slave-

boson mean-field theory
I. Yang, E. Lange, and G. Kotliar, Physical Review , 41B , 11919
(2000).

2001 Importance of Correlation Effects on Magnetic Anisotropy in Fe and
Ni
I. Yang, S. Savrasov, and G. Kotliar , submitted to Physical Review
Letters.



159

References

[1] J. H. van Vleck, Phys. Rev. 52, 1178 (1937).

[2] H. Brooks, Phys. Rev. 58, 909 (1940).

[3] G. C. Fletcher, Proc. R. Soc. London 67TA, 505 (1954).

[4] J. C. Sloncewskij, J. Phys. Soc. Jpn. 17, Suppl. B (1962).

[5] M. Asdente and M. Delitala, Phys. Rev. 163, 497 (1967).

[6] E. I. Kondorskii and E. Straube, Sov. Phys.-JETP 36, 188 (1973).

[7] N. Mori, Y. Fukuda, and T. Ukai, J. Phys. Soc. Jpn. 37, 1263 (1974).
[8] P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).

[9] H. Eckardt, L. Fritsche, and J. Noffke, J. Phys. I 17, 943 (1987).

[10] G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, Phys. Rev. B 41, 11
919 (1990).

[11] A. Mackintosh and O. K. Andersen, in Flectronsat Fermi Surface, edited by M.
Springford (Cambridge University Press, Cambridge, England, 1980).

12] J. TI’}/ ) B. Johansson, 0. EI’ikSSOIl7 and J. M. VVlHlS, PhyS Rev. Lett. 15, 2871
gg

[13] H. J. F. Jansen, J. Appl. Phys. 67, 4555 (1990).
[14] G. Schneider, R. P. Erickson, and H. J. F. Jansen, J. Appl. Phys. 81, 3869 (1997).

15] A. Geor es, G. Kotliar, W. Krauth, and M. Rozenberg, Rev. Mod. PhyS 68, 13
g

[16] Strong Correlations in electronic structure calculations, edited by V. I. Anisimov
(Gordon and Breach Science Publishers, Amsterdam, 2000).

[17] L. Nordstrom and D. Singh, Phys. Rev. Lett. 76, 4420 (1996).
[18] G. Unimin and W. Brenig, cond-mat/9905039 (1999).

[19] W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965).

[20] O. Gunnarson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).
[21] O. K. Andersen, Phys. Rev. B 12, 3060 (1975).

[22] D. D. Koelling and B. N. Harmon, J. Phys. C: Solid State Phys. 10, 3107 (1977).



160

[23] V. L. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).

[24] V. 1. Anisimov, F. Aryastiawan, and A. I. Lichtenstein, J. Phys.: Condensed Matter
9, 767 (1997).

[25] B.Brandow, Adv. Phys. 26, 651 (1977).

[26] S. Savrasov and G. Kotliar, Phys. Rev. Lett. 84, 3670 (2000).

[27] S. Halilov and et al., Phys. Rev. B 57, 9557 (1998).

[28] A. L. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 12, 3060 (1975).

[29] 1. Y. Solovyev, A. I. Liechtenstein, and K. Terakura, Phys. Rev. Lett. 80, 5758
(1999).

[30] M. R. Pederson and S. N. Khanna, Phys. Rev. B 60, 9566 (1999).
[31] S. Y. Savrasov, Phys. Rev. B 54, 16470 (1996).

[32] S. Froyen, Phys. Rev. B 39, 3168 (1989).

[33] M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989).

[34] M. B. Stearns, in Landolt Bérnstein New Series, edited by K. H. Hellewege and
0. Madelung (Springer-Verlag, Berlin, 1987), Vol. III.

[35] M. Katsenelson and A. Lichtenstein, J. Phys. Cond. Matt. 11, 1037 (1999).
[36] M. Katsenelson and A. Lichtenstein, Phys. Rev. B 61, 8906 (2000).

[37] C.S. Wang and J. Callaway, Phys. Rev. B 9, 4897 (1973).

[38] N. F. Mott, Philos. Mag. 6, 287 (1961).

[39] S. A. Carter et al., Phys. Rev. B 48, 16841 (1993).

[40] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
[41] F. Gautier et al., Phys. Lett. A 53, 31 (1975).

[42] S. Sudo, J. Magn. Magn. Mater. 114, 57 (1992).

[43] W. F. Brinkman and T. M. Rice, Phys. Rev. B 2, 4302 (1970).

[44] M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).

[45] M. C. Gutzwiller, Phys. Rev. 137, A1726 (1965).

[46] G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett. 57, 1362 (1986).

[47] G. Kotliar, cond-mat/9903188.

[48] R. Chitra and G. Kotliar, cond-mat/9811144.

[49] G. Kotliar and S. Y. Savrasov, To be published .



[50] M. J. Rozenberg, Phys. Rev. B 55, R4885 (1997).

[61] S. Y. Savrasov, D. Villani, and G. Kotliar, Private Communication .

[52] R. Fresard and G. Kotliar, Phys. Rev. B 56, 12909 (1997).

[53] J. Buenemann, W. Weber, and I'. Gebhard, Phys. Rev. B 57, 6896 (1998).

[54] W. Nolting and W. Borgiel, Phys. Rev. B 39, 6962 (1989).

[55] M. Potthoff, T. Wegnerand, and W. Nolting, Phys. Rev. B 55, 16132 (1997).

161



