
Problem Set 1: Semiclassical quantization of molecular vibrations

As an example combining several basic mathematical operations, we con-
sider the problem of describing a diatomic molecule such as O2, which consists
of two nuclei bound together by the electrons that orbit about them. Since
the nuclei are much heavier than the electrons we can assume that the lat-
ter move fast enough to readjust instantaneously to the changing position of
the nuclei (Born-Oppenheimer approximation). The problem is therefore re-
duced to one in which the motion of the two nuclei is governed by a potential
V , depending only upon r, the distance between then:
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The vibrational states of relative motion, with energies En, are described
by the bound state solutions, ψn(r), of a one-dimensional Schroedinger equa-
tion, [
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]
ψn = Enψn.

Here, m is the reduced mass of the two nuclei.
Our goal in this example is to find the energies En, given a particular

potential. This can be done exactly by solving the differential eigenvalue
equation (1.17). However, the great mass of the nuclei implies that their mo-
tion is nearly classical, so that approximate values of the vibrational energies
En can be obtained by considering the classical motion of the nuclei V and
then applying “quantization rules” to determine the energies.

Confined classical motion of the internuclear separation in the potential
V (r) can occur for energies −V0 < E < 0. The distance between the nu-
clei oscillates periodically (but not necessarily harmonically) between inner
and outer turning points, rin and rout. During these oscillations, energy is
exchanged between the kinetic energy of relative motion and the potential
energy such that the total energy,

E =
p2

2m
+ V (r),

is a constant (p is the relative momentum of the nuclei). We can therefore
think of the oscillations at any given energy as defining a closed trajectory
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in phase space (coordinates r and p) along which Eq. (1.18) is satisfied,
as shown in the lower portion of Figure 1.3. An explicit equation for this
trajectory can be obtained by solving (1.18) for p:

p(r) = ±[2m(E − V (r))]
1
2 .

The quantization rules state that, at the allowed energies En, the action
is a half-integral multiple of 2π. Thus, upon using (1.19) and recalling that
the oscillation passes through each value of r twice (once with positive p and
once with negative p), we have
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where n is a nonnegative integer. At the limits of the integral, the turning
points rin and rout, the integrand vanishes.

It is useful to define the dimensionless quantities
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, x =
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a
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,

The quantity γ is a dimensionless measure of the quantum nature of
the problem. In the classical limit (h̄ small or m large), γ becomes large.
By knowing the moment of inertia of the molecule (from the energies of its
rotational motion) and the dissociation energy (energy required to separate
the molecule into its two constituent atoms), it is possible to determine from
observation the parameters a and V0 and hence the quantity γ. For the H2

molecule, γ = 21.7, while for the HD molecule, γ = 24.8 (only m, but not
V0, changes when one of the protons is replaced by a deuteron), and for the
much heavier O2 molecule made of two 16O nuclei γ = 150. These rather
large values indicate that a semiclassical approximation is a valid description
of the vibrational motion.

The goal of this problem set is to find all the (semiclassical) bound iiiis-
tates for a given value of γ.

Exercise 1.7 One of the most important aspects of using a computer
as a tool to do physics is knowing when to have confidence that the pro-
gram is giving the correct answers. In this regard, an essential test is the
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detailed quantitative comparison of results with what is known in analyt-
ically soluble situations. Modify the code fo use a parabolic potential for
which the Bohr-Sommerfeld quantization gives the exact eigenvalues of the
Schroedinger equation: a series of equally-spaced energies, with the lowest
being one-half of the level spacing above the minimum of the potential. For
several values of γ, compare the numerical results for the case with what you
obtain by solving analytically.

Exercise 1.8 Another important test of a working code is to compare its
results with what is expected on the basis of physical intuition. Restore the
code to use the Lennard-Jones potential and run it for γ = 50. Note that, as
in the case of the purely parabolic potential discussed in the previous exercise,
the first excited state is roughly three times as high above the bottom of the
well as is the ground state and that the spacings between the few lowest
states are roughly constant. This is because the Lennard-Jones potential is
roughly parabolic about its minimum. By calculating the second derivative
of V at the minimum, find the “spring constant” and show that the frequency
of small-amplitude motion is expected to be

h̄ω

V0
=

6× 25/6

γ
≈ 10.691

γ

Verify that this is consistent withthe numerical results and explore this agree-
ment for different values of γ. Can you understand why the higher energies
are ore densely spaced than the lower ones by comparing the Lennard-Jones
potential with its parabolic approximation?

Exercise 1.9 Invariance of results under changes in the numerical algo-
rithms or their parameters can give additional confidence in a calculation.
Change the tolerances for the turning point and energy searches (line 120)
or the number of Simpson’s rule points (line 130) and observe the effects on
the results. Note that because of the way in which the expected number of
bound states is calculated (lines 1190-1200), this quantity can change if the
energy tolerance is varied.

Exercise 1.10 Replace the searches for the inner and outer turning points
by the Newton-Raphson method or the secant method. Replace the Simp-
son’s rule quadrature for s by a higher-order formula (Eqs. (1.13a) or (1.13b))
and observe the improvement.
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Exercise l.ll For the H2 molecule, observations show that the depth of
the potential is V0 = 4.747eV and the location of the potential minimum is
rmin = 0.74166Å. These two quantities, together with Eq. (1.23), imply a
vibrational frequency of

h̄ω = 0.492V0 = 2.339eV,

more than four times larger than the experimentally observed energy differ-
ence between the ground and first vibrational state, 0.515 eV. The Lennard-
Jones shape is therefore not a very good description of the potential of the
H2 molecule. Another defect is that it predicts 6 bound states, while 15
are known to exist. A better analytic form of the potential, with more pa-
rameters, is required to reproduce simultaneously the depth and location of
the minimum, the frequency of small amplitude vibrations about it, and the
total number of bound states. One such form is the Morse potential

V (r) = V0[(1− e−β(r−rmm))2 − 1],

The Morse potential has a minimum at the expected location and th param-
eter β can be adjusted to fit the curvature of the minimum to the observed
excitation energy of the first vibrational state. Find the value of β appro-
priate for the H2 molecule, modify the program above to use the Morse
potential, and calculate the spectrum of vibrational states.
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