
Solution to Problem Set 2

A system of fermions in the presence of impurities with concentration ni = N/V is described
by the Hamiltonian,

H =
∑
k

εka
†
kak +

∫
dxU(x)ψ†(x)ψ(x) (1)

where U(x) =
∑
i V (x − Xi) is the array of potentials due to impurities located at random

positions Xi. The Fourier transform of the field operator is,

ψ(x) =
1√
V

∑
k

eikxak

and that of the impurity potential V (x) is,

V (q) =
∫
dxe−iqxV (x)

The Hamiltonian can be rewritten as

H =
∑
k

εka
†
kak +

1

V

∑
q

V (q)ρq
∑
p

a†p+qap (2)

where ρq =
∑
i e
−iqXi, is a function of the random variables Xi. We have to perform ensemble

average over the random positions. This makes the Hamiltonian translationally invariant and
therefore tractable. For a typical sample the ensemble average is justified only if the probability
distribution over the ensembles is sharply peaked. This condition is satisfied in the limit of
weak disorder. The simplest ensemble average (with uniform weight) is defined as,

F =
N∏
i=1

1

V

∫
d3XiF (X1, . . . , XN) (3)

Then,

ρq =
N

V

∫
d3Xe−iqX = Nδq,0 (4)

This average will appear in the first order self energy diagram. For the second order term we
have,

ρq1ρq2 = N2δq1,0δq2,0 +Nδq1+q2,0

where we have approximated N(N − 1) by N2, assuming N to be large. For the calculation of
self energy we need,

ρqρ−q = N2δq,0 +N (5)

The first term on the right side produce second order improper self energy diagram, which can
be disregarded. The second term will be relevant for second order proper self energy diagram.

In the Keldysh formalism Green’s function G and self energy Σ are matrices defined as,

G =

[
Gt G<

G> Gt̃

]
, and Σ =

[
Σt Σ<

Σ> Σt̃

]
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Dyson’s equation in frequency-momentum space takes the form,

G = G0 +G0σ3Σσ3G (6)

where σ3 is the Pauli matrix

(
1 0
0 −1

)
. Defining G̃ = Gσ3, we can rewrite the above equation

as
G̃ = G̃0 + G̃0Σ̃G̃ (7)

So, the Feynmn rules to evaluate the diagrams are best written in terms of G̃ and Σ̃. Thus, a
single line denotes the free propagator iG̃0, the scattering vertex represents −iV (q)ρq

V
, which has

to be averaged according to equation (3). The self energy diagram gives −iΣ̃. Then, the first
order self energy diagram, after the impurity average, yields,

−iΣ̃(k) = −iN
V
V (q = 0)

Σt(k) = ni

∫
d3xV (x)

Σt̃(k) = −ni
∫
d3xV (x) (8)

To first order there is no contribution to Σ< and Σ>. Then, ΣA = Σt − Σ> = Σt, and
ΣR = Σt − Σ< = Σt. Also ΣK = Σ< + Σ> = 0. Also to be noted is that the first order
contribution to self energy is constant, and it leads to a simple shift in the energy levels of the
free theory. Therefore, this contribution is of no physical interest.

The second order proper self energy diagram, after impurity agerage, gives,

−iΣ̃(k) =
N

V 2

∑
p

(−iV (p− k))(−iV (k − p))(iG̃(p)) (9)

To get a closed form expression let us assume a short range potential, namely, V (x) = V0δ(x).
Since,

Gt(k, ω) =
1− f(εk)

ω − εk + iη
+

f(εk)

ω − εk − iη

= P
1

ω − εk
− iπδ(ω − εk)(1− 2f(εk))

from equation (9) we get,

Σt(k, ω) =
niV

2
0

V

∑
p

{
P

1

ω − εp
− iπδ(ω − εp)(1− 2f(εp)

}

We define density of states as,

ρ(ε) =
1

V

∑
p

δ(ε− εp) (10)
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then, the above equation can be rewritten as,

Σt(k, ω) = niV
2

0

{
P
∫ ∞
−∞

ρ(ε)dε

ω − ε − iπρ(ω)(1− 2f(ω))

}
(11)

Evaluation of the remaining self energies from equation (9) is on similar lines, and we get,

Σt̃(k, ω) = −niV 2
0

{
P
∫ ∞
−∞

ρ(ε)dε

ω − ε + iπρ(ω)(1− 2f(ω))

}
Σ>(k, ω) = −i(1− f(ω))2πρ(ω)niV

2
0

Σ<(k, ω) = if(ω)2πρ(ω)niV
2

0 (12)

And from the definition of ΣR and ΣA we get,

ΣR = niV
2

0

{
P
∫ ∞
−∞

ρ(ε)dε

ω − ε − iπρ(ω)

}

ΣA = niV
2

0

{
P
∫ ∞
−∞

ρ(ε)dε

ω − ε + iπρ(ω)

}
(13)

Also
ΣK = −i(1− 2f(ω))2πρ(ω)niV

2
0 (14)
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