
Solution to Problem Set 4

A spinless one dimensional electron gas of right movers is described by the Hamiltonian,

H0 =
∑
k

ka†kak =
∫
ψ†(x)

∂

i∂x
ψ(x)

The electron gas is interacting with a deep core electron (a single degree of freedom) described
by,

H1 = Eff
†f

The interaction between the conduction electrons and the f level is given by,

H2 = vψ†(0)ψ(0)
(
f †f − 1

)
= h2

(
f †f − 1

)
where h2 = v

L

∑
k,k′ a

†
kak′ .

1. First we will bosonize the fermionic degrees of freedom corresponding to the conduction
electrons. For this we define the density operator, ρ(q) =

∑
k a
†
k+qak, and notice that for

large cutoff the density operators satisfy the commutation relation,

[ρ(q), ρ(−q′)] = −
(
q′L

2π

)
δq,q′ (1)

Thus, we can replace the density operators by bosonic operators defined by,

ρ(q) =

√
qL

2π
b†q, q > 0

ρ(−q) =

√
qL

2π
bq, q > 0 (2)

so that the above commutation becomes the cannonical commutation relation of the
bosonic degrees of freedom.

Now we examine the commutation relations between the density operators and the Hamil-
tonian H0. Again, for large values of the cutoff one can show

[H0, ρ(q)] = qρ(q)

[H0, ρ(−q)] = −qρ(−q)

so that the Hamiltonian can be expressed as,

H0 =
2π

qL

∑
q>0

ρ(q)ρ(−q)

or, in terms of the bosonic variables, as,

H0 =
∑
q>0

qb†qbq (3)
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The Fourier transform of the density operator is defined as ρ(x) =
∑
q e

iqxρ(q), and using
eqn(2) it can be expressed in terms of the bosonic operators as,

ρ(x) =
1

L

∑
q>0

√
qL

2π

(
b†qe

iqx + bqe
−iqx

)

Then we have,

ψ†(0)ψ(0) = ρ(x = 0) =
1

L

∑
q>0

√
qL

2π

(
b†q + bq

)
Thus, the full Hamiltonian can be written as,

H =
∑
q>0

qb†qbq + Eff
†f + v

(
f †f − 1

) 1

L

∑
q>0

√
qL

2π

(
b†q + bq

)
(4)

2. For convenience we first solve part (c).

We want to find a canonical transformation U that transforms H0 into H0 − h2, i.e.
U †H0U = H0 − h2. We can write the unitary operator U as eiA, where A is a hermitian
operator. Expanding eiAH0e

−iA we find that, for each q mode we want i
[
A, qb†qbq

]
=

v
L

√
qL
2π

(
b†q + bq

)
, and

[
A,
[
A, qb†qbq

]]
to be a constant. This is identical to solving the

problem of the displaced harmonic oscillator. The form of A that satisfies the above
conditions is i

∑
q>0

√
2π
qL

(
b†q − bq

)
. Thus, we identify A to be of the form αθ(0) , where

α is a constant and θ(x) is the canonical conjugate operator to ρ(x) , and is given by,

θ(x) = i
∑
q>0

√
2π

qL

(
b†qe

iqx − bqe−iqx
)

It is easy to find α, and we finally have,

U = ei
v
2π
θ(0) (5)

The constant
[
A,
[
A, qb†qbq

]]
is interesting to calculate since it will eventually give shift in

the f level energy (i.e. self energy correction). The final result for the unitary transfor-
mation is,

U †H0U = H0 − h2 − δ (6)

where δ = v2

4π
.

3. Now we look at part (b).

Since
[
f †f,H

]
= 0, we can describe the eigenstates of the Hamiltonian when f †f = 0,

and when f †f = 1. In the f †f = 1 sector, the Hamiltonian is H0 + Ef . The eigenstates
are those of a free electron gas, and the eigenvalues are those corresponding to the free
electron eigenstates plus the constant energy Ef .
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In the f †f = 0 sector, the Hamiltonian is H0 − h2. Since H0 and H0 − h2 are connected
by a canonical transformation, the eigenstates of the latter are of the form U† |φ 〉 for
every eigenfunction |φ 〉 of H0. The corresponding eigenvalue remains the same except
without the term Ef .

Since Ef << 0, the ground state of the system is the filled Fermi sea plus the f level
occupied. We can denote it as | 0 〉 = |FS 〉 ⊗ | 1 〉.

4. The Green’s function of the heavy hole is given by,

G(t) = 〈 1 | ⊗ 〈FS | eiHtf †e−iHtf |FS 〉 ⊗ | 1 〉
= eiEf t〈FS | eiH0te−i(H0−h2)t |FS 〉
= ei(Ef−δ)t〈FS | eiH0tU †e−iH0tU |FS 〉
= ei(Ef−δ)t〈FS | e−i v2π θ(t)ei v2π θ(0) |FS 〉 (7)

where θ(t) is given by,

θ(t) = i
∑
q>0

√
2π

qL

(
b†qe

iqt − bqe−iqt
)

To solve for the expectation value in eqn(7) we use the result that eAeB = eA+Be
1
2

[A,B] for
[A,B] commuting with A and B. We also note that in terms of the bosonic variables the
Fermi sea is described by the absence of any excitation, i.e. bq |FS 〉 = 0. Finally we get,

G(t) = ei(Ef−δ)te−(
v

2π )
2∑

q>0(
2π
qL)(1−e−iqt) (8)

The q sum is converted into an integral, and for large t we have,

∫ Λ

0
dq

1− e−iqt
q

∼
∫ Λ

1/t

dq

q
∼ ln(Λt)

so that we get the final result as,

G(t) =
ei(Ef−δ)t

(Λt)α
2 (9)

where α = v
2π

.

We note that in the absence of the interaction term the Green’s function would be of
the form eiEf t , i.e. it would represent undamped hole propagation. But the effect of
the interaction is to give a power law decay of the Green’s function (in Fermi liquid
theory fermionic propagators have exponential decay), whose exponent depends on the
interaction strength. This nonanalytic effect of the interaction cannot be obtained by an
usual perturbative expansion in the interaction term. There is also a self energy correction
to the f level due to interaction.
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5. The Fourier transform of the Green’s function is given by,

G(ω) =
∫ ∞

0
dtG(t)e−iωt

Fourier transform of a power law is a power law once again, and we have the result,

G(ω) ∼ 1

(ω − Ef + δ)1−α2 (10)

G(ω) is the density of states for the f electron. In the absence of interaction it was a delta
function peaked around Ef . With the interaction, it has a power law divergence around
(Ef − δ). The spread in the density of states is due to interaction with the conduction
electrons.
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