
Solution to Problem Set 3

We will consider a system of fermions interacting via a short range two body force with
potential V (r). The free part of the Hamiltonian is given by,

H0 =
∑
k

εka
†
kak (1)

and the interacting part (which will be treated in perturbation theory) is given by,

H1 =
1

2

∫
drdr′V (r − r′)ψ†(r)ψ(r)ψ†(r′)ψ(r′)

which in second quantized notation can be written as,

H1 =
1

2V

∑
k,k′,q

V (q)a†k+qaka
†
k′−qak′ (2)

The Fourier transform of the potential is defined as,

V (r) =
1

V

∑
q

eiqrV (q) (3)

1. To first order in perturbation, self energy corrections are given by the Hartree and the
Fock terms.

Σ1(p, ω) = −iV (0)

V

k∑∫ dΩ

2π
G0(k,Ω)eiΩη + i

1

V

∑
k

V (p− q)
∫ dΩ

2π
G0(k,Ω)eiΩη

= nV (0)− 1

V

∑
k≤kf

V (p− k) (4)

From the definition of effective mass,

pf
m?

=
∂ε̃p
∂p
|p=pf

we find that the Hartree term does not change the quasiparticle mass. If the interaction
is momentum dependent, the Fock term renormalizes the mass to give,

pf
m?

=
pf
m
− 1

V

∑
k≤kf

∂V (p− k)
∂p

|p=pf (5)

As an aside we will calculate the self energy using perturbation theory and Wick’s theorem
(i.e. not use diagrams and Green’s function), and rederive eqn (4). To calculate energy
upto first order in perturbation we need only the zeroth order wavefunctions. Then, the
energy of the interacting Fermi sea is given by,

E0 = 〈φ0 | H0 |φ0 〉+ 〈φ0 | H1 |φ0 〉
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and the energy of the one quasiparticle state is given by,

Ep = 〈φ0 | apH0a
†
p |φ0 〉+ 〈φ0 | apH1a

†
p |φ0 〉

Then, the quasiparticle energy is given by,

ε̃p = Ep − E0

= 〈φ0 | apH0a
†
p |φ0 〉 − 〈φ0 | H0 |φ0 〉+ 〈φ0 | apH1a

†
p |φ0 〉 − 〈φ0 | H1 |φ0 〉

= εp + Σ1
p

Thus the self energy of the quasiparticle is given by,

Σ1
p = 〈φ0 | apH1a

†
p |φ0 〉 − 〈φ0 | H1 |φ0 〉

=
1

2V

∑
k1,k2,q

V (q)〈φ0 | apa†k1+qak1a
†
k2−qak2a

†
p |φ0 〉 −

1

2V

∑
k1,k2,q

V (q)〈φ0 | a†k1+qak1a
†
k2−qak2 |φ0 〉

Now, we use Wick’s theorem to calculate the above matrix elements. We look at the first
term above. There will be a contraction of the form 〈φ0 | apa†p |φ0 〉〈φ0 | a†k1+qak1a

†
k2−qak2 |φ0 〉

which will cancel exactly with the second term in the above expression. This corresponds
to correction to the Fermi sea, and in diagrammatic language, are the disconnected di-
agrams. The remaining two contractions will be 〈 a†k1+qak1 〉0〈 apa

†
k2−q 〉0〈 ak2a

†
p 〉0, which

gives the Hartree term, and 〈 apa†k1+q 〉0〈 ak1a
†
k2−q 〉0〈 ak2a

†
p 〉0, which gives the Fock term.

Interchanging k1 and k2 give a factor of 2 which cancel with the 2 in the denominator.
Finally we get,

Σ1
p = nV (0) +

1

V

∑
k≥kf

V (p− k)

which differ from equation (4) by a constant term. The origin of this diffrence can be
traced back to the fact that we have used a†aa†a in the form of the interaction, instead
of a†a†aa that is used in diagrammatic expansions.

2. The perturbed ground state |ψ0 〉 is constructed from the unperturbed ground state
|φ0 〉 by switching on the interaction adiabatically. This is mathematically expressed as
|ψ0 〉 = Ω̂ |φ0 〉, where Ω̂ is the evolution operator, and is given by,

Ω̂ = Texp{1
i

∫ ∞
−∞

dτHint
1 (τ)eητ} , η → 0+ (6)

The time evolution of the interaction term in the interaction picture is given by,

Hint
1 (t) = eiH0tH1e

−iH0t

=
1

2V

∑
k,k′,p

V (p)a†k+paka
†
k′−pak′e

i(εk+p+εk′−p−εk−εk′)t (7)

Expanding the evolution operator to first order in interaction we get,

Ω̂ = 1 +
1

i

∫ 0

−∞
dτHint

1 (τ)eητ

= 1 +
1

2V

∑
k,k′,p

V (p)

(εk + εk′ − εk+p − εk′−p + iη)
a†k+paka

†
k′−pak′ (8)
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Then the many body state | q 〉 = Ω̂a†q |φ0 〉 , to lowest order in interaction is given by,

| q 〉 = a†q |φ0 〉+
1

2V

∑
k,k′,p

V (p)

(εk + εk′ − εk+p − εk′−p + iη)
a†k+paka

†
k′−pak′a

†
q |φ0 〉 (9)

3. The charge density operator is given by,

ρ(r) =
1

V

∑
q

eiqrρ(q)

where,
ρ(q) =

∑
p

a†p+qap

The expectation of the charge density operator in the state | k 〉 is given by,

〈 ρ(q) 〉 =
∑
p

〈 k | a†p+qap | k 〉

Looking at the momentum of the states, it is easy to conclude that the above expectation
values are zero except for q = 0. ρ(q = 0) gives the total particle number, which is a
conserved quantity. For a N particle ground state |φ0 〉, we have 〈 ρ(q = 0) 〉 = N + 1.
Then,

〈 ρ(r) 〉 = 1

V
〈 ρ(q = 0) 〉 =

N + 1

V
(10)

Thus, the charge density is uniform and is delocalized over the entire system.

The current density operator is given by,

j̄(r) =
1

V

∑
q

eiqrj̄(q)

where,

j̄(q) =
∑
p

1

m
(p̄− q̄

2
)a†p+qap

By the same argument as above the average quantity 〈 k | j̄(q) | k 〉 is zero except for
q = 0. For a translationally invariant system, total momentum is a conserved quatity.
Particularly,

[
Ω̂,
∑
p p̄a

†
pap
]

= 0, so that 〈 k | j̄(q = 0) | k 〉 = k̄
m

. It is to be noted that
what enters in the expression for current density is the bare particle mass and not the
renormalized quasiparticle mass, and that this is a consequence of translational invariance.
Thus,

〈 j̄(r) 〉 =
1

V

(
k̄

m

)
(11)

The current density due to the quasiparticle excitation is uniformly spread.
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4. We consider the wave-packet state | x0 〉 =
∑
q Aq | q 〉, where Aq = e−α(q−q0)2

e−iqx0, con-
structed out of single particle excitations. We expect this state to behave as an excitation
that is localized around x0. To find whether indeed that is the case, we look at the average
charge density 〈 ρq 〉 in this state. We have,

〈x0 | ρq | x0 〉 =
∑
k,p

AkA
?
k+q〈 k + q | a†p+qap | k 〉 (12)

As before the q = 0 component measures the total particle number, which is N + 1 for a
N particle ground state. Thus,

〈 x0 | ρ0 | x0 〉 = (N + 1)
∑
k

AkA
?
k (13)

For q 6= 0 components we expand the many particle wavefunction | k 〉 in perturbation
theory. Then the zeroth order contribution to the matrix element on the right hand side
of eqn(12) is 〈φ0 | ak+qa

†
p+qapa

†
k |φ0 〉 = δp,k. From the result of part (2) we get the first

order contribution as,

1

V

∑
k1,k2,k3

V (k3)

εk1 + εk2 − εk1+k3 − εk2−k3 + iη
〈φ0 | ak+q

[
a†p+qap, a

†
k1+k3

ak1a
†
k2−k3

ak2

]
a†k |φ0 〉

Using Wick’s theorem to simplify the above expression, we find that there are only two
non-zero terms, and we get,

〈 ρq 〉 =
∑
k

AkA
?
k+q

{
1− 1

V

∑
p

V (q)− V (k − p)
q · (vp − vk)

(
f 0
p − f 0

p+q

)}
(14)

where f 0 is equilibrium Fermi distribution. The most important observation is that the
second term in the right hand side above has a nonzero limit as q → 0. Thus ρq is
discontinuous at q = 0. The total charge that is localized is given by,

lim
q→0

ρq =
∑
k

AkA
?
k

{
1− 1

V

∑
p

V (0)− V (k − p)
q · (vp − vk)

δ(εp)(vp · q)
}

(15)

Since limq→0 ρq 6= δρq=0 =
∑
k AkA

?
k, the entire charge of the excitation is not localized.

The delocalized part is given by the second term on the right hand side of eqn(15). Thus
we find that it is not possible to construct entirely localized objects from single particle
excitations. And the reason for this is that in systems with Fermi surfaces there are
large number of excitations with arbirary small energies. These low energy processes are
responsible for the delocalization of the charge.

The average current density in the state | x0 〉 is given by,

〈x0 | j̄q | x0 〉 =
∑
k

AkA
?
k+q

∑
p

1

m

(
p̄− q̄

2

)
〈 k + q | a†p+qap | k 〉 (16)
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The q = 0 component gives the total current in the system. Since total momentum is
conserved, we find,

〈 j̄0 〉 =
∑
k

AkA
?
k

(
k̄

m

)
=
q̄0

m

∑
k

AkA
?
k (17)

while for q 6= 0 components we have

〈 j̄q 〉 =
∑
k

AkA
?
k+q

∑
p

1

m

(
p̄− q̄

2

){
δp,k −

1

V

V (q)− V (k − p)
q · (vp − vk)

(
f 0
p − f 0

p+q

)}
(18)

As before, limq→0 〈 j̄q 〉 6= 〈 j̄0 〉 , and we find that part of the current is delocalized.

5. To find an expression for conductivity, we look at the Boltzman equation,

∂n(k, r, t)

∂t
+
∂n

∂r

∂ε

∂k
− ∂n

∂k

∂ε

∂r
= 0

Here we are disregarding the effect of collision that appears in the right hand side of
the Boltzman equation. The collision frquency ν goes as T 2, and so at low enough
temperature the above approximation is valid. Let n(k, r, t) = n0(k) + δn(k, r, t), where
n0 is the equilibrium Fermi distribution function. Linearizing the Boltzman equation we
get,

∂δn

∂t
+
∂δn

∂r

∂ε0k
∂k
− ∂n0

∂k

∂ε

∂r
= 0

Let there be an external electric field Ē = Ē0e
iqr−iωt where ω � ν. Then,

εk = ε0k +
∑
k′
f(k, k′)δn(k′)− eEr

Let the shift from the equilibrium be δn(k, r, t) = δn(k)eiqr−iωt. Then, from the Boltzman
equation we get,

(q · vk − ω) δn(k) + q · vkδ(εk − µ)
∑
k′
f(k, k′)δn(k′) + ieE0 · vkδ(εk − µ) = 0

For q = 0, i.e. a spatially uniform external field we get,

δn(k) =
ieE0 · vk

ω
δ(εk − µ) (19)

The current density is given by j̄ = e
∑
k δn(k)j̄k, where for a translationally invariant

system we have already found that j̄k = k̄
m

. Then,

j̄ =
ie2

ω

∑
k

E0 · vk
k̄

m
δ(εk − µ)

=
iNe2

mω
Ē0 (20)

so that σ = iNe2

mω
. Thus the constant C has the value,

C =
−Ne2

m
(21)

Due to Galilean invariance the quasiparticle current density is k̄
m

, and so the expression
for conductivity has a factor of m and not m?. Thus there is no correction from V (r).
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