Problem Set 5, If you have handed in 4 homeworks, you need not bother with this

Problem set 5: a new look way of looking at problem set 4

Now that you know about Wick's theorem, you have another way way of redoing the first part of the previous homework by a direct application of that idea. Rederive your expressions using the following hints:

Define

$$
\begin{gathered}
D_{\rho}(t, q)=-i\left\langle T\left(\rho_{q}(t) \rho_{q}^{\dagger}(0)\right)\right\rangle \\
D_{\Delta}(t, q)=-i\left\langle T\left(\Delta_{q}(t) \Delta_{q}^{\dagger}(0)\right)\right\rangle \\
\rho_{q}(t)=\sum_{k \sigma} c_{k+q}^{\dagger \sigma} c_{k \sigma} ; \quad \Delta_{q}^{\dagger}(t)=\sum_{k} c_{k+q \downarrow} c_{k \uparrow} ; \quad\langle\ldots\rangle \text { is with respect to a Fermi }
\end{gathered}
$$ sea.

a) Use Wick's theorem to express $D_{\rho}(t, q)$ and $D_{\Delta}(t, q)$ in terms of $-i\left\langle T\left(c_{k}(t) c_{k}^{\dagger}(0)\right)\right\rangle=G(k, t)$
b) Compute

$$
G(k, \omega)=\int_{-\infty}^{\infty} e^{i \omega t} G(k, t) d t
$$

- show it is given by

$$
G(k, \omega)=\frac{1}{i \omega-\varepsilon_{k}+i \delta \operatorname{sign}\left(|k|-k_{F}\right)}, \quad \delta>0, \quad \delta \rightarrow 0 .
$$

c) Combine (a) $+(\mathrm{b})$ and use the fact that the Fourier transform of the product is the solution of the Fourier transform to show that

$$
\begin{aligned}
D_{\rho}(\omega, q) & =\int_{-\infty}^{\infty} d t e^{i \omega t} D_{\rho}(t, q) \\
D_{\Delta}(\omega, q) & =\int_{-\infty}^{\infty} d t e^{i \omega t} D_{\Delta}(t, q)
\end{aligned}
$$

are given by expressions like

$$
\begin{gathered}
D_{\rho}(\omega, q) \sim-i \int d \omega^{\prime} \sum_{k} G\left(\omega^{\prime}+\omega, k+q\right) G\left(\omega^{\prime}, k\right) \\
D_{\Delta}(\omega, q) \sim-i \int d \omega^{\prime} \sum_{k} G\left(-\omega^{\prime}+\omega, k+q\right) G\left(\omega^{\prime}, k\right)
\end{gathered}
$$

d) Now carry out the frequency integral using the residue theorem. Get expressions of the functions

$$
\begin{gathered}
D_{\rho}(\omega, q) \sim \sum_{k} \frac{\left[f\left(\varepsilon_{k+q}\right)-f\left(\varepsilon_{k}\right)\right]}{\varepsilon_{k+q}-\varepsilon_{k}-\omega-i \delta}, \omega>0 \\
D_{\Delta}(\omega, q) \sim \sum_{k} \frac{\left[1-\left(f\left(\varepsilon_{k+q}\right)+f\left(\varepsilon_{k}\right)\right)\right]}{\varepsilon_{k+q}+\varepsilon_{k}-\omega-i \delta}, \omega>0 \\
f\left(\varepsilon_{k}\right)= \begin{cases}1 & \text { if } k<k_{F} \\
0 & \text { if } k>k_{F}\end{cases}
\end{gathered}
$$

e) Now everything is reduced to a d dimensional integral over k. One way to do them is say in the case of D_{ρ}

$$
D_{\rho} \sim \sum_{k} f\left(\varepsilon_{k}\right)\left[\frac{1}{\varepsilon_{k}-\varepsilon_{k+q}-\omega-i \delta}-\frac{1}{\varepsilon_{k+q}-\varepsilon_{k}-\omega-i \sigma}\right]
$$

Introduce polar coordinates and integrate over $d \theta$ and over $d k$, $0 \leq k \leq k_{F}$. The 3d integral is done in Fetter and Walecka page 158-162.

If you want, you can calculate the D_{ρ} and $\operatorname{Im} D_{\rho}$ separately.
In $1 d$ the integrals are even easier; $2 d$ is more fun.
Repeat the same for D_{Δ}.
Good Luck

