Problem Set 4, Due After Thanksgivings Break

Problem 1:

$$
\begin{gathered}
H_{0}=\sum_{k \sigma} \varepsilon_{k} c_{k \sigma}^{\dagger} c_{k \sigma} \\
\epsilon_{k}=\frac{k^{2}}{2 m}-\mu \\
\left|\psi_{0}\right\rangle=\prod_{k<k_{F}} c_{k \uparrow}^{\dagger} c_{k \downarrow}^{\dagger}|0\rangle \\
\rho_{q} \equiv \sum_{k \sigma} c_{k+q \sigma}^{\dagger} c_{k \sigma} \\
\Delta^{\dagger} q \equiv \sum_{k} c_{-k+q \uparrow}^{\dagger} c_{k \downarrow}^{\dagger}
\end{gathered}
$$

a) zero temperature.

Calculate the Fourier transform of $G_{\rho}(t, q), G_{p}(t, q)$ in time.

$$
\begin{aligned}
& G_{\rho}(t, q)=(-i)\left\langle T\left(\rho_{q}(t) \rho_{-q}(0)\right)\right\rangle \\
& G_{p}(t, q)=(-i)\left\langle T\left(\Delta_{q}(t) \Delta_{q}^{\dagger}(0)\right)\right\rangle
\end{aligned}
$$

write an expression it will involve a k - integration consider the case of d dimensions can you evaluate some of the integrals in $\mathrm{d}=1,2$, or 3 ?

Problem 2 Repeat the first problem at finite temperature Finite temperature - if τ is the imaginary time it is convenient to use Fourier series

$$
\begin{aligned}
& G_{\rho}\left(i \nu_{n}, g\right)=\int_{o}^{\beta} e^{i \nu_{n} \tau} G_{\rho}(\tau, q) d \tau \\
& G_{p}\left(i \nu_{n}, q\right)=\int_{o}^{\beta} e^{i \nu_{n}} \tau G_{p}(\tau, q) d \tau
\end{aligned}
$$

Evaluate them in 3 and 2 dimensions. 1
Now G_{ρ} and G_{p} are defined by

1

$$
\begin{aligned}
G_{\rho}(\tau, q) & =\frac{1}{Z} \operatorname{tr} e^{-\beta\left(H_{o}-\mu N\right)} \rho_{q}(\tau) \rho_{-q}(o) \\
G_{\rho}(\tau, q) & =\frac{1}{Z} \operatorname{tr} e^{-\beta\left(H_{o}-\mu N\right)} \Delta_{q}(\tau) \Delta^{\dagger} q(o)
\end{aligned}
$$

Problem 3: Evaluate the following Matsubara sums

$$
g\left(\tau=0^{+}\right)=T \sum_{n} \frac{e^{i \omega_{n} 0^{+}}}{i \omega_{n}-\varepsilon_{k}}
$$

and

$$
g\left(\tau=0^{-}\right)=T \sum_{n} \frac{e^{i \omega_{n} 0^{-}}}{i \omega_{n}-\varepsilon_{k}},
$$

where ω_{n} is fermionic Matsubara frequency, i.e. $\omega_{n}=\frac{(2 n+1) \pi}{\beta}$. Interpret the result why the two sums differ

