Problem set 1 (version Wed Sep 20) (Due on Thursday September 28th)

1. Consider the simple harmonic oscillator

$$
\hat{H}=\frac{p^{2}}{2 m}+\frac{m \omega^{2} x^{2}}{2}
$$

Write it in "second quantized" form, by expressing x and p in terms of creation and annihilation operators.

$$
\hat{H}=\hbar \omega\left(a^{\dagger} a+\frac{1}{2}\right) .
$$

(i) Derive the equation of motion for a and show that

$$
a(t)=a(0) e^{-i \omega t}
$$

Repeat this for a^{\dagger}.
(ii) Using the relationship

$$
a^{\dagger}=\frac{1}{\sqrt{2 \hbar}}\left[\frac{\hat{p}}{\sqrt{m \omega}}+i \hat{x} \sqrt{m \omega}\right] .
$$

use the results of (i) to show that

$$
\begin{aligned}
& \hat{p}(t)=\hat{p}(0) \cos \omega t-m \omega \hat{x}(o) \sin \omega t \\
& \hat{x}(t)=\hat{x}(0) \cos \omega t+\frac{\hat{p}(0)}{m \omega} \sin \omega t .
\end{aligned}
$$

(iii) The above operator expressions appear identical to the classical equations of motion.

Why?
2. Show that the Heisenberg spin operator S can be written in second quantized form as

$$
\begin{aligned}
S_{x} & =\frac{1}{2}\left(c_{\uparrow}^{\dagger} c_{\downarrow}+c_{\downarrow}^{\dagger} c_{\uparrow}\right), \\
S_{y} & =-\frac{i}{2}\left(c_{\uparrow}^{\dagger} c_{\downarrow}-c_{\downarrow}^{\dagger} c_{\uparrow}\right), \\
S_{z} & =\frac{1}{2}\left(c_{\uparrow}^{\dagger} c_{\uparrow}-c_{\downarrow}^{\dagger} c_{\downarrow}\right) .
\end{aligned}
$$

Check the commutation relations!
3. Consider a system of fermions created by the field $\psi^{\dagger}(\vec{r})$ interacting under the Yukawa potential

$$
V(r)=\frac{A e^{-\lambda r}}{4 \pi r}
$$

(i) Write the Hamiltonian in second quantized form, using the position basis.
(ii) Write the Hamiltonian in second quantized notation in the momentum basis, where

$$
c_{\vec{k}}^{\dagger}=\int d^{3} r \psi^{\dagger}(\vec{r}) e^{i \vec{k} \cdot \vec{r}}
$$

You will find it helpful to derive the Fourier representation

$$
V(r)=\int \frac{d^{3} q}{(2 \pi)^{3}} e^{i \vec{q} \cdot \vec{r}} \frac{A}{\left(q^{2}+\lambda^{2}\right)} .
$$

4. For the spin $1 / 2$ fermions considered in question 3, prove the "Hubbard Stratonovich" identity

$$
e^{-a\left(n_{\uparrow}-1 / 2\right)\left(n_{\downarrow}-1 / 2\right)}=\frac{1}{2} e^{-a / 4} \sum_{\sigma= \pm 1} e^{a \sigma\left(n_{\uparrow}-n_{\downarrow}\right)}
$$

where $\cosh a=e^{\frac{a}{4}}$ (Hint: consider the matrix representation of the operator on the left hand side in the four dimensional Fock space of the up and down electrons.) We shall later see how, considering $a \sim \delta t$ to be an infinitesimal time interval, we can use this relation to treat interacting spins as spins moving in a fluctuating Ising magnetic field.
6. Let $a_{\alpha}^{\dagger}, a_{\alpha}$ be Fermion creation and annihilation operators, and assume

$$
H_{o}=\sum_{\alpha} \epsilon_{\alpha} a_{\alpha}^{\dagger} a_{\alpha} .
$$

(i) Compute $\operatorname{Tr}\left[e^{\beta H_{o}} a_{\alpha}^{\dagger} a_{\alpha}\right]$
(ii) Compute $\operatorname{Tr}\left[e^{-\beta H_{o}} a_{\alpha} a_{\alpha}^{\dagger}\right]$.
(iii) Compute $\operatorname{Tr}\left[e^{-\beta H_{o}} a_{\alpha} a_{\alpha}^{\dagger}\right]$. Using the identity $e^{-\beta H_{o}} a_{\alpha}^{\dagger} a_{\alpha}=-T \frac{\partial}{\partial \epsilon_{\alpha}} e^{-\beta H_{o}}$ check your answer to (i).
(iv) Confirm that the expectation

$$
\left\langle n_{a}\right\rangle=Z^{-1} \operatorname{Tr}\left[e^{-\beta H_{o}} a_{\alpha}^{\dagger} a_{\alpha}\right]=f\left(\epsilon_{\alpha}\right)
$$

where $f(x)$ is the Fermi function.
(v) Repeat the above procedure assuming that a_{a}^{\dagger} and a_{a} are boson operators. What are the restrictions on the values of ϵ_{a} and what happens when one of these energies ϵ_{a} becomes zero?
(vi) Calculate

$$
\binom{a_{\alpha}^{\dagger}(\tau)}{a_{\alpha}(\tau)}=e^{\tau H_{o}}\binom{a_{\alpha}^{\dagger}}{a_{\alpha}} e^{-\tau H_{o}}
$$

