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(1) Principles and Basic Methods
> least-squares fitting
» solving lens equation
» constraints (point data)

> parametric mass models

(1) Statistical Methods
» Bayesian statistics
» Monte Carlo Markov Chains

» nested sampling

(111) Advanced Techniques

> case studies: composite models, astrophysical priors,
substructure

» extended sources

» “non-parametric” lens models



Strong lens modeling

goal: use strong lensing data to learn about. ..
» mass model
> source

» other parameters (e.g., Hy)

focus:
» galaxy-scale lensing

> point data (for now)



Simple examples

“forward” problem:

» fix lens model, solve lens equation to find image positions
(and other data)

“inverse" problem:

» fix lens data, (re)interpret lens equation as constraint
equation

» solve for model parameters

Simple Examples



Point mass

Point mass
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SIS
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Model dependence: Einstein radius

SIS
remark: from the same data we can get different answers —

depending on what we assume about the models

however ... suppose 01 = 0y + ¢ and 02 = 6y — 6, and § is small:

2
ptmass: g = (0.05)'% ~ 00—267—1—(9(54)
o
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result for Einstein radius is not very sensitive to choice of model

may not be true of other parameters!



SIS+shear

lens equation, now in cartesian angular coordinates
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cross quad: u = v = 0, with images at (£x1,0) and (0, +ys)
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Least-squares fitting

usually we cannot solve the constraint equations exactly
» more constraints than parameters
Goodness of fit

> noise

> wrong model

general goal: minimize the difference between the model and data
quantify goodness of fit:
model — data)?
=Y Crtantic®
(uncertainties)

idea:
» find best fit (minimum x?)

» explore range of allowed models (region where x? is
acceptable)



What is “good enough”?

quantify degrees of freedom:
v = (# constraints) — (# free parameters) Goodness of fit

if errors are random, have probability distribution for x?2:
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P(x?)
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average:

peak:
Xgeak = max(v — 2,0)

as a rule of thumb, we expect x? ~ v for a “good"” fit; but given
statistical scatter, this is not a strict condition!

Goodness of fit



Covariance

generalize notion of uncertainties. . .
if uncertainties are correlated, introduce covariance
Cov(wy) = ((v=@)(v-w))

= {wy— @)y o) +{x) 6)
= (zy) — () (v)

for an array of data d = (dy, d», ds, . ..), covariance matrix is

Covariance

O'% COV(dl, dg) COV(d1, dg)
COV(dQ, dl) 0% COV(dQ, dg)
C= COV(d'g,7 dl) COV(dg, dg) O'§



aside:

0.775

C=1 _o375

—0.375
0.340

p12 = —0.731

correlation coefficient (dimensionless, |p| < 1):

Pij

- COV(di, d])
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generalized goodness of fit
X2 _ (dmod _ dobs)tc—l(dmod _ dobs)

if data are independent then
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Linear parameters

example: x is some independent variable (which we can know);
measure d°P® and postulate a straight line

Linear params

d™° = mx +b
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5 (max; + b — dob®)?
X = Z o2

parabola in both m and b; find minimum by solving

Linear params

ot z;(ma; + b — doP)
0= om =2 Z p
ox? (max; + b — doP®)
0 0b Z o?
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may look complicated, but just a pair of linear equations
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solve by matrix inversion
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(can generalize to an arbitrary number of linear parameters)



Non-linear parameters

must explicitly search parameter space

use established algorithms to search for minimum of a function in
multiple dimensions

challenges:
» computational effort
» local minima
» long, narrow valleys
>

degeneracies
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Downhill simplex method (“amoeba”)

http://www.cs.usfca.edu/~brooks/papers/amoeba.pdf — also Numerical Recipes

Original Simplex

Non-linear params

Reflection

Expansion

Contraction

Multi-dimensional Contraction




Linear + non-linear parameters

suppose we have parameters a and b such that

"t = a f(b)
then
X2(a b) — Z [af(b) — dObSP
) 0_2
optimal value of a:
o f®)laf(b) — d°™] _ 2 [y /o
D D R WO

then
X2(b) = X2 (aopt (b), b)

we can still optimize the linear parameters analytically

Linear + non-linear



Errorbars
“likelihood”

1-d Gaussian

pXx)
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central region = 68% of the probability; each tail = 16%
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2-d Gaussian
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Solving the lens equation

challenges:
» usually non-linear
» often transcendental

» we may not even know how many solutions there are!

» mathematical theorems bound maximum number of images

... but we need actual number Solving Lens Eqn
> global caustic structure may be informative . .. but difficult to

find and analyze

solution:

> read lens equation “backwards” — mapping from image
position x to unique source position u(x) = x — a(x)
tile image plane
map each tile back to source plane

number of tiles that cover source reveals number of images

vV v . vvY

tiles themselves give estimates of image positions



Tiling




Image plane tiling

. - . Point mass
» background Cartesian grid — basic coverage B

. . SIS+shear
» polar grid centered on each galaxy — resolve key regions
» adaptive subgridding near critical curves Jde o
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Quadrilaterals vs. triangles

Point mass
SIS
SIS+-shear

. ) Goodness of fit

quadrilaterals can be problematic: Covariance
Linear params
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Delaunay triangulation

start with points in a plane

— connect them with triangles
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Gridding in gravlens/lensmodel
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Magnification and time delay

deflection

() = Vo) = | 0 |

magnification

-1
p=der| 120 O 0 - o) - 2]

special case of circular symmetry, a(r):

(circular) p= {1 - air)} - {1 - da] -

lensmodel

dr

time delay

142 DD,

t(x;u) =t B |x — u|2 — (b(x)] to p D,



Constraints

point sources

data
> image positions
» fluxes

> time delays

source parameters Constraints
» position
> flux

> time scale

(extended sources on Thursday)



Position constraints

“exact” position x?:

Koow = 3 (ot =) ST (ot — )

images

astrometric uncertainties: error ellipse with axes (01, 02;) and
position angle 6,; (East of North) — covariance matrix

2 .

7. 0 —sinfy,; —cosfy;

S, =R, LoD | RE R, = o A st
0 o3 cosb,; —sinb,;

if symmetric uncertainties:



note: define source position associated with each observed image

ug = x5 — o)
also
ured = xmed _ g (xmod)
subtract:
dui = 0% — [a(x™) —a(x™)] ~ - ox
provided that model is decent, such that dx; and Ju; are “small” Festitars

then dx; ~ pu; - 0u; yields “approximate” position x2:

N % D (o — ) Sy (ud — ughe)
%



2 o mod obs\t , t gq—1,,. mod obs
Xpos ~ E :(u —u; ) 22 Sz Hi (u - )
i

advantages:
» don't need to solve lens equation

» u™9 is a linear parameter, so optimize it analytically
umod _ A—l b
where Azz,u’;Sfm szuﬁSjluiu?bs
i i

concerns:

» approximation is valid only when residuals are small ... but
Xpos Yields a large value (i.e., bad fit) in either case

» since we do not solve the lens equation, we cannot check that

the model predicts correct number of images ... only worry
about models yielding too many images

Positions



Flux constraints

(F_obs _ ’U/‘Fsrc)2
X%lux = Z : 2 -
i Tfi

if desired, include parity by letting Fi‘)bS and p; be signed

optimal source flux can be found analytically

Frsre Zz FiObs /’Li/o-;,i
> /‘12/0,20,1'

Fluxes

if desired, straightforward to switch to magnitudes

mod _

m;

m* — 2.51og | ;]

note: photometric units are arbitrary — absolute fluxes or
magnitudes, or relative values



Time delay constraints

predicted time delay

t?wd = tQTimOd -+ T()
del: mod  __ 1 mod mod |2 mod
model: T =3 x;, 0 —u | —(;S(Xi )
1+2 DD _
cosmol: ty = L2 o Hi' < f(Qr, Q21 25)
C Dls
note: time zeropoint T does not affect differential time delays; Time delags

but let's make framework general

then
(t?bs _ tOTimod _ T'O)Q

2 _
Xtdel = E 2
Ot

%




(tqus _ tOTimOd _ TO)2

2 _
Xtdel = E 2
04

i
if we have priors on the cosmological parameters (including Hy)
— prior to prior = 0to — additional term

(tO - t07pri0r)2

2 _
Xt0 = 2
t0
optimal values of ty and Tp: "
ime delays
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Parametric mass models

postulate: mass distribution can be described by a function with a
modest number of parameters

example: Singular Isothermal Ellipsoid (SIE)

b
2[(x — x0)2 + (y — y0)?/q*]/?

K= (4rotation)

pros:
> ‘“easy” to find best fit and assess quality
» build in astrophysical knowledge — assumptions and priors oo Mol

» “good enough” for many applications

cons:
> can only get out what you put in

> real galaxies may be more complex



Counting

# constraints:

Xgal X; F;, At; total
quad 2 4x2 4 3 17
double 2 2x2 2 1 9

7+ parameters:

Usrc Fsrc Xgal Qgal  Yenv to total Parametric Models
2 1 2 >3 >2 1 >11




Main galaxy

softened power law ellipsoid

b27a
K= 2(s% + 22 + y2/q2) - /2
where
<1 steeper than isothermal
M(r)~r* = «a<=1 isothermal

> 1 shallower than isothermal

Main galaxy
lensmodel has many other model classes: point mass,
pseudo-Jaffe, de Vaucouleurs, Hernquist, Sersic, NFW, Nuker,
exponential disk, ...



Composite models

can combine multiple components to obtain models that are more
complicated but still parametric

for example:
» stellar component (e.g., Hernquist)
» dark matter halo (e.g., NFW)

(composite models can be as fancy as you want)

Composite



Environmental effects

few lens galaxies are isolated — they have neighbors, and may be
embedded in groups or clusters of galaxies

environments can affect the light bending by an amount larger
than the measurement uncertainties

if neighboring galaxies are “far” from the lens (compared with
Einstein radius), make Taylor series expansion

2
9.3 0 3
—|—Zr COS(9—90)+67‘ cos3(6 — 05) +

Gonw = Gota-x+ Ly +2r cos2(0 —0.)

structures along the line of sight can also affect the light bending
. more complicated

Environment



Searching parameter space
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Hands-on: Finding images

hands-on exercises. . .

step 1 — pick some mass model, then:
> plot grid
» plot critical curves and caustics

» find images

Finding images



Hands-on: Fitting

step Il — | generated some mock lenses; now you try to fit them
main lens galaxy is a power law ellipsoid

| may have varied:
> mass
» ellipticity/PA
> power law index
S

environment: shear/PA, or SIS perturber

all generated with z; = 0.3, z;, = 2.0, Qy = 0.27, Q5 = 0.73, and
some fixed value of H

Fitting



Sample quads

recall: z; = 0.3, zo = 2.0, Qp = 0.27, Qp =0.73

what are the model parameters? what is Hy?

T T T
sampquadl

+

+

T T T
sampquad2

+

T T
sampquad3

T T T
sampquad4

+

-2 1
T T
sampquad6
+
¥
¥
Il Il
-2 1

Fitting



Sample doubles

recall: z; = 0.3, zo = 2.0, Qp = 0.27, Qp =0.73

what are the model parameters? what is Hy?

T T T
sampdoubl

+

T T T
sampdoub2

T T T
sampdoub3

T T T
sampdoub4

T T T
sampdoub5

T T T
sampdoub6

Fitting
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