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Sample Problem

Earth’s radius (6.37 � 106 m). Substituting Eq. 13-21 for U
and for K, we rewrite Eq. 13-29 as

.

Rearranging and substituting known values, we find

� (12 � 103 m/s)2

� 2.567 � 108 m2/s2,

and
vf � 1.60 � 104 m/s � 16 km/s. (Answer)

At this speed, the asteroid would not have to be par-
ticularly large to do considerable damage at impact. If it
were only 5 m across, the impact could release about as
much energy as the nuclear explosion at Hiroshima.
Alarmingly, about 500 million asteroids of this size are
near Earth’s orbit, and in 1994 one of them apparently
penetrated Earth’s atmosphere and exploded 20 km
above the South Pacific (setting off nuclear-explosion
warnings on six military satellites). The impact of an aster-
oid 500 m across (there may be a million of them
near Earth’s orbit) could end modern civilization and
almost eliminate humans worldwide.

�
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Additional examples, video, and practice available at WileyPLUS

Asteroid falling from space, mechanical energy

An asteroid, headed directly toward Earth, has a speed of
12 km/s relative to the planet when the asteroid is 10 Earth
radii from Earth’s center. Neglecting the effects of Earth’s
atmosphere on the asteroid, find the asteroid’s speed vf

when it reaches Earth’s surface.

Because we are to neglect the effects of the atmosphere on
the asteroid, the mechanical energy of the asteroid–Earth
system is conserved during the fall. Thus, the final mechani-
cal energy (when the asteroid reaches Earth’s surface) is
equal to the initial mechanical energy.With kinetic energy K
and gravitational potential energy U, we can write this as

Kf � Uf � Ki � Ui. (13-29)

Also, if we assume the system is isolated, the system’s
linear momentum must be conserved during the fall.
Therefore, the momentum change of the asteroid and that of
Earth must be equal in magnitude and opposite in sign.
However, because Earth’s mass is so much greater than the
asteroid’s mass, the change in Earth’s speed is negligible
relative to the change in the asteroid’s speed. So, the change
in Earth’s kinetic energy is also negligible. Thus, we can
assume that the kinetic energies in Eq. 13-29 are those of the
asteroid alone.

Calculations: Let m represent the asteroid’s mass and M
represent Earth’s mass (5.98 � 1024 kg). The asteroid is ini-
tially at distance 10RE and finally at distance RE, where RE is
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13-7 Planets and Satellites: Kepler’s Laws
The motions of the planets, as they seemingly wander against the background of the
stars, have been a puzzle since the dawn of history. The “loop-the-loop” motion of
Mars, shown in Fig. 13-11, was particularly baffling. Johannes Kepler (1571–1630), af-
ter a lifetime of study, worked out the empirical laws that govern these motions.
Tycho Brahe (1546–1601), the last of the great astronomers to make observations
without the help of a telescope, compiled the extensive data from which Kepler was
able to derive the three laws of planetary motion that now bear Kepler’s name.Later,
Newton (1642–1727) showed that his law of gravitation leads to Kepler’s laws.

In this section we discuss each of Kepler’s three laws. Although here we
apply the laws to planets orbiting the Sun, they hold equally well for satellites,
either natural or artificial, orbiting Earth or any other massive central body.

1. THE LAW OF ORBITS:All planets move in elliptical orbits,with the Sun at one focus.

Fig. 13-11 The path seen from Earth for
the planet Mars as it moved against a back-
ground of the constellation Capricorn dur-
ing 1971.The planet’s position on four days
is marked. Both Mars and Earth are moving
in orbits around the Sun so that we see the
position of Mars relative to us; this relative
motion sometimes results in an apparent
loop in the path of Mars.

July 26
September 4

June 6October 14

Figure 13-12 shows a planet of mass m moving in such an orbit around the Sun,
whose mass is M. We assume that so that the center of mass of the
planet–Sun system is approximately at the center of the Sun.

M � m,
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2. THE LAW OF AREAS: A line that connects a planet to the Sun sweeps out equal
areas in the plane of the planet’s orbit in equal time intervals; that is, the rate dA/dt at
which it sweeps out area A is constant.

Fig. 13-12 A planet of mass m moving
in an elliptical orbit around the Sun.The
Sun, of mass M, is at one focus F of the el-
lipse.The other focus is F9, which is located
in empty space. Each focus is a distance ea
from the ellipse’s center, with e being the 
eccentricity of the ellipse.The semimajor
axis a of the ellipse, the perihelion (nearest
the Sun) distance Rp, and the aphelion (far-
thest from the Sun) distance Ra are also
shown.

Ra Rp 
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θ 

r 

The Sun is at
one of the two
focal points.

The orbit in Fig. 13-12 is described by giving its semimajor axis a and its
eccentricity e, the latter defined so that ea is the distance from the center of the
ellipse to either focus F or F9. An eccentricity of zero corresponds to a circle, in
which the two foci merge to a single central point.The eccentricities of the plane-
tary orbits are not large; so if the orbits are drawn to scale, they look circular.The
eccentricity of the ellipse of Fig. 13-12, which has been exaggerated for clarity, is
0.74.The eccentricity of Earth’s orbit is only 0.0167.

Qualitatively, this second law tells us that the planet will move most slowly when
it is farthest from the Sun and most rapidly when it is nearest to the Sun. As it
turns out, Kepler’s second law is totally equivalent to the law of conservation of
angular momentum. Let us prove it.

The area of the shaded wedge in Fig. 13-13a closely approximates the area swept
out in time �t by a line connecting the Sun and the planet,which are separated by dis-
tance r. The area �A of the wedge is approximately the area of a triangle with base
r �u and height r. Since the area of a triangle is one-half of the base times the height,
�A � r2 �u. This expression for �A becomes more exact as �t (hence �u) ap-
proaches zero.The instantaneous rate at which area is being swept out is then

(13-30)

in which v is the angular speed of the rotating line connecting Sun and planet.
Figure 13-13b shows the linear momentum of the planet, along with the radial

and perpendicular components of . From Eq. 11-20 the magnitude of
the angular momentum of the planet about the Sun is given by the product of r
and the component of perpendicular to r. Here, for a planet of mass m,

(13-31)

where we have replaced with its equivalent vr (Eq. 10-18). Eliminating r2v
between Eqs. 13-30 and 13-31 leads to

(13-32)

If dA/dt is constant, as Kepler said it is, then Eq. 13-32 means that L must also be
constant—angular momentum is conserved. Kepler’s second law is indeed
equivalent to the law of conservation of angular momentum.
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Fig. 13-13 (a) In time �t, the line r con-
necting the planet to the Sun moves through
an angle �u, sweeping out an area �A
(shaded). (b) The linear momentum of the
planet and the components of .p:
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These are the two 
momentum components.
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Fig. 13-14 A planet of mass m moving
around the Sun in a circular orbit of radius r.
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m

CHECKPOINT 4

Satellite 1 is in a certain circular orbit around a planet, while satellite 2 is in a larger 
circular orbit.Which satellite has (a) the longer period and (b) the greater speed?

Sample Problem

Ra � 2a � Rp

� (2)(2.7 � 1012 m) � 8.9 � 1010 m
� 5.3 � 1012 m. (Answer)

Table 13-3 shows that this is a little less than the semimajor
axis of the orbit of Pluto. Thus, the comet does not get far-
ther from the Sun than Pluto.

(b) What is the eccentricity e of the orbit of comet Halley?

We can relate e, a, and Rp via Fig. 13-12, in which we see that
ea � a � Rp.

Calculation: We have

(13-36)

(Answer)

This tells us that, with an eccentricity approaching unity, this
orbit must be a long thin ellipse.

 � 1 �
8.9 � 1010 m
2.7 � 1012 m

� 0.97.

e �
a � Rp

a
� 1 �

Rp

a

Kepler’s law of periods, Comet Halley

Comet Halley orbits the Sun with a period of 76 years and, in
1986, had a distance of closest approach to the Sun, its peri-
helion distance Rp, of 8.9 � 1010 m. Table 13-3 shows that this
is between the orbits of Mercury and Venus.

(a) What is the comet’s farthest distance from the Sun,
which is called its aphelion distance Ra?

From Fig. 13-12, we see that Ra � Rp � 2a, where a is the semi-
major axis of the orbit. Thus, we can find Ra if we first find a.
We can relate a to the given period via the law of periods (Eq.
13-34) if we simply substitute the semimajor axis a for r.

Calculations: Making that substitution and then solving
for a, we have

. (13-35)

If we substitute the mass M of the Sun, 1.99 � 1030 kg, and
the period T of the comet, 76 years or 2.4 � 109 s, into Eq.
13-35, we find that a � 2.7 � 1012 m. Now we have

a � � GMT 2

4
 2 �
1/3
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Additional examples, video, and practice available at WileyPLUS

3. THE LAW OF PERIODS: The square of the period of any planet is proportional
to the cube of the semimajor axis of its orbit.

To see this, consider the circular orbit of Fig. 13-14, with radius r (the radius of
a circle is equivalent to the semimajor axis of an ellipse). Applying Newton’s
second law (F � ma) to the orbiting planet in Fig. 13-14 yields

(13-33)

Here we have substituted from Eq. 13-1 for the force magnitude F and used Eq. 10-
23 to substitute v2r for the centripetal acceleration. If we now use Eq. 10-20 to re-
place v with 2p/T, where T is the period of the motion, we obtain Kepler’s third law:

(law of periods). (13-34)

The quantity in parentheses is a constant that depends only on the mass M of the
central body about which the planet orbits.

Equation 13-34 holds also for elliptical orbits, provided we replace r with a,
the semimajor axis of the ellipse. This law predicts that the ratio T 2/a3 has essen-
tially the same value for every planetary orbit around a given massive body.Table
13-3 shows how well it holds for the orbits of the planets of the solar system.

T 2 � � 4
 2

GM �r 3

GMm
r2 � (m)(
2r).

Kepler’s Law of Periods for the Solar
System

Semimajor T2/a3

Axis Period (10�34

Planet a (1010 m) T (y) y2/m3)

Mercury 5.79 0.241 2.99
Venus 10.8 0.615 3.00
Earth 15.0 1.00 2.96
Mars 22.8 1.88 2.98
Jupiter 77.8 11.9 3.01
Saturn 143 29.5 2.98
Uranus 287 84.0 2.98
Neptune 450 165 2.99
Pluto 590 248 2.99

Table 13-3

KEY I DEA
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13-8 Satellites: Orbits and Energy
As a satellite orbits Earth in an elliptical path, both its speed, which fixes its
kinetic energy K, and its distance from the center of Earth, which fixes its gravita-
tional potential energy U, fluctuate with fixed periods. However, the mechanical
energy E of the satellite remains constant. (Since the satellite’s mass is so much
smaller than Earth’s mass, we assign U and E for the Earth–satellite system to
the satellite alone.)

The potential energy of the system is given by Eq. 13-21:

(with U � 0 for infinite separation). Here r is the radius of the satellite’s orbit,
assumed for the time being to be circular, and M and m are the masses of Earth
and the satellite, respectively.

To find the kinetic energy of a satellite in a circular orbit, we write Newton’s
second law (F � ma) as

(13-37)

where v2/r is the centripetal acceleration of the satellite.Then, from Eq. 13-37, the
kinetic energy is

(13-38)

which shows us that for a satellite in a circular orbit,

(circular orbit). (13-39)

The total mechanical energy of the orbiting satellite is

or (circular orbit). (13-40)

This tells us that for a satellite in a circular orbit, the total energy E is the negative of
the kinetic energy K:

E � �K (circular orbit). (13-41)

For a satellite in an elliptical orbit of semimajor axis a, we can substitute a for r in
Eq. 13-40 to find the mechanical energy:

(elliptical orbit). (13-42)

Equation 13-42 tells us that the total energy of an orbiting satellite depends
only on the semimajor axis of its orbit and not on its eccentricity e. For example,
four orbits with the same semimajor axis are shown in Fig. 13-15; the same satel-
lite would have the same total mechanical energy E in all four orbits. Figure 13-16
shows the variation of K, U, and E with r for a satellite moving in a circular orbit
about a massive central body.

E � �
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Fig. 13-15 Four orbits with different ec-
centricities e about an object of mass M.All
four orbits have the same semimajor axis a
and thus correspond to the same total me-
chanical energy E.
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Fig. 13-16 The variation of kinetic energy K, potential energy U, and total energy E
with radius r for a satellite in a circular orbit. For any value of r, the values of U and E are
negative, the value of K is positive, and E � �K.As r : �, all three energy curves
approach a value of zero.
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This is a plot of a
satellite's energies
versus orbit radius.

The kinetic energy
is positive.

The potential energy
and total energy
are negative.
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Sample Problem

On the launchpad, the ball is not in orbit and thus Eq. 13-40
does not apply. Instead, we must find E0 � K0 � U0, where
K0 is the ball’s kinetic energy and U0 is the gravitational po-
tential energy of the ball–Earth system.

Calculations: To find U0, we use Eq. 13-21 to write

� �4.51 � 108 J � �451 MJ.

The kinetic energy K0 of the ball is due to the ball’s motion
with Earth’s rotation.You can show that K0 is less than 1 MJ,
which is negligible relative to U0. Thus, the mechanical en-
ergy of the ball on the launchpad is

E0 � K0 � U0 � 0 � 451 MJ � �451 MJ. (Answer)

The increase in the mechanical energy of the ball from
launchpad to orbit is

�E � E � E0 � (�214 MJ) � (�451 MJ)

� 237 MJ. (Answer)

This is worth a few dollars at your utility company.
Obviously the high cost of placing objects into orbit is not
due to their required mechanical energy.

 � �
(6.67 � 10�11 N �m2/kg2)(5.98 � 1024 kg)(7.20 kg)

6.37 � 106 m

U0 � �
GMm

R

Mechanical energy of orbiting bowling ball

A playful astronaut releases a bowling ball, of mass m �
7.20 kg, into circular orbit about Earth at an altitude h of
350 km.

(a) What is the mechanical energy E of the ball in its
orbit?

We can get E from the orbital energy, given by Eq. 13-40 
(E � �GMm /2r), if we first find the orbital radius r. (It is
not simply the given altitude.)

Calculations: The orbital radius must be

r � R � h � 6370 km � 350 km � 6.72 � 106 m,

in which R is the radius of Earth. Then, from Eq. 13-40, the
mechanical energy is

� �2.14 � 108 J � �214 MJ. (Answer)

(b) What is the mechanical energy E0 of the ball on the
launchpad at Cape Canaveral (before it, the astronaut, and
the spacecraft are launched)? From there to the orbit, what
is the change �E in the ball’s mechanical energy?

 � �
(6.67 � 10�11 N �m2/kg2)(5.98 � 1024 kg)(7.20 kg)

(2)(6.72 � 106 m)

E � �
GMm

2r
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Additional examples, video, and practice available at WileyPLUS

CHECKPOINT 5

In the figure here, a space shuttle is initially in a circular orbit of radius r about Earth.
At point P, the pilot briefly fires a forward-pointing thruster to decrease the shuttle’s
kinetic energy K and mechanical energy E. (a) Which of the dashed elliptical orbits
shown in the figure will the shuttle then take? (b) Is the orbital period T of the shut-
tle (the time to return to P) then greater than, less than, or the same as in the circular
orbit?

r

P

1
2
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