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a b s t r a c t

This paper follows up a debate as to the consistency of Newtonian cosmology. Whereas Malament [(1995).

Is Newtonian cosmology really inconsistent? Philosophy of Science 62, 489–510] has shown that Newtonian

cosmology is not inconsistent, to date there has been no analysis of Norton’s claim [(1995). The force of

Newtonian cosmology: Acceleration is relative. Philosophy of Science 62, 511–522.] that Newtonian

cosmology was inconsistent prior to certain advances in the 1930s, and in particular prior to Seeliger’s

seminal paper of Seeliger [(1895). Über das Newton’sche Gravitationsgesetz. Astronomische Nachrichten 137

(3273), 129–136.] In this paper I agree that there are assumptions, Newtonian and cosmological in

character, and relevant to the real history of science, which are inconsistent. But there are some important

corrections to make to Norton’s account. Here I display for the first time the inconsistencies—four in

total—in all their detail. Although this extra detail shows there to be several different inconsistencies, it

also goes some way towards explaining why they went unnoticed for 200 years.

& 2009 Elsevier Ltd. All rights reserved.
When citing this paper, please use the full journal title Studies in History and Philosophy of Modern Physics
1. Introduction

There is now a substantial literature devoted to inconsistencies
in science, with examples ranging from the early calculus of
Newton and Leibniz to Bohr’s theory of the atom to, most recently,
classical electrodynamics. Norton (2002) introduces two different
approaches to inconsistencies: the ‘content-driven’ approach and
the ‘logic-driven’ approach. Preferring the latter are several
authors (see Meheus, 2002) who suggest that, when faced with
an inconsistency in a given body of assumptions, scientists either
do (descriptive claim) or should (normative claim) adopt a non-
classical, paraconsistent logic, which saves them from deriving
anything and everything by ECQ.1 Norton, in response, suggests a
‘content-driven’ approach where the inconsistency is or should be

handled by ‘[reflecting] on the specific content of the physical
theory at hand’, whilst maintaining classical deductive logic
(2002, p. 192).

Both sides of this debate are concerned to address the question
of what scientists do or should do when faced with inconsistency.
This is of clear importance, not least because it could give us
important clues as to how we might progress in the face of current

conflicts, such as that between general relativity and quantum
ll rights reserved.

stent assumptions derive a

From ‘A’ infer ‘AvB’ for any
field theory. However, the focus of this paper lies entirely outside
of this debate, and addresses a different aspect of inconsistency in
science, which has been largely neglected. Just as important as the
pragmatic question of what to do when faced with an incon-
sistency is the epistemic question of how scientists come to know

about inconsistencies in a given body of assumptions in the first
place. In particular we may ask the questions,
(i)
 What is it about the scientific community which prevents an
inconsistency from being noticed?
(ii)
 What is it about the science which prevents an inconsistency
from being noticed?
There are far fewer papers dedicated to these kinds of question,
but research here could also carry importance for current science:
if we could accelerate the identification of conflicts in science we
could accelerate science itself.

The focus of attention in this paper will be what is usually
called (an old version of) ‘Newtonian cosmology’. In 1895, Seeliger
made the remarkable claim that a set of natural (Newtonian)
assumptions concerning forces in the universe—assumptions
which had been in place since Newton himself, for over 200
years—are mutually inconsistent (Seeliger, 1895). This stimulated
much debate over the years and decades which followed, with the
latest additions made by Norton (1993, 1995, 1999, 2002) and
Malament (1995). But questions (i) and (ii), above, remain largely
unasked. What was it about the nature of the inconsistency in

www.sciencedirect.com/science/journal/shpmp
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Newtonian cosmology, which meant that it went unnoticed by the
scientific community for two centuries?

If the derivations were long and complicated, and involved
advanced mathematics or even mathematics not available to
scientists in the relevant period, then our question would be
answered immediately: the reason the contradiction remained
hidden would be that it was exceedingly difficult to derive. But
one look at Norton’s reconstructions shows that no such quick
answer will be forthcoming. For one thing, there are at least two

different inconsistencies, so there is double the chance of noticing
the problem. But even more remarkably, it would seem that in
each case a contradiction follows from a few basic assumptions
in a few simple steps. The inconsistencies are, as Malament puts
it, ‘so close to the surface that they are hard to miss’ (Malament,
1995, p.489). This in itself seems to contradict the fact that many
great scientists did miss the inconsistencies for a period of 200
years! Otherwise we would apparently have to admit either that
scientists made a serious commitment to what they knew to be
impossible, or that they were blind to some of the most obvious
consequences of their beliefs.

This suggests that the reason the inconsistency remained
hidden lies with the scientific community rather than the science
itself. However, as this paper sets out to show, there are several
complications to work through to understand the inconsistencies
properly: they are not as simple and straightforward as Norton
and Malament make out. Thus, after a brief section (Section 2) in
which I introduce ‘Newtonian cosmology’ and the relevant
assumptions, I turn to the details of the inconsistency claims that
have been made. Four different inconsistencies are distinguished,
which are grouped into two types of inconsistency discussed
separately in Section 3.1 and Section 3.2. This analysis uncovers
certain complications in the science, which then help to answer
question (ii) in Section 4. Some factors pertinent to question (i) are
also brought to light. Section 5 is the conclusion.
2. The concept Newtonian cosmology

What is the theory of ‘Newtonian cosmology’? It would be a
mistake to suppose that Newtonian cosmology ‘exists’ somehow,
perfectly formed, in a textbook somewhere, and that all we have
to do is identify it and see if it is inconsistent. Rather, what we
really find are various assumptions, often differently stated by
different individuals, sometimes saying the same thing and
sometimes something slightly different. Some of these assump-
tions are clearly about the universe as a whole, others about the
local universe, others of a more metaphysical nature. Still other
assumptions may never be articulated, such as that space is
Euclidean or that the night sky is dark. There is often no correct
way to articulate such assumptions precisely, and no specific set
of them which together constitute ‘Newtonian cosmology’. What,
then, do we mean when we refer to ‘Newtonian cosmology’? What
do we mean when we say it is inconsistent?

People mean different things by the word ‘theory’. The
question is not who is right but which conception of ‘theory’ is
the right one to use for a given investigation.2 The present concern
is to investigate the inconsistency of Newtonian cosmology, but
still this is too vague to tell us which assumptions we should be
concerned with: we must ask what we are hoping to show by the
inconsistency of the theory. For example, we will choose different
assumptions, and aim at something quite different, if we want to
2 Cf. Vickers (2008), who analyses the disagreements between Mathias Frisch,

Fred Muller and Gordon Belot concerning the consistency of classical electro-

dynamics in terms of their differing conceptions of ‘theory’. See also Wilson

(2009), where three different conceptions of ‘Classical Mechanics’ are discussed.
show that the assumptions used by scientists were inconsistent
(but that the inconsistency somehow did not affect their reason-
ing) or if we want to show that the assumptions believed by
scientists were inconsistent (but that they somehow did not
notice it). The more interesting claim for present purposes is the
latter, because what seems to be the case is that there is a set of
assumptions, which are inconsistent, all of which were believed to
be true—or at least important candidates for the truth—by a
significant number of relevant individuals. However, focusing on
belief in this way still does not enable us to identify a set of
assumptions for investigation. There are many different species of
‘belief’, and even if there were not it is not clear which beliefs
should be grouped together to count as ‘Newtonian cosmology’.

Thankfully there is another way to proceed. Instead of trying to
group together the assumptions for which inconsistency would be
interesting, one can instead group together the assumptions
which are inconsistent, and then investigate how interesting that
inconsistency is. Of course some sense of which assumptions are
going to be important is required: there has to be some reason
why the assumptions will be interesting as a group. The reason
here, as made clear in Norton’s papers, is the role they play in
answering a single question:

(Q) What is the net gravitational force on a test particle at a
given time at an arbitrary place in the universe?

When this question is asked certain assumptions are naturally
drawn together. Norton (1995) introduces various such assump-
tions as follows:3

(a) Newton’s three laws of motion.
(b) Newton’s inverse-square law of gravitational attraction.
(b0) Poisson’s equation with gravitational attraction described

in terms of the potential j.
(c) Matter in the universe is distributed homogeneously

(when viewed on a large enough scale) in an infinite Euclidean
space.

(d) There is a determinate net gravitational force on a test
mass at any given time.

(d0) The gravitational potential f is homogeneous.

It turns out that the question (Q) can be answered in different,
contradictory ways depending on which of the given assumptions
are emphasised. There are essentially four different methods of
reasoning that can be employed, which will be introduced in the
forthcoming analysis in the following order:
1.
of c

‘Ne

200
Use Newton’s law of gravitation.

2.
 Use Poisson’s equation.

3.
 Use symmetry considerations.

4.
 Use the gravitational potential.
Proceeding in this way means that we can investigate the
inconsistencies without getting into the messy meta-ontology
which accompanies such questions as ‘What is the theory?’ and
‘What is Newtonian cosmology?’ Asking such questions presumes
a simplicity to the history of science that does not exist.4 Instead
the analysis can proceed in terms of the given question (Q),
various methods of answering that question, and the assumptions
which those methods draw upon. Any use of terms such as
‘theory’ and ‘Newtonian cosmology’ in what follows should be
3 See pp. 513–514. In labelling the assumptions I follow Norton’s lead for ease

ross-reference.
4 Equally there should be no question of whether we are really discussing

wtonian cosmology’ (Norton, 1993) or ‘Newtonian gravitation theory’ (Norton,

2).
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taken as shorthand for an analysis in terms of sets of assumptions.
The connection between the given assumptions and the real
history of science will be considered in Section 4.

3. How was Newtonian cosmology inconsistent?

Inconsistency, of course, means that a contradiction follows.
When the noted methods of reasoning provide contradictory
answers to our question (Q) one of two principle kinds of
contradiction results:
(i)
5

acco

mas

(199
The net force on a test particle at a given time is both F and G
where FaG, or
(ii)
 The net force on a test particle at a given time is both
determinate (some vector quantity) and indeterminate (in a
sense to be clarified).
These will be tackled in Sections 3.1 and 3.2, respectively. The
precise inconsistency then depends on which of the given
assumptions (a)–(d0) the contradiction is said to follow from.
Thus Sections 3.1 and 3.2 are each split into further subsections.

3.1. A contradiction of forces

By ‘contradiction of forces’ I simply mean that the given
assumptions can be used to derive the following contradiction:

(C1) The force on a test mass is F and the force on a test mass is
G, where FaG.

This splits into three different claims depending on which of the
assumptions (a)–(d’) are used to make the derivation.

3.1.1. . . . using Newton’s law of gravitation?

Norton’s original paper (1993) shows the first possible method
of reasoning, and claims that we have a contradiction of forces
from assumptions (a), (b) and (c):
(a)
 Newton’s three laws of motion.

(b)
 Newton’s law of gravitational attraction.

(c)
 Matter in the universe is distributed homogeneously (when

viewed on a large enough scale) in an infinite Euclidean space.
In greater detail, by (b) we mean:

(b) The force of gravity Fi on a test body mt at r due to another
body mi at ri is given by,

Fi ¼ G
mtmi

ri � r
�� ��3 ðri � rÞ (1)

This gives us the magnitude and direction of the force on our test
mass mt due to one other mass mi. But in this paper we are asking
what the net gravitational force is. By (c), since we are supposing the
universe to be infinite and the mass distribution to be homogeneous,
there will be an infinite number of masses. Further, (b) comes with
no caveat that it does not hold beyond a certain distance jri�rj. Thus,
we must infer that every mass in the universe has some effect
(however small) on our test mass. Thus, there are an infinite number
of terms in our sum, and the net gravitational force is represented as
the sum-total of all the contributory forces: Fnet ¼

P
iFi.

5

For some purposes it is convenient to turn this sum into an integral

rding to
P

i

Fi ¼
R

V FdV , where instead of summing over all (discontinuous)

ses we sum over all (continuous) points in Euclidean space, as in Malament

5, p. 491). This will not be important here.
At this point, since we are drawing on assumption (c), it is
worth pausing to consider what is really meant by the
homogeneity of the universe when viewed on a large enough scale.
Of course nobody ever believed that the universe is totally

homogeneous, but rather that if you take any arbitrary region of
space R of a given large volume V then you will always find the
same total amount of mass there (with small deviations from
some mean value, which get smaller for volumes of space larger
than V). This actually tells us next to nothing about the density of
matter in the vicinity of a given test particle (it could be sat on the
surface of a black hole, or be several hundred light years from the
nearest massive particle). All we know is the total amount of
matter in an arbitrary region of space R of volume V, which may
include our particle. But this uncertainty in the local matter
distribution does not transfer to an uncertainty in the force on
such a particle, at least insofar as Norton’s ‘lines of force
argument’ (Norton, 1993, 2002) is concerned. All the argument
requires is the constant density of matter over different regions R

at some scale (however big V has to be to achieve this constant
density).

Continuing Norton’s argument, from the infinite sum we can
apparently get different answers depending on how we compute
it.6 If we first consider a spherical region of the universe upon
which our particle is sitting—of any given volume V or greater,
and situated on any side of our particle—then we get a force F
towards the centre of that sphere. It can then apparently be shown
that the force due to all other masses amounts to nothing, since
they can be grouped into spherical shells, concentric with the
centre of the original spherical region, each of which has no net
effect on our particle. Thus our infinite sum turns into
Fnet ¼ F+0+0+0+y ¼ F. But the size and direction of the original
sphere, and thus the force F, was completely arbitrary. Thus
Norton claims that the theory is ‘logically inconsistent in the
traditional strict sensey [because] we can prove within the
theory that the force on a test mass is both some nominated F and
also not F, but some other force’ (Norton, 1993, p. 413; 2002,
p.186).

In fact no such contradiction can be legitimately derived.
Malament (1995) criticised the reasoning as follows:

What Norton presents as an argument for inconsistency is
better understood as just a vivid demonstration of non-
convergence. (A perfect analogue of his argument might be
used to ‘‘prove’’ that, for every integer n, the infinite sum
1�1+1�1+y is equal to n.) y Rather than asserting that
Newtonian theory makes inconsistent determinations of
gravitational force y Norton should have asserted that it
makes no determination at all. (1995, p.491, original emphasis)

In other words, Norton should have noted that not all infinite
sums have an answer. For example, mathematicians in the late
17th and 18th centuries rigorously debated whether the infinite
sum 1�1+1�1+ . . . , known as ‘Grandi’s series’, is equal to 1, 0, 1/2,
or something else. Today, with the benefit of hindsight, we can
look upon these struggles as mere historical curiosities, and say
instead that since the series in question is not convergent it has no
sum. The question is mathematically well-posed but has no
answer, just as a question can be grammatically well posed and
have no answer.

The key failure of Norton’s argument can be seen by the fact
that he groups together the effects of masses in certain regions of
space in order to get a result. This is equivalent to bracketing

together terms in Grandi’s series in order to get a result. But since
this bracketing can be done in more than one way, if this were
6 For the full argument see Norton (1993, 2002).
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legitimate you could also show Grandi’s series to sum to two
different values. The most obvious two are as follows:

1� 1þ 1� 1þ . . . ¼ ð1� 1Þ þ ð1� 1Þ þ . . . ¼ 0þ 0þ . . . ¼ 0

1� 1þ 1� 1þ . . . ¼ 1� ð1� 1Þ � ð1� 1Þ � . . . ¼ 1� 0� 0� . . . ¼ 1

(2)

So does Grandi’s series sum to both 0 and 1? Since this sort of
bracketing is mathematically illegitimate, one must stop at the
unbracketed series and conclude that it is equal to no value.

These facts take on particular significance in the light of
Norton’s 1999 derivation. He argues (p. 274) that the infinite sum
can be written as follows:

Fnet ¼ GprDrx̂� GprDrx̂þ GprDrx̂� GprDrx̂þ GprDrx̂� . . .

¼ GprDrx̂ð1� 1þ 1� 1þ 1� . . .Þ (3)

where x̂ is a unit vector in any nominated direction. This time he
considers hemispherical concentric shells, first on one side of the
particle (in the direction of x̂) and then the other (in the direction
of �x̂), which build up to infinity. But the outstanding question is:
why is this particular style of summation legitimate and the
others not so? Hasn’t Norton once again illegitimately grouped
together (in hemispheres) the effects of large numbers of masses
to achieve his sum? Hasn’t he introduced brackets into the
reasoning?

This is true to some extent. The real infinite sum, without
brackets, is a close approximation to a 3D version of Grandi’s
series.7 Strictly speaking Norton should not group together the
effects of large numbers of masses in hemispherical shells as he
does in his 1999 paper. Crucially, however, this time the grouping
does not affect the divergence of the summation. The introduction
of his brackets is analogous to the following manipulation of
Grandi’s series:

1� 1þ 1� 1þ . . . ¼ ð1� 1þ 1Þ � ð1� 1þ 1Þ

þ ð1� 1þ 1Þ � . . . ¼ 1� 1þ 1� 1þ . . . (4)

In other words, the divergence of the sum is preserved by the
bracketing. This is the achievement of Norton (1999). Thus
although strictly speaking the infinite sum should not be set
equal to k(1�1+1�1+y)—where k is the relevant constant
vector—the indeterminate nature of the force Fnet is preserved
by Norton’s 1999 analysis, whereas it is not preserved in his 1993
and 2002 analyses. With Norton’s 1999 analysis we can be sure
that the original series is divergent, because the re-ordering and
bracketing of a convergent series would never leave us with a
non-convergent series.

A further point is in order here. Malament says that what
Norton presents is a vivid demonstration of non-convergence.
However, more specifically what Norton presents is a vivid
demonstration of alternating non-convergence. Only when signs
in a divergent series alternate is it possible to make quantities
cancel out, and achieve various different finite answers through
bracketing and re-ordering. Thus there is a sense in which
alternating series do not diverge, since ‘diverge’ usually means
‘diverge to infinity’. However you bracket and re-order an infinite
series which diverges to infinity you get infinity (whether positive
or negative). Only with alternating series is it possible to achieve
any number of finite answers for the sum of the series. To make
this distinction clear, in what follows the word ‘indeterminate’
will be preferred over ‘divergent’ to describe the sum of Grandi’s
series.
7 In fact the real infinite sum could never be presented. Grouping of some sort

has to be introduced, because in order to consider the universe as homogeneous

we have already grouped together large portions of it.
With this clarified we can still agree with Malament that
assumptions (a)–(c) make no determination of the net force. But
this is not because the force is divergent, in the sense of ‘diverges
to infinity’. If it were divergent then we could say that the
assumptions predict an infinite force. Rather, it is because we
reach a force balanced between convergence and divergence, an
indeterminate force. Norton apparently accepts Malament’s criti-
cism, since he is moved in his reply (1995) to add a further
assumption to (a)–(c), and introduce a somewhat different
contradiction, an ‘indeterminacy contradiction’, as we will see in
Section 3.2.
3.1.2. . . . using Poisson’s equation?

A second method of reasoning involves Poisson’s equation.
Norton never suggests that we get a contradiction of forces using
Poisson’s equation directly, but it will be useful later on to
consider precisely why the theory is not inconsistent in this way.
Fleshing out assumption (b0) we have:

(b0) The force of gravity F on a body mt at r due to the mass
distribution in a given volume V is given by F(r) ¼ �mtrf(r),
where f(r) is such that r2f(r) ¼ 4pGr(r), where G is a
constant and where the gravitational potential f(r) and the
mass density r(r) are continuous scalar fields on V.

To find the net force on a test mass we no longer need to sum up
all the individual forces, but can simply derive the force from the
potential field f(r). From assumption (c) r is constant in space, so
instead of ‘r(r)’ we can simply write ‘r’, with the added proviso
(as we saw in the last section) that the density is only constant for
regions of space of a given volume V or greater. Poisson’s equation
then becomes r2f(r) ¼ 4pGr(r), where f(r) now refers to the
gravitational potential at ‘points’ of space r, which actually pick
out regions R of volume V or greater. Since Poisson’s equation is a
differential equation we need to integrate, and when you integrate
you inevitably incur constants of integration. Thus the so-called
‘canonical solutions’ of Poisson’s equation are,

fðrÞ ¼
2

3
pGr r� r0j j2 (5)

Here r0 is the constant of integration.8 If we differentiate this
equation to test whether it satisfies Poisson’s equation we get the
right result 4pGr whatever r0 is, because it simply disappears
during the calculation.

We can now move to the force on our test mass using
F(r) ¼ �mtrf(r). We find,

FðrÞ ¼ mt
4

3
pGrðr0 � rÞ. (6)

Once again, it should be emphasised that this really means the
average force F in a large region of space R—picked out by r—of
volume V or greater. We get a different value for this average force
depending on how we choose r0, so we can get two different,
contradictory average forces in the same region R by choosing r0

in two different ways. But it would be a gross error to go on to
suppose that the theory is inconsistent for this reason. The theory
just does not tell us what r0 is, so we must leave it as an unknown
constant. We certainly cannot just arbitrarily choose it to be two
different things. To emphasise that the theory leaves us guessing
we could write F ¼ ?, because r0 ¼ ? (this will be useful for
comparison later).
8 Norton (1995) calls these the ‘canonical solutions’, and distinguishes them

from the most general solutions, which include another constant of integration.

This constant is quickly eliminated (see Norton, 1995, p. 513), and at any rate does

not affect any argument here (see footnote 11, below).
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3.1.3. . . . reasoning from symmetry

Given the tools at our disposal we have thus-far seen two
different ways of reasoning when faced with the question, ‘What
is the net force on a given test particle?’ We can use Newton’s
inverse-square law of gravitation or we can use Poisson’s
equation. A third possible method of reasoning, and perhaps the
most obvious (particularly to non-scientists), is to use symmetry
considerations.

There is an intuition that if the universe is really infinite and
Euclidean, and has a homogeneous mass distribution (with the
qualifications noted above), then it will be exactly the same vis-à-
vis the average force on a test mass in any given region R.9 In other
words, it is assumed that the average force cannot differ for any
two such regions, since they are identical in the relevant respects.
Of course this cannot follow from the cosmological assumptions
(c) alone, since no reference is made to force there. From (c) it only
follows that every ‘point’ of the universe is identical vis-à-vis the
surrounding mass. So we need to add another assumption to
change the intuition into a valid claim that every ‘point’ in the
universe is identical vis-à-vis the gravitational force.

The following assumption will do:

(e) Gravitational force is caused by all mass and only mass.

If gravitational force is caused by all and only mass, then the
fact that every ‘point’ in the universe is identical vis-à-vis
the surrounding mass distribution will mean that every ‘point’
in the universe is identical vis-à-vis those factors relevant to the
gravitational force. Which will mean that the average gravita-
tional force is identical at every ‘point’ in the universe. It is often
assumed that this means that the force must be everywhere zero.
What reason, the argument goes, could there be for the force to
point in one direction rather than another? This really needs an
additional ‘no preferred direction’ assumption, which can be
ignored for present purposes. All that is required to reach
contradiction is that the force, whatever it is, does not differ from
‘point’ to ‘point’. Following the discussion in Section 3.1.1, it
should be noted that this is also consistent with the force being
everywhere indeterminate.10

We can now finally achieve a contradiction of forces by
comparing this method of reasoning with the one seen in the
previous section. From symmetry, drawing on assumptions (c)
and (e), we have inferred either that F ¼ k at every ‘point’ r of the
universe (for some kAR3) or that F is everywhere indeterminate.
Either way F will not differ from ‘point’ to ‘point’. But we saw in
the previous section that we can draw on assumptions (b0) and (c)
to conclude that the average force at a given ‘point’ r will be

FðrÞ ¼ mt
4

3
pGrðr0 � rÞ (7)

In order to satisfy Poisson’s equation r2f(r) ¼ 4pGr, r0 must be
some real vector quantity: r0AR3. But whatever vector quantity
we choose we find that the force F will differ from one ‘point’ r to
another r0. In fact whatever the choice of r0 we find that the
average force on a test mass will be k, for any given k, in exactly
one region in the universe. And the difference between regions
increases as the distance between the regions increases. Using this
9 Focusing on regions rather than points of space obviates the need to account

for local variations in the matter distribution, and allows us to compare the results

of this method of reasoning directly with that which draws on Poisson’s equation,

as seen below.
10 Malament (1995, pp. .493 and 509) argues that a homogeneous mass

distribution does not entail a homogeneous force field. However, this is only when

one takes ‘‘gravitational force’’ to be a gauge quantity with no ‘direct physical

significance’ (as Malament puts it). But before 1900 ‘‘gravitational force’’ certainly

was presumed to have physical significance, so the entailment holds true for the

purposes of this paper.
fact we reach the following contradiction, resulting from reason-
ing from (b0), (c) and (e) in two different ways:

(C2) The average force on a test mass in any two arbitrary,
widely spaced regions of the universe R and R0 (of volume V or
greater) will not differ (or differ by a negligible amount), and
the average force on a test mass in any two arbitrary, widely
spaced regions will differ significantly.11

Although this is a contradiction, it is not immediately obvious
what it means in empirical terms. We will not find the ‘force on a
test particle’ F being, impossibly, both two different things at a
single time (in other words we do not get contradiction (C1)).
Whereas the ‘force on a test particle’ is something we might say
‘exists’, the average force in a given region of space is a non-
existent abstraction, just as the average family (with 2.4 children)
is an abstraction. The real empirical difference here lies with the
large-scale movements of matter over time: with one story there
are no large-scale movements, whilst with the other there will be
a large-scale acceleration towards the ‘point’ r0.

This is closely related to Norton’s so-called ‘inhomogeneity
contradiction’, as introduced in his 1995 paper (Norton, 1995,
p. 514). However, instead of a contradiction of forces he introduces
the contradiction,

(C3) The gravitational potential f is homogeneous and it is not

the case that the gravitational potential f is homogeneous.

This is only achieved by introducing a new assumption:

(d0) The gravitational potential f is homogeneous.

Unlike the other assumptions used so far, commitment to (d0)
by scientists is dubious. j is not a physical thing after all, but is
just a mathematical tool, which intermediates between the ‘real’
masses and forces.12 The suggestion seems to be that (d’) follows
from the homogeneity of the mass distribution, but this is to mix
up the physical and the mathematical. The argument is surely that
since the universe’s mass distribution is symmetrical the universe
cannot differ from region to region in certain physical respects.
The latter include the (physical) force, but not the (unphysical)
potential.

Here it is better to turn to Malament (1995, p. 492), who
frames the difficulty in terms of the homogeneity of the force field.
Thus a slightly different contradiction is suggested:

(C4) The gravitational field f is homogeneous and it is not the

case that the gravitational field f is homogeneous.

where f stands for f(r), the force per unit mass at r. This is closely
related to (C2), but differs from it in two respects which are worth
noting. First, Malament has left out the fact that f must stand for
the average value of the force field in large regions (thus (C4)
makes things seem simpler than they really are). However, this
isn’t really a difference since Malament has simply left it implicit.
A more substantial difference comes in the fact that Malament
does not allow for the fact that a force everywhere indeterminate
11 Einstein provided a possible way forward here. He found that he could make

things work by altering Poisson’s equation to r2f�lf ¼ 4pGr, so that a constant

solution for f is possible: j ¼ �4pGr/l (he found that no such solution is possible

with the normal version of the equation, even if one draws on the most general

solutions—see footnote 8, above). This then gives an average force of F ¼ 0
everywhere, consistent with symmetry considerations. See Norton (1999) for this

and other ways in which the assumptions can be modified to avoid the problems.
12 The potential was introduced by Laplace in the 1770s, and was considered a

mere computational tool from the very beginning (see Cat, 2001, p. 402ff.; Grattan-

Guinness, 1990, p. 332).
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force fixed by (b) and (c), not that there is no force.
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is compatible with symmetry constraints (unless, somewhat
implausibly, he intends this possibility to be covered by the word
‘homogeneous’). In other words one can only reach Malament’s
contradiction (C4) by drawing on an extra assumption, assump-
tion (d), which blocks the possible indeterminacy of the force. But
the present analysis shows that drawing on this extra assumption
is not necessary to reach contradiction. Leaving assumption (d)
aside, from symmetry it follows that if such a force field exists
then it is homogeneous. Poisson’s equation then brings contra-
diction by telling us that such a force field does exist, and that it is
inhomogeneous, which affirms the antecedent and denies the
consequent of our conditional.

Summing up, what I have shown is that we do get a genuine
contradiction of forces (C2) from (b0), (c) and (e). In fact we might
even say that we reach the contradiction by (b0) and (c) alone,
since it might be argued that (e) is embedded within (b0).
However, this does not affect the main point here: the challenge is
not to find inconsistency in as few assumptions as possible, but to
find inconsistency in assumptions which probably were com-
mitted to, in the relevant historical period, as serious candidates
for the truth. There can be little doubt that assumptions (b0), (c)
and (e) meet this criterion (see Section 4 for more on this point).

3.2. An indeterminacy contradiction

The contradiction of concern in this section will be,

(C5) There is a unique gravitational force on a test mass and it’s not

the case that there is a unique gravitational force on a test mass.

This is not quite the contradiction Norton presents in his 1995
paper, but it is surely what he means to present. It is worth
pausing to clarify things here, since he does not correct his
mistake in his 1999 and 2002 papers.

Norton responds to Malament’s objections (as seen above in
Section 3.1.1) in his 1995 paper. He accepts that there is no
contradiction of forces after all, and instead brings to our attention
what he calls an ‘indeterminacy contradiction’. On p. 513 he adds
the following assumption to (a)–(c):

(d*) There is a unique gravitational force on a test mass fixed
by (b) and (c).

Now, since Malament is right about the non-convergence of
the sum, one cannot derive a unique gravitational force on a test
mass from (b) and (c). Thus it might be supposed that we have a
contradiction here:

(C6) There is a unique gravitational force on a test mass fixed
by (b) and (c) and it’s not the case that there is a unique
gravitational force on a test mass fixed by (b) and (c).

But on closer inspection we do not have this contradiction after
all. If we accept Norton’s (d*) we have,

(a) Newton’s three laws of motion.
(b) Newton’s inverse-square law of gravitation.
(c) Matter is distributed homogeneously and isotropically

(when viewed on a large enough scale) in an infinite
Euclidean space.

(d*) There is a unique gravitational force on a test mass fixed
by (b) and (c).

(d*) gives us the positive contradictory of (C6), so it only
matters that we can derive the negative contradictory. However,
even if it follows from (b) and (c) that,
It’s not the case that there is a unique gravitational force on a
test mass.

this is not the contradictory we want. To establish (C6) we need to
add ‘yfixed by (b) and (c)’ on the end. But since the assumptions
in question do not refer to ‘(b)’ and ‘(c)’ at all this is an impossible
task. (C6) cannot be derived from (a)–(d*) after all.

It is clear what has happened here. In specifying (d*) Norton
has accidentally mixed up the theory and the meta-theory. He
actually meant to add,

(d) There is a unique gravitational force on a test mass

which leads to contradiction (C5), as we will see in Section 3.2.1.

3.2.1. . . . using Newton’s law of gravitation

We saw in Section 3.1.1 that, as Malament claims, assumptions
(a)–(c) tell us that the net force on a given test mass is
undetermined. But (d) tells us that the net force on a test mass
is determined. And the introduction of (d) should not be dismissed
as the ad hoc introduction of the required contradictory. In fact,
the introduction of (d) is merely the explicit mention of an
assumption that is already an integral part of Newton’s three laws
(a). Take Newton’s first law, for example. In its original form it
states, ‘Every body perseveres in its state of being at rest or of
moving uniformly straight forward, except as it is compelled to
change its state by force impressed.’ This is equivalent to ‘a body is
either at rest or moving in a straight line, or accelerating due to an
impressed force’. These are the only options, so a body is either
experiencing a force (accelerating) or it is not (straight line
motion, or rest). In other words, there is always a determinate
force on a body, whether it be something or nothing. Thus, the
introduction of (d) is not the introduction of a new assumption at
all, but is part and parcel of (a). Thus, the indeterminacy
contradiction (C5) is meant to follow from (a)–(c).

There is an important distinction to make here. Certainly from
(b) and (c) we end up with an infinite sum which is indeterminate,
from which we cannot achieve an answer to the question ‘what is
the force?’ But can we conclude from here that there is no unique
gravitational force on a test mass? That is, we have failed using (b)
and (c) to determine what the force is. But couldn’t it still be the
case that there is some unique force, and that we could determine
what it is by another method, using different reasoning or
bringing in other considerations?13 This is crucial, because if we
cannot make the further assumption that no force exists then
we cannot get to the negative contradictory in question, and the
inconsistency claim falls down.

The two possible inferences can be distinguished as follows:

(I) from indeterminacy infer that no solution has been reached.
(I*) from indeterminacy infer that there is no solution.

If one makes the weaker inference (I) then the reasoning
continues as follows. The fact that we cannot figure out what the
force is from (b) and (c) can be represented by a question mark (cf.
Section 3.1.2, above):
X

i

Fi ¼ ?

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ðbÞ;ðcÞ;ðIÞ

(8)

On this understanding, all options are still open—there might be
some other way to determine what the unique force on a test
mass is. There is then no contradiction with (d). We might
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formalise (d) thus:

9k 2 <3;k ¼ Fnet|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðdÞ

(9)

In other words, there exists some vector quantity which equals
the net force on a test particle.14 If we believe that (b) Newton’s
law of gravity holds then we can add,

Fnet ¼
X

i

Fi

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ðbÞ

(10)

Placing these beside each other we have,

9k 2 <3;k ¼ Fnet|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðdÞ

Fnet ¼
X

i

Fi

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ðbÞ

X
i

Fi ¼ ?

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ðbÞ;ðcÞ;ðIÞ

(11)

Now, by substitutivity of identicals, we can fill in the question
mark and write:

9k 2 <3;k ¼
X

i

Fi

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðbÞ;ðcÞ;ðdÞ

There is no contradiction here. We couldn’t find an answer to
our indeterminate sum using (b) and (c), but there is some answer,
yet to be discovered.

Today, two centuries of mathematics tells us that this is the
wrong way to think about indeterminate sums. Not only do we get

no answer when we are faced with an indeterminate sum, we find
that there is no answer, there cannot be an answer, as stated by (I*).15

As far as the sum of gravitational forces goes, this means that,

8l 2 <3;
X

i

Fial

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðI�Þ

(12)

With this in place we really do have our contradiction. We now
have the following three equalities:

9k 2 <3;k ¼ Fnet|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðdÞ

Fnet ¼
X

i

Fi

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ðbÞ

8l 2 <3;
X

i

Fial

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðbÞ;ðcÞ;ðI�Þ

(13)

From the substitutivity of identicals we can then write,

9k 2 <3; 8l 2 <3; kal (14)

To be logically rigorous, we could now perform existential and
universal instantiation to reach the conclusion aaa. In other
words it follows that some three-vector a is not equal to itself, a
blatant contradiction.

Thus, the inference we make when faced with an indetermi-
nate sum decides whether we derive a contradiction or not. As we
will see further in Section 4.2, the force of inference (I*) can be
easy to overlook, and has been overlooked by several authors both
in the distant and recent past. In fact what (I*) tells us is that
absolute forces in the universe do not exist (that our metaphysics
is wrong).16 The point is that one must have assumed that
absolute forces exist in order to ask the question ‘What is the net
14 Of course before the introduction of ‘real numbers’ and the like physicists

would have talked vaguely about ‘quantities’, but that does not affect the argument

at hand.
15 Cauchy wrote in 1821, ‘a divergent series does not have a sum’. However, in

this paper I am assuming only that alternating divergent series do not have a sum.

The reason is that, if we are talking physics (rather than mathematics) we cannot

infer that a quantity which ‘diverges to infinity’ is equal to nothing. Infinity counts

as ‘something’ here.
16 This is the conclusion of Norton’s 1995 paper (see especially p. 515). Note

the subtle difference between saying that there are no forces (i.e. F ¼ 0
everywhere) and saying that absolute forces do not exist. In the latter case ‘F’

does not refer, so it cannot equal anything.
force on a test particle?’ But then when we employ (I*) we find
that absolute forces do not exist, contradicting the assumed
metaphysics. So when one reaches indeterminacy in the way seen
here it is really just another way of reaching contradiction. This
puts some meat on the bones of Malament’s suggested distinction
(1995, p. 489) between the theory being inconsistent and the
theory being ‘unacceptable a priori’ (because of indeterminacy):
the latter is a special case of the former.
3.2.2. . . . from summing the potential j
There is one final method of reasoning we have not yet

considered, and there is something of a tradition of using it to
demonstrate the failures of the theory. The gravitational potential
at a point r due to a given mass mi at ri can be expressed thus:

fiðrÞ ¼ �G
mi

ri � r
�� �� (15)

The net gravitational potential at a point will then be
fnet(r) ¼

P
ifI(r). This then gives rise to a new assumption about

forces in the universe:

(f) The net force of gravity Fnet on a body mt at r is given by
FnetðrÞ ¼ �mtrfnetðrÞ, where fnet is achieved by summing the
gravitational potential (Eq. (15)).

But the problem with this method of reasoning is that the net
gravitational potential is everywhere infinite: whereas the
components of force on two opposite sides of a test mass, being
vector quantities, cancel each other out (to 11 or another), the
components of potential, being scalar quantities, accumulate. This
time not only does the sum diverge to infinity, but it diverges to
infinity relatively quickly because the potential is a 1/r relation-
ship, whereas masses in the universe increase with r2.17

What should we conclude from the fact that the potential diverges
to infinity at every point? As noted in Section 3.1.3, the potential is
merely a mathematical tool, used to mediate between physical masses
and forces. If there is trouble in an infinite potential, that should only
be in the fact that the physical consequences are unpalatable. Now, as
stated, to reach the force on a test mass mt from the potential we need
to take its gradient: F(r) ¼ �mtrf(r). But if j is infinite everywhere
this operation is not possible, because it is not defined for infinity. One
cannot proceed to derive F(r) ¼ 0, reasoning that j(r) is everywhere
constant. ‘Constant’ refers to numerical constancy, and infinity is not a
number. Thus, I suggest, not only do we find that we do not know
what F is in this case, we find that F is indeterminate. Thus, summing
the potential is consistent with summing the force directly using
Newton’s law of gravity (b), as in Section 3.2.1. So this is really just the
same problem of indeterminacy in a different guise.

There have been several related discussions, but nowhere has
the problem been identified with indeterminacy. Jaki (1969) writes
of a ‘gravitational version of Olbers’ paradox’ where in the latter
case, in an infinite, homogeneous universe, the light from distant
stars accumulates to give an infinite amount of light at any
point.18 In the gravitational case Jaki (1979) writes,

An infinite universe of homogeneously distributed stars
or galaxies cannot exist because in such a universe the
gravitational potential is infinite at any point. (p. 121)
17 Cf. Norton (1999, p. 273). Grandi’s series arises in the context of Newtonian

cosmology for the force because the force is a 1/r2 relationship and masses in the

universe increase with r2, thus cancelling each other out.
18 Olbers, in 1823, derived that the light at any point in the universe would be

equal to k(1+1+1+1+. . . ) for a given constant k (see Jaki, 1969, p. 134f.). Clearly this

is not indeterminate: it diverges to infinity.
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19 I doubt Malament would also claim that (b), like the ‘integral formulation’,

‘is not applicable to cosmological contexts of the sort we have considered’ (that is,

when the sum does not converge). As has been shown above, one certainly can

apply (b) in such a context, with the result that the force on a test mass is

indeterminate. To maintain that this means that (b) is inapplicable would be to use

one’s assumptions like a ‘toolbox’, where one picks and chooses one’s assumptions

depending on whether they lead to desirable results. Certainly some scientific
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But unlike light the potential is a non-physical thing. Nowhere do
we find a discussion of exactly why an infinite potential is
impossible; nowhere is there a discussion of indeterminacy. And
those whom Jaki draws on apparently think that the theory
demands genuinely infinite forces. In particular, Jaki draws at
length on Einstein (1917), who argues as follows:

According to the theory of Newton, the number of ‘‘lines of
force’’ which come from infinity and terminate in a mass m is
proportional to the mass m. If, on the average, the mass-
density r0 is constant throughout the universe, then a sphere
of volume V will enclose the average mass r0V. Thus the
number of lines of force passing through the surface F of the
sphere into its interior is proportional to r0V. For unit area of
the surface of the sphere the number of lines of force which
enters the sphere is thus proportional to r0

V
F or to r0R. Hence

the intensity of the field at the surface would ultimately
become infinite with increasing radius R of the sphere, which is
impossible. (Einstein, 1917, p. 106)

This is worth quoting in full, because to my knowledge it has
not yet been made clear that this reasoning is seriously
incomplete. How are the final words ‘which is impossible’
warranted? Rather than focusing on the potential f he is here
focused on the force field f, the force per unit volume at a point. It
is certainly true that, in our infinite universe, there will be an
infinite component of f in a given direction, but what is so
impossible about this? The impossibility only comes when we
consider the combined effect of all such infinite components and
find that the result is indeterminate, as in Section 3.2.1, above. The
impossibility does not lie simply in the absurdity of an ‘infinite
force field’, as Einstein suggests.

The supposition that it is possible to derive infinite forces is not
unique to Einstein. Seeliger, who finally shed light on the problems
with Newtonian cosmology in 1895, supposes that there are
infinite forces in a follow-up paper of 1896. He writes, ‘It follows
from potential theory that there must be in the universe unlimited
(infinitely) great accelerations.’ (cited in Norton, 1999, p. 279,
emphasis in original). But this simply is not the case. Once again,
all that is shown is that there will be an infinite component of force
in a given direction, or that the potential will sum to infinity. Kelvin
is similarly unclear in 1901 (see Norton, 1999, p. 285).

In summary, we do get a contradiction here from summing the
potential, and it is once again the indeterminacy contradiction
(C5). This time we reach the conclusion because the gradient of a
scalar field, which is everywhere infinite is indeterminate just as
the sum of an alternating divergent series is indeterminate. So
what we have here is not a ‘qualitatively different’ type of
problem, as Norton claims (Norton, 1999, p. 279), but just a
different way of reaching the same conclusion.

3.2.3. . . . using Poisson’s equation

Norton claims that the indeterminacy contradiction (C5) also
follows from applying Poisson’s equation:

The addition of the potential f and Poisson equation does not
materially affect the indeterminacy contradiction of New-
tonian cosmology. There are as many canonical solutions as
there are choices for r0. Each distinct choice of r0 leads to a
different force on the test body. (Norton, 1995, p. 514)

So Norton is claiming that indeterminacy follows from the fact
that, depending on how we pick the constant of integration, we
get a different result for the force. So no unique force follows from
the theory, just as no unique force followed when we had an
infinite sum in Section 3.2.1. But here as before we need to make a
distinction between no unique force following from the theory and
there being no unique force at all. In Section 3.2.1 this was
expressed as two ‘strengths of inference’ (I) and (I*). With
Poisson’s formulation we get an analogous pair of inferences:

(II) From an unknown constant of integration infer that the
theory provides no unique solution.

(II*) From an unknown constant of integration infer that
there is no unique solution.

But this time only the weaker inference (II) is legitimate. This is
because the reason why one cannot infer two contradictory forces
is different. Recall that in Section 3.1.1 we could not infer two
contradictory forces because there cannot be a solution to an
indeterminate sum. But in Section 3.1.2 we could not infer
contradictory forces because, although there certainly can be a
solution to an equation with an unknown constant, the theory
could not tell us what it was. Since we cannot make the stronger
inference we cannot reach the contradictory in question and,
contra Norton, there is no indeterminacy contradiction here.

However, when we compare the method of reasoning based on
Poisson’s equation (b0) and that based on Newton’s law of
gravitation (b) we do find a conflict. We saw above that if one
applies (b) to an infinite homogeneous universe, one infers that
the force is indeterminate. But, as seen in Section 3.1.2, using
Poisson’s equation instead we can move from r2f(r) ¼ 4pGr to

fðrÞ ¼
2

3
pGr r� r0j j2 (16)

where r0 must be some real number (it cannot be indeterminate
since then it would not be a solution to Poisson’s equation). And
from here, using F(r) ¼ �mtrf(r), since one has a determinate
potential one has a determinate force. So from (b), (b0) and (c) we
can infer the indeterminacy contradiction (C5) once again, where
this time the determinacy of the force follows from (b0).

This seems to go against Malament (1995). He seems to claim
that (b0) is actually a generalisation of (b) because when the
infinite sum in question converges (b) and (b0) agree, whereas (b0)
can also be applied when the sum does not converge. He writes,

There is a clear sense in which it [the ‘‘differential’’ formula-
tion] is a generalization, with a wider domain of applicationy
The ‘‘integral’’ formulation is not applicable to cosmological
contexts of the sort we have considered. (pp. 491 and 508)

But if (b0) were a generalisation of (b) then they would not be in
conflict. And they are in conflict, as I have argued above.

However, it turns out that what Malament calls the ‘integral
formulation’ and the ‘differential formulation’ are not quite the
same as (b) and (b0). They are the same except for one crucial
interpretational difference: gravitational force is taken to be a gauge

quantity without direct physical significance. But (b) and (b0) were
around long before this 20th century attitude to ‘gravitational
force’. Before 1900 (b0) was not a generalisation of (b), and they
were in fact in conflict. Thus, Malament’s analysis and the above
analysis can stand side by side: one need only note that Malament
is concerned with 20th century developments of Newtonian
cosmology, and this paper is not.19
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4. Why weren’t the inconsistencies noticed?

In all this we find four notable inconsistencies:
(I1)
(footn

pract

being
2

who

majo

write

being

Jaki, 1
C2 follows from (b’), (c) and (e) (Section 3.1.3).

(I2)
 C5 follows from (b), (c) and (d) (Section 3.2.1).

(I3)
 C5 follows from (c), (d) and (f) (Section 3.2.2).

(I4)
 C5 follows from (b), (b’) and (c) (Section 3.2.3).
In a sense, then, Newtonian cosmology was riddled with
inconsistency. Further, the assumptions in question are clearly
relevant to the real history of science to some degree or another.
This paper is not the place for a detailed history, but Jaki’s history
of Olbers’ paradox (Jaki, 1969) is a good place to start. Each of the
assumptions in question enjoyed serious commitment for the
relevant periods in between the years 1700 and 1900, and most
were widely regarded as obvious truths.20

Thus, the question of why the inconsistencies remained hidden
for so long is more important than ever. This brings us back to
questions (i) and (ii) introduced in Section 1:
(i)
 What was it about the scientific community, which prevented
the inconsistencies from being noticed?
(ii)
 What was it about the science, which prevented the incon-
sistencies from being noticed?
In particular the content of the present paper enables us to
provide an answer to question (ii). In addition, in Section 4.1, some
relevant features of the scientific community are introduced to
provide the beginnings of an answer to question (i).

4.1. Because the right question wasn’t asked

There are a multitude of reasons why the question, which leads
to the inconsistencies was not asked. The above analysis high-
lights one reason in particular: the relevant question is actually
rather obscure. This is made obvious by the contradiction of forces
(C2) of Section 3.1.3. We are not asking what the actual force on a
given body is: to answer this one would need to know, absurdly,
the positions and masses of an infinite number of bodies. Rather,
our question (Q) needs to be changed to,

(Q0) What is the average net gravitational force a test body
would experience over all points of an arbitrary region of the
universe R of a given volume V large enough so that the
universe is homogeneous at that scale?

This could also be framed in terms of the force field f, as per
Malament (Section 3.1.3), but still we would not get away from the
complications of averaging. And, complications aside, it is not
immediately clear why this question is an interesting one, except

that answering it in two different ways leads to inconsistency.
So even if relevant individuals had been asking pertinent

cosmological questions there is some reason to suppose that the
question at issue would not have been asked. But the fact is that,
particularly in the 19th century, the relevant individuals were not
ote continued)

ice proceeds in this way, but only when the assumptions one trades in are not

considered as candidates for truth.
0 Perhaps this is less obvious regarding assumption (c), and there were some

doubted either the infinitude of the universe or its homogeneity, but the

rity were convinced. For example, Bertrand Russell was convinced enough to

as late as 1897 that the infinitude and homogeneity of the universe, far from

working hypotheses (say), were scientific principles ‘established forever’ (as

969, pp. 184 and 220 puts it).
asking cosmological questions at all. Merleau-Ponty (1977, p. 283)
refers to ‘the disappearance of cosmological science as such in the
nineteenth century, that is, the investigation of the properties of the
Universe considered in its totality—until its surprising revival in the
twentieth century.’ It is this ‘revival’ which explains the title of his
book of 1976 (co-written with Morando): The Rebirth of Cosmology

(Merleau-Ponty and Morando, 1976). Therein he goes as far as to say
that, in the 19th century, ‘cosmology itself no longer existed’ (p. 66).

This is a remarkable claim, since there was certainly much
work in astronomy and celestial mechanics during this period.
But, regarding the former, ‘in the course of the [19th] century
astronomers were discussing the nature and internal structure of
individual nebulae rather than the wider cosmological problem.’
(North, 1965, p. 16. Cf. Jaki, 1979, p. 117; Merleau-Ponty, 1977,
p. 291). Similarly those working in celestial mechanics, such as
Poisson himself, avoided cosmology entirely. For example Laplace,
one of the founding fathers of celestial mechanics and active in
the late 18th and early 19th centuries, never made even a single
conjecture as to the structure of the universe as a whole (Merleau-
Ponty, 1977, p. 283; Jaki, 1969, p. 98). And later in the 19th century,
as Jaki puts it, ‘The silence of Urbain J. J. Leverrier, the most
celebrated French astronomer of those timesy illustrated the
typical aversion to cosmological problems on the part of most
skilful experts on celestial mechanics’ (Jaki, 1969, p.157).

In the light of such facts we may consider afresh the question
‘Was Newtonian cosmology inconsistent?’ In the 19th century the
answer should really be neither ‘yes’ nor ‘no’; rather there is a
mistake in the question, since Newtonian cosmology did not exist

in this period in any meaningful sense. In the terms of Section 2,
above, we may say that the relevant assumptions were not
brought together scientifically because cosmological questions
were not being asked which would have required them to be
brought together. This is of course especially relevant to incon-
sistencies (I1) and (I4), since they both draw on Poisson’s equation
which was only introduced in 1813. And (I3), which depends on
potential theory, is similarly mainly relevant to the 19th century
(recall that Laplace introduced the potential in the 1770s).
4.2. Because of confusion about non-convergent series

Before the 19th century there is more interest in questions of
cosmology, but before the 19th century is before Cauchy. Since
inconsistencies (I2), (I3) and (I4) lead to the indeterminacy
contradiction (C5), appreciating them depends on making the
right inference when faced with a non-convergent series. Thus,
there is some reason to suppose that a lack of understanding of
the relevant mathematics contributed to the inconsistency going
unnoticed. In general terms we may say that one of the inferences
necessary for the derivation of the contradiction was a peculiar
type of inference, alien to the relevant individuals. More
specifically, I will provide some evidence in this section that
certain individuals made inference (I) rather than inference (I*), as
introduced in Section 3.2.1, and repeated here for convenience:

(I) from indeterminacy infer that no solution has been reached.
(I*) from indeterminacy infer that there is no solution.

This will also constitute my preferred explanation of the
attitudes of those—Isaac Newton and Svante Arrhenius—who
according to Norton favour a ‘no-solution needed’ solution to the
inconsistency. He characterises this attitude as follows:

They are aware of the inconsistency but ignore the possibility
of deriving results that contradict those that seem appro-
priatey At first glance, it would seem that the physical
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theorists avoid logical anarchy by the simple expedient of
ignoring it! (Norton 2002, p. 191)

Instead I claim that they were not aware of the inconsistency
after all, because they only made inference (I)—‘no-solution
reached’—and not (I*)—‘no-solution possible’. To decide between
Norton’s claims and my own a look at the primary evidence is
required.

First to Newton. Was he aware of the inconsistency and chose
just to ignore it, as Norton claims? In fact, although Norton does
describe Newton as subscribing to a ‘no-solution solution’ in his
2002 paper, in his historically focused 1999 paper he suggests
instead that Newton was not aware of the inconsistency. When the
theologian Richard Bentley pressed Newton on the gravitational
consequences of an infinite universe in 1692, Newton referred to
how mathematicians handle infinities in terms of limits and
convergence. Thus Norton concludes,

Having recalled for us that there are perfectly good methods of
comparing infinites by means of limits, Newton seemed not to
have applied them himself to the problem at handy It is hard
to understand how Newton could make such a mistake. His
mathematical and geometric powers are legendary. Perhaps
Newton was so sure of his incorrect result from the symmetry
considerations that he did not deem it worthwhile the few
moments reflection needed to see through to a final result.
(Norton, 1999, p. 290f.)

This story goes against the ‘no-solution solution’ as described
in his 2002 paper. He further writes that Newton ‘would surely
have noticed’ that there was an inconsistency if only he had
applied the relevant mathematics. So it is not the case, then, that
Newton noticed the inconsistency but chose to ignore it, as per the
‘no-solution solution’.

This suggests that we read Norton in another way. In sum he
appears to be saying that either (i) Newton didn’t apply the
relevant mathematics and so didn’t notice the indeterminacy, or
(ii)—the ‘no-solution solution’—Newton did apply the relevant
mathematics, noticed the indeterminacy, and chose to ignore it.

This paper can offer an alternative explanation. The fact that
Newton is clear on how to handle converging infinite series is
actually irrelevant insofar as Newtonian cosmology is concerned.
The relevant series is infinite and diverging, so Newton could not

have applied the methods of limits to the problem at hand (as
Norton suggests). And in fact Newton’s grasp on divergent series,
and alternating divergent series in particular, was not good. In his
most in-depth writings on infinite series21—an unpublished essay
from 1684 entitled ‘On the computation of series’—Newton
blatantly overlooks the fact that a divergent alternating series
has no sum. Following one particular passage Whiteside’s
annotation reads,

He has, however, ignored the unpleasant fact that no unique
sum is assignable to a divergent alternating series (Newton,
1971, p. 611).

I take it that Whiteside is using the word ‘ignore’ in a loose sense
here, and does not mean to suggest that Newton saw the correct
conclusion but decided to ignore it. Newton was not in the habit of
ignoring what he knew to be correct conclusions.

In sum, then, a ‘third way’ seems a more plausible explanation
of Newton’s attitude than either of Norton’s suggestions. This is to
suppose that Newton did make the calculation in question, but
upon coming across an alternating, divergent series made
inference (I)—no solution reached—rather than inference
21 See Whiteside’s annotation in Newton (1981, p. 267).
(I*)—no solution possible. Since he found no solution, but did
not conclude that there was no solution, he tried a different
tack. As Norton notes, ‘symmetry considerations’ guided him,
and he concluded that the average net force must be zero
(cf. Section 3.1.3, above).22 The infinities must balance after all,
although apparently mathematics is not up to the task of showing
us this.

To give a second example, Norton writes that Arrhenius ‘laid
out a clear statement of the ‘no-solution solution’. Arrhenius
wrote in 1909,

[I]t is very much understandable that Seeliger’s argumentation
is frequently construed as conflicting with the infinity of the
world. This, however, is not true. The difficulty lies in that the
attraction of a body surrounded by infinitely many bodies is
undetermined according to Seeliger’s way of calculation and
can take on all possible values. This, however, only proves that
one cannot carry out the calculation by this method. (cited in
Norton, 1999, p. 291, emphasis added)

Certainly Arrhenius did not think that there was an incon-
sistency, as Norton suggests. The confusion here seems to rest
with what Arrhenius means by ‘cannot’. As Norton interprets it,
when Arrhenius says that ‘one cannot carry out the calculation by
this method’ he means that, although mathematically sound, one
must avoid that method of calculation because it leads to
contradiction. This, however, leaves inexplicable why Arrhenius
thinks there is no conflict. Things make more sense if we read ‘one
cannot carry out the calculation by this method’ more literally.
Arrhenius means that one just doesn’t get an answer that
way—one does not reach a solution by this method—because the
sum in question is indeterminate. But this means that there still
may be an answer, and he suggests zero (based, again, on
symmetry considerations). His mistake is in not making as strong
an inference as he ought to make when faced with non-
convergence (he makes inference (I) instead of (I*)). This is a
mistake, but it is not the mistake Norton takes it to be.

Even as late as 1954 Layzer, criticizing Milne and McCrea’s neo-
Newtonian cosmology of the 1930s, made this same oversight and
claimed that we should infer that F ¼ 0 everywhere (Layzer, 1954,
p. 269). McCrea put things straight the following year:

[I]f the gravitational force is to be defined in the present
manner, then it does not exist in the case of uniform density.
Accordingly, nothing further can be inferred about this case. In
particular, we may not proceed to argue, as Layzer does, that
the force must be the same at every point, and thence that it
must be zero. For, in order to prove that a force takes any value,
in particular the value zero, the force has to exist in the
mathematical sense. (McCrea, 1955, p. 273, emphasis added)

What he surely means by the final remark is that, if the force
really is equal to an indeterminate sum, then it can take no value,
including zero.

Still other authors who clearly do understand non-convergence
very well aren’t sufficiently careful with their words to make the
distinction between the force being zero (it is determined) and the
force not existing (it is not determined). Even parts of Malament
(1995) are unclear on this point. In his criticism of Norton (1993)
he writes,

The integral I is not convergent, and so it is not the case that
I ¼ I1+I2+I3+y [y] Newtonian theory y makes no determina-
tion [of gravitational force] at all (p. 491, original emphasis).
22 Jaki (1969, pp. 60–65) gives a nice discussion.
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Here we have two clear statements of the weaker of our two
inferences (I). The stronger inference (I*) would state not only that
Malament’s integral ‘I’ is not equal to I1+I2+I3+. . . but that it is
equal to no quantity whatsoever. And it would state not only that
Newtonian theory makes no determination of the net gravitational
force, but that Newtonian theory states that the net gravitational
force cannot be any quantity. Compare this with Section 3.1.2,
where Poisson’s equation makes no determination of the net
gravitational force (because we are left with unknown constants
of integration), but nevertheless demands that it is some

quantity.23

This subtle distinction between no force being found and no
force being possible (even zero) is just the tip of the iceberg when
it comes to confusion about divergent series in the relevant
period, especially in the 18th century. Euler and others set the
sums of divergent series equal to certain quantities right through
the 18th century, and were able to reach startling correct

conclusions by manipulating them (see Hardy, 1949, Chapter 1).
That is, setting divergent summations equal to certain values
proved to be extremely fruitful. In addition, as Hardy explains,
‘there is only one sum which it is ‘reasonable’ to assign to a
divergent series: thus all ‘natural’ calculation with the series
[1�1+1�1+. . . ] seems to point to the conclusion that its sum
should be taken to be 1

2’ (Hardy, 1949, p. 6). Apart from the fact
that 1

2 is the mean of 1 and 0, there were some very persuasive
reasons to set Grandi’s series equal to 1

2. For example if we set

S ¼ 1� 1þ 1� 1þ 1� 1þ . . . (17)

then we might conclude that,

1� S ¼ 1� ð1� 1þ 1� 1þ 1� . . .Þ ¼ 1� 1þ 1� 1þ 1� . . . ¼ S

(18)

This would mean that 1 ¼ 2S, or that S ¼ 1/2. Another method
was to consider the binomial expansion (discovered by Newton in
the 1660s),

1

1þ x
¼ 1� xþ x2 � x3 þ . . . . (19)

This was known to converge for all x such that 0pxo1. But if it
holds for all such x then in the limit at x goes to 1 we find that,

1

2
¼ 1� 1þ 1� 1þ . . . (20)

This latter method had already been recommended by Leibniz
and was still popular 100 years later, in the early 19th century.
Poisson himself favoured this reasoning, despite living in the time
of Cauchy’s groundbreaking Cours d’Analyse of 1821, and he
‘retained this staple component of his analysis throughout his
life’ (Grattan-Guinness, 1970, p. 88; see also Laugwitz, 1989,
p. 218ff.). In fact, Grattan-Guinness claims that when Cauchy
wrote in italics ‘a divergent series has no sum’ it was partly aimed
at Poisson (Laugwitz, 1989).24 And even as late as 1844 De Morgan
still failed to appreciate that Grandi’s series did not sum to 1

2 (see
Hardy, 1949, p. 19f.).

Finally, we may speculate as to what might have happened had
someone such as Leibniz, Poisson or De Morgan noticed the
relationship between Grandi’s series and cosmology. Presumably,
if they had followed Norton’s 1999 analysis, they would have set
Grandi’s series 1/2GprDrx for the net force (recall Section 3.1.1
above). But even then the direction of the force is indeterminate.
23 Further, Malament’s statement that Newton’s law of gravitation is ‘not

applicable’ when the series in question does not converge (see Section 3.2.3,

above) also suggests the weaker inference (I). And recall also Norton’s introduction

of assumption (d*), rather than (d), which strongly suggests the same.
24 For more on Poisson and divergent series see Grattan-Guinness (1990,

p. 731f)
Perhaps they would then have concluded that the only force
compatible with an indeterminate direction was F ¼ 0, and that
this was anyway the ‘average’ of 1/2GprDrx in all possible
directions. Whatever the case, this would have made for a
particularly interesting alternative history.
5. Conclusion

The complex web of interrelated assumptions which make up
‘Newtonian cosmology’ are thus at least partially disentangled. In
the course of this analysis we learn a little more about why
inconsistencies eluded us in the past, and how these inconsis-
tencies eventually came to light. What was required was for
someone with the relevant expertise to ask the right question. In
addition, the fine distinction between inferences (I) and (I*) was
crucial. Such issues are more important to cosmology than other
science, because within cosmology only a tiny subset of
conceivable experiments can actually be carried out. Advances
which can be made without the need for experiment are thus most
valuable. Similarly in the current age of science, where it is
becoming more and more difficult and expensive to test theories
by experiment, the more we can learn about our theories without
having to turn to the laboratory the more chance we have of
making the next step forward. Reflecting on the mistakes of past
science may in some small way help us to take that next step.
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Birkhäuser Verlag.

Hardy, G. H. (1949). Divergent series. Oxford: Clarendon.
Jaki, S. L. (1969). The paradox of Olbers’ paradox. New York: Herder and Herder.
Jaki, S. L. (1979). Das gravitations—paradox des unendlichen universums. Sudhoffs

Archiv, 63, 105–122.
Laugwitz, D. (1989). Definite values of infinite sums. Archive for History of Exact

Sciences, 39, 195–245.
Layzer, D. (1954). On the significance of Newtonian cosmology. The Astronomical

Journal, 59, 268–270.
Malament, D. (1995). Is Newtonian cosmology really inconsistent? Philosophy of

Science, 62, 489–510.
McCrea, W. H. (1955). On the significance of Newtonian cosmology. The

Astronomical Journal, 60, 271–274.
Meheus, J. (Ed.). (2002). Inconsistency in science. Dordrecht, The Netherlands:

Kluwer Academic Publishers.
Merleau-Ponty, J. (1977). Laplace as a cosmologist. In W. Yourgrau, & A. D. Breck

(Eds.), Cosmology, history and theology (pp. 283–291). New York: Plenum Press.
Merleau-Ponty, J., & Morando, B. (1976). The rebirth of cosmology. New York: Alfred

A. Knopf.
Newton, I. (1971). The mathematical papers of Isaac Newton, volume IV, 1674–1684.

In: D. T. Whiteside (Ed.). Cambridge: Cambridge University Press.
Newton, I. (1981). The mathematical papers of Isaac Newton, volume VIII, 1697–1722.

In D. T. Whiteside (Ed.). Cambridge: Cambridge University Press.



ARTICLE IN PRESS

P. Vickers / Studies in History and Philosophy of Modern Physics 40 (2009) 197–208208
North, J. D. (1965). The measure of the universe: A history of modern cosmology.
Oxford: Clarendon.

Norton, J. (1993). A paradox in Newtonian cosmology. In PSA 1992, vol. 2.
Philosophy of Science Association, pp. 412–420.

Norton, J. (1995). The force of Newtonian cosmology: acceleration is relative.
Philosophy of Science, 62, 511–522.

Norton, J. (1999). The cosmological woes of Newtonian gravitation theory. In H.
Goenner, et al. (Eds.), The expanding worlds of general relativity. Einstein Studies,
vol. 7, pp.271–323.
Norton, J. (2002). A paradox in Newtonian gravitation theory II. In J. Meheus (Ed.)
pp. 185–195.
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