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 MECHANICAL RESONANCE 

 
 

 
 
The objectives of this experiment are: 
 
 •   To study the resonance behavior of a mechanical oscillator. 
 
 •   To measure the oscillator amplitude and phase as a function of frequency. 
 
 
OSCILLATIONS 
 

he loudness or intensity of sound emitted by a mechanical body depends upon the 
amplitude of the vibrating motion. Most sources of sound such as vocal cords, a 
guitar string, or the lips of a horn player, would produce, by themselves, a very 

faint sound. There is, however, a simple physical system or means that greatly amplifies 
this small amount of acoustical energy. This process is known as acoustical resonance. 

In order to understand the importance of this phenomenon, we have to study the nature of 
mechanical resonance. Any body that is free to vibrate has natural periods of oscillation. 
A thin rod of steel, if it is struck, will oscillate back and forth if it is supported at one end. 
The oscillation will, of course, depend on its mass, length, and other mechanical 
properties of the rod. A string or wire that is held taught at its ends will vibrate when 
plucked. Its natural frequencies depend on the density, diameter, length, and tension of 
the wire. In both cases they oscillate for a time at their own peculiar, natural periods. 
They stop vibrating because they are emitting, and thus losing, energy in the form of 
acoustical waves. 

If the steel rod were subjected to a vibrating source of energy that has the same frequency 
as the natural frequency of the rod, it will start to oscillate in sympathy with the external 
source. If conditions are in a certain way, the rod's oscillations can be quite large. If a 
person sings the correct pitch that corresponds to the frequency of the wire, the wire will 
start to vibrate and emit a similar pitch. The purpose of this experiment is to investigate 
and determine those special conditions that will produce the phenomenon of resonance. 
In particular we will study the case in which the vibrating object loses energy fairly 
quickly - a damped oscillator. 

One type of damped mechanical oscillator is shown in Fig. 1a.  Here, the upper end of a 
spring (where spring constant is k) is held fixed, and a mass (m) is attached to its lower 
end.  When the mass is at rest, its weight is balanced by an upward force from the 
stretched spring. When the mass is displaced from the equilibrium position and released, 
it oscillates.  The mass is immersed in a fluid, so that a resistive force also acts on it.  
This force opposes the motion and is proportional to the object's speed.  Therefore, the 
oscillations are damped and die out. 

T 
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FORCED OSCILLATIONS 
 
Suppose now that the spring's upper end is not fixed, but is moved up and down in simple 
harmonic motion, as indicated in Fig. 1b.  The spring, and therefore also the suspended 
mass, is now subject to an additional applied force that varies sinusoidally.  We now have 
a damped oscillator driven by an external oscillator.  The driving frequency f of the 
external oscillator need not be the same as that of the damped oscillator alone, but if the 
damped oscillator is driven near its natural oscillation frequency fo (f = fo), then we have 
"resonance", and the mass will oscillate with large displacement (and velocity) 
amplitude.  In this experiment we observe displacement of the oscillating mass,  not its 
velocity.   
 
The resonance behavior is manifested in two different ways.  The amplitude resonance is 
frequently more dramatic, but the phase resonance, which is the angular shift between the 
external driver and the oscillating object, may sometimes be more clear. 
 

• The oscillation displacement, amplitude, is at a maximum near 

f = of =
1

2π
k

m  and smaller off resonance, both for f < fo  and for  f > fo. In 

fact, the damping shifts the resonant frequency down to 

of =
1

2π
k

m −
2R
2 2m . On the other hand, the velocity amplitude (which we 

do not observe directly in this experiment) is maximum at fo, too. Neither 
displacement nor velocity curves are perfectly symmetric above and below their 
peaks. 

 
• The phase of displacement oscillation relative to the driving force shifts by 180° 

as the driving frequency varies through  resonance.   
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It is easy to see why there must be such a phase shift.  First, suppose that f << fo .  The 
top end of the spring is then oscillating so slowly that the mass at the lower end simply 
follows this motion.  The phase difference between the external driving force and the 
mass's displacement is zero for f << fo .  Now consider the other extreme, with f >> fo.   
The mass cannot keep pace with the rapidly varying force at the spring's top end.  When 
the top end is at its highest point, the lower end is at its lowest point, and vice versa: the 
driving force and displacement are 180° out of phase.  Figure 2B shows how the 
displacement phase shift θ goes from 0° to 180° as the frequency increases. 
 
 

GENERAL DESCRIPTION OF FREQUENCY DEPENDENCE 
 
      The oscillating mass is subject to three forces: 
 

• The applied force sinusoidal force Fa of the driving oscillator 
 
• A linear restoring force, -kx, from the compressed of stretched spring.  ( The 

displacement x is measured from the equilibrium position at which the weight is 
balanced by the force of the spring.) 

 
• A resistive force, -Rv, which is opposite to the direction of the mass's velocity 

and proportional to its magnitude. 
 

A detailed mathematical derivation of the behavior is given in most textbooks. Here we 
give only the principal results in order to give you an intuitive feeling for this important 
phenomenon.  
 
After start-up when the system settles down,  steady state is achieved and all changes of 
displacement and velocity are at the driving frequency f.  The natural (undriven, 
undamped) oscillation frequency of the system, fo, controls the amplitude and phase of 
the system. 
 
The oscillating mass has greatest displacement and speed when it is driven at its natural 
angular oscillation frequency ωo = sqrt(k/m) (radians/second).  The displacement 
resonance  shown in Fig. 2 below exhibits:  (a)  a sharp peak in the amplitude of the 
displacement and (b)  a phase shift (between y and Fa ) that is 0° at low frequencies, 180° 
at high frequencies, and 90° near the resonance frequency.  
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  FIGURE 2A      FIGURE 2B 
 
In this experiment, we measure directly two quantities shown in Fig. 2a/b as a function of 
frequency: 
 
       • The amplitude of the displacement (not the velocity). 
 
       • The phase angle θ  between the applied force and the displacement . 
 
The expression for the displacement amplitude and phase θ is 

 x =
mF
ω

2

ωm− k
ω

 
  

 
  

+ 2R
sin ωt − θ( ) (10) 

 
tanθ =

R
k
ω

− ωm
 
  

 
  

 

 
Were it not for the 1/ω factor, the maximum of the displacement amplitude would occur 

at 
ω0= sqrt(k/m).  In fact, as noted above, it is shifted down a little in angular frequency to 
sqrt(k/m - R2/2m2).  In general, for small damping, the amplitude resonance curve looks 
very similar near the resonance to Fig. 2a for the  resonance. 

 
PROCEDURE 

1.   Calculate (predict) the natural frequency, 
 

of = oω
2π

=
1

2π
k
m

.  Do this by first 

measuring the length the spring stretches with the mass attached. Support the mass 
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with your hand and measure the length of the spring.  Lower and steady the mass; 
measure the length of the spring when stretched.  The difference between these two 
measurements is x. Use Hooke's Law to get k: F= mg =-kx. Knowing x, you can 
calculate the natural frequency as you did in the preliminary question. You don't need 
to measure m! 

 
2.  Measure the natural frequency, fo,exp by pulling down (don't overstretch) and 

releasing the bob. You must do this by lifting the bob out and holding it away from 
the damping magnet 

 
3.  Calculate the ratio between your experimental result for fo and the theoretical value 

determined above. 
 
 4.  Level and zero the apparatus so that the bob does not rub against anything.  Your 

instructor will describe this procedure. 
 
5.  Measure the displacement amplitude, xm,  and displacement phase angle θ (between 

the driving force and the displacement) as a function of the driving frequency.  Start 
with the lowest frequency. The angle will be small, close to 10° or 20°. AS you 
increase the driving frequency, you will go past 90° approaching 180°. Graph the data 
as you go along to save time. 

 
Measure the frequency of oscillation by timing several oscillations.  The period, T, of 
oscillation is the total time for the oscillations divided by the number of oscillations.  
Remember, f = 1/T.  The driving frequency is controlled by rotating a knob on the 
apparatus.  Measure the displacement with the ruler provided on the apparatus.  The 
displacement is one-half of the total top-to-bottom distance.  The phase angle is read 
directly by looking down through the protractor mounted on the red plastic plate.  
The revolving LED (Light Emitting Diode ) will light at the appropriate spot marking 
the phase between the driving force and the displacement. 

 
Note:  you must wait for the system to reach its steady state before taking readings.  If 
you change the driving frequency rapidly, you will notice that the LED will not mark 
a consistent phase angle.  Wait until the phase LED is steady before recording data. 

 
6.  Plot xm and θ each as a function of frequency, displaced vertically, in the fashion of 

Fig. 2a and 2b. Find and mark on the graphs the frequency corresponding to the peak 
in the resonance curve and to phase θ = 90°. Then, compare these frequencies to your 
experimental natural frequency result in part 2. Use CricketGraph software if 
computers are available. 
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NOTES
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MECHANICAL RESONANCE 

 
 
 
Name: _______________________________________________________________ 
 
Partner: ________________________________________________ Date:__________ 
 
 
Free Oscillations Show calculations. 
 
Theoretical natural frequency calculation from stretch (See Preliminary Question) 

xo ______  fo,th _____ 

Experimentally derived derived frequency: 

∆t _______ # oscillations ________ To,exp ________ fo,exp _______ 

Compare theoretical and experimental values:  fo,exp / fo,th = _________ 
 
Forced oscillations Frequency variation of displacement amplitude and phase 

Collect enough data to make two graphs: one of amplitude as a function of frequency; the 
second, displacement phase as a function of frequency. 
 
# OF CYCLES 

N 
TIME 
(sec) 

ONE PERIOD 
T (sec) 

FREQUENCY 
f (Hz) 

AMPLITUDE 
xm 

PHASE 
θ 
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From the two graphs, determine resonance frequencies and compare them with your 
experimentally measured frequency, fo,exp.  

WARNING: you must apply the proper standards for graphs. 
 
 
Displacement amplitude: 

Resonance frequency (from experimental frequency plot). fo,amp _________ 
 
       Ratio fo,amp / fo,exp : _______ 
 
Displacement phase: 

Resonance frequency (from experimental frequency plot). fo,θ _______ 
 
       Ratio fo,θ / fo,exp : _______ 
 
 
List sources of error for the two graphed data sets: 

 •   

 •   

 •   

 
 
QUESTION ONE 

Is the plot of xm(f) asymmetrical in the sense consistent with equation 10?  

Explain: 
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Attach your graphs to this report form. 
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