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SIMPLE HARMONIC MOTION
PURPOSE: To study the relationships of displacement, velocity, acceleration, ki-
netic energy, potential energy, amplitude and frequency in simple harmonic motion,
and to explore the effects of non-linearity on these relationships.

APPARATUS: Computer, universal lab interface, spring, weights, Interactive
Physics software

INTRODUCTION: There are many cases in nature where an object oscillates.
An oscillation is a swinging or vibrating motion. As the object moves away from
its rest position, there is a force that opposes the displacement, forcing the object
back. This force, called the restoring force, tries to return (restore) the object
to the rest position. However, the object overshoots, and the force then acts in
the opposite direction pushing the object back. If there is no loss of energy, the
oscillation continues indefinitely.
When the restoring force is opposite and directly proportional to the displacement,
the oscillating object will exhibit Simple Harmonic Motion, SHM. The object is
called a Simple Harmonic Oscillator, SHO.

Oscillating Spring: As an example of a SHO, let’s consider a mass, m, attached
to a spring which is fixed at one end and free to slide on a frictionless surface.
Mathematically, the restoring force exerted by the spring on the mass is given by
Hooke’s law,

F = −kx (1)

The constant k, called the spring constant, characterizes the stiffness of the
spring. A large k means a large force is needed to stretch (or compress) the spring
a small distance.
The rest position is at x = 0 where the force is zero. The force on the mass reaches
a maximum at x = ±A, where the mass momentarily stops and then moves back
toward its rest position. A is called the amplitude of the oscillation.
By conservation of energy, the total mechanical energy of a SHO is constant,

K.E. + P.E. =
1

2
mv2 +

1

2
kx2 = constant = C.

When the spring is stretched to its maximum, x = A, and the velocity, v, is zero,
so the total mechanical energy is

C =
1

2
kA2

For any other position of the spring, x and v are related through

1

2
mv2 +

1

2
kx2 =

1

2
kA2. (2)
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Then, solving this equation for v, the velocity as a function of the displacement, x,
is

v = ±A

√√√√ k

m

(
1− x2

A2

)
(3)

The SHO moves back and forth, so its velocity will be either in the plus or minus
direction, but the velocity’s magnitude depends only on the magnitude of x. Next,
we want to derive an expression for how the displacement varies with time, t.
Substituting Eqn. (1) and the definition of acceleration, a = d2x/dt2, into Newton’s
second law, F = ma, we get:

m
d2x

dt2
= −kx (4)

This is a differential equation that you may not have yet learned how to
solve.Fortunately, any way you get a solution is fine. We’ll “guess” that the solution
is

x = A cos
(

2πt

T

)
(5)

where T is the period of the oscillation, the time it takes for the mass to complete
one cycle of oscillation. We check that our “guess” is right by substituting Eqn. (5)
into Eqn. (4), and find that it a solution, provided the period is related to m and
k by the relation:

T = 2π

√
m

k
(6)

The frequency (usually expressed in Hertz) of the SHO’s oscillations is

f =
1

T
=

1

2π

√
k

m
(7)

Substituting Eqn. (6) into Eqn. (5) we get,

x(t) = A cos
(

2πt

T

)
= A cos



√

k

m
t


 (8)

Note that this solution assumes that at t = 0, x = A; the SHO starts at the positive
amplitude. The velocity as a function of time is found by taking a derivative with
respect to time, v = dx/dt

v(t) = A

√
k

m
sin



√

k

m
t


 = A

√
k

m
cos



√

k

m
t− π

2


 , (9)
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FIGURE 1. Simple Pendulum

where we have used the identity: sin θ = cos(θ − π/2). The acceleration, dv/dt, is

a(t) = −A
k

m
cos



√

k

m
t


 = A

k

m
cos



√

k

m
t− π


 , (10)

where we have used the identity: cos θ = − cos(θ − π).

Simple pendulum: As a second example of an oscillating system, let us study the
simple pendulum – a mass attached to light string and swinging from side to side,
as shown in the accompanying figure 1. The only two forces acting on the mass are
the tension T in the string and the weight mg. The tension is partly balanced by
the component mg cos θ of the weight. The sum of these forces produces the inward
(centripetal) acceleration as the ball moves in a circle. The other component of the
weight is F = −mg sin θ, where the minus sign indicates that F is acting opposite
to the displacement, s = Lθ, where s is the arc length. This force accelerates the
mass along the circumference of the circle toward θ = 0 and produces SHM. If we
assume that θ is small, then sin θ ≈ θ and we can write the restoring force as:

F = −mgθ = −
(

mg

L

)
s. (11)

Comparing this equation to Eqn. (1) shows that we again have Hooke’s law with
the displacement now being the arc length s instead of x and with k = mg/L. Then
we can immediately see, using Eqn. (6), that the period of the (simple) pendulum
is
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T = 2π

√
L

g
(12)

In this lab you will use Interactive Physics to simulate the simple pendulum to verify
this relationship and then explore how the period changes for large oscillations when
θ is no longer small and the restoring force is no longer simply proportional to s.
You may also want to explore the behavior of the physical pendulum, where the
oscillating object is not a point mass but an extended body. In that case the period
becomes:

T = 2π

√
I

mgh
(13)

where I is the moment of inertia of the body about the pivot point and h is the
distance from the pivot to its center of mass.

PROCEDURE: The ULI (Universal Lab Interface) should be connected to a
sonic ranger that you will place on the floor looking up at a mass hanger. The mass
hanger consists of two parts whose total mass must be included in your calculations.
Don’t forget this. Additional masses are placed on top of the hanger’s tilted top
side. The mass hanger is attached to a spring that is suspended from a stand. The
stand must be securely clamped or screwed into the table top.
First, determine the spring constant, k, using Eqn. (1) and F = mg. Do this
by measuring the CHANGE in the mass hanger’s height for the CHANGE in the
added weight and determine k as outlined on the data sheet. Use masses of 50,
100, 150, 200, and 250 g. For this part of the lab, you do not need to include the
weight of the holder or spring. Use LoggerPro to measure the distance. Set the
data rate to 40 Hz.
Now suspend a total mass of 200 g (including hanger) from the spring. Pull the
hanger down by a small amount so that it oscillates with a full swing (i.e., twice
the amplitude) of only 5 to 8 cm. That’s enough to get good data. Make sure it is
oscillating vertically and not rocking or swinging sideways.
WARNING: DO NOT DROP WEIGHTS ON THE SONIC RANGER
BY CARELESSLY YANKING DOWN AND OVERDRIVING THE
SPRING. THIS WILL MAKE THE WEIGHTS FALL OFF THE
HANGER.
Collect data for about 10 seconds. LoggerPro should give you a graph of x versus
time. If the x- and/or y-axis scales are too small to clearly see the SHM, you will
want to change the axes setting on the graph to magnify it. Be sure that you can
clearly see several whole waves and use this to determine the period of oscillation.
You may want to use LoggerPro’s Analyze feature. Attach a copy of the graph to
your report form.
Next you will examine the relationship between the displacement, velocity, and
acceleration. Under Display select Two Graphs and set up separate displacement
and velocity windows. The scale of the velocity graph may be too large to be useful,
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so rescale it in the same way as you did for the displacement graph. Also the
horizontal x axis may too large. Change its span from 0 to 3 s for BOTH graphs.
Next, under Analyze select DATA A and you will get a screen with a large vertical
bar that enables you to analyze the graphs. Notice that below the graphs there
is a tabular readout of Time, Distance (Displacement), Velocity, and Acceleration.
Ignore Force because its meaning is useless; we are not using a force probe. Note
these values on the graphs as you move the cursor. You will use this table to analyze
the sinusoidal graphs. After you have finished studying the displacement, velocity,
and acceleration relationships, you will examine the dependence of the period on
the amplitude and mass.
When you have finished the experiment go to File and select Quit. Select Don’t
Save to get rid of your data so that the disk doesn’t get cluttered with old data.


