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Calculations of optical properties in strongly correlated materials
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We present a method to calculate optical properties of strongly correlated systems. It is based on dynamical
mean-field theory and it uses as an input realistic electronic structure obtained by local density-functional
calculations. Numerically, tractable equations for optical conductivity, which show a correct noninteracting
limit, are derived. lllustration of the method is given by computing optical properties of the doped Mott
insulator Lg_,Sr,TiO4.
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I. INTRODUCTION demonstrate the applicability of the present scheme on the

Optical spectral functions such as conductivity or reflec-€xample of doped Mott insulator k5SKTiO3 where we
tivity are very important characteristics of solids, which give ©0mpare the results of our calculations with the LDA predic-
us a direct probe of their electronic structure. In the pasttions and experiment.
very powerful numerical techniquesbased on density- The paper is organized as follows. In Sec. Il we describe
functional theory (DFT) and local-density approximation the method for calculation of the optical conductivity. Appli-
(LDA) have been developed, which allowed to access theation of the method to doped L aSr,TiO3 is described and
one-electron spectrum in real materials via association ofinalyzed in Sec. Ill, which is followed by conclusions pre-
LDA energy bands with the real excitation energies. Thissented in Sec. IV. Some technical details of the calculations
approach works well for weakly correlated systems, whereand the downfolding and upfolding procedures are given in
for example, optical properties can be directly comptitéa  the Appendix.
the knowledge of the band structure and the dipole matrix
elements of the material. Furthermore, for weakly correlated
materials LDA is a good starting point for adding perturba- Il. METHOD
tive corrections in the screened Coulomb interactions follow- . . .

To calculate the optical response functions we utilize the

ing the GW approach : :

Unfortunately, the treatment of materials with strong elec-?ny;r?ri')%eg mer%rk])'lgf#d iipgmig;:nvggg tl? € zellzﬁgfrgye?;ttgf
tronic correlations is not possible within this framework. ( )ywhic)fq ?s however ?rg Lency de anent A E sical
Strong on-site Coulomb repulsion modifies the one—electror? © » Nowever, 1req y dep - A phy

{ransparent description of this method can be achieved by

spectrum via appearance of satellites, Hubbard band s roduci it i | ¢ Kohn-Sh el
strongly renormalized Kondo-like states, etc., which are pdhtroducing an intéracting analog or rohn-sham particies,
i (1, @) = ¢ij,,» Which reproduce the local portion of the

longer obtainable using static mean-field theories such ag S f » il h ; :
Hartree-Fock theory or LDA. The wave functions in strongly rien Sh unction Iln a simiar W(;iy asht ed nomnterfac::ng
correlated systems are not representable by single Slater d&0hn-Sham particlesjy;(r) reproduce the density of the
terminants and dynamical self-energy effects become impog0lid in P:ts ground state. This spectral density-functional
tant, thus requiring a new theoretical treatment based on tH&PProach has an advantage that the k-integrated excitation
dynamical mean-field theoDMFT). Recent advancésn propertles(such as, e.g., densities of stgtean now bg as-
merging the DMFT with realistic LDA based electronic sociated with the real one-electron spectra. The optical tran-
structure calculations have already led to solving such longSitions between the interacting quasiparticlgs, allow the
standing problems as, e.g., temperature-dependent magn%}gcnatlons between incoherent and coher_ent parts of the
tism of Fe and NP volume collapse in C&and huge volume ~ SPectra(e.g., between Hubbard and quasiparticle bands
expansion of P8. which are intrinsically missing in static mean-field ap-
In the present work we develop an approach which anowsproachgs spch as DFT but are present in real strongly corre-
us to calculate the optical properties of strongly correlated@t€d situations. o o ,
materials within the combined LDA and DMFT framework. ' order to find the quasiparticles living at a given fre-
We discuss the expressions for optical conductivity usinglU€Ncye we solve the Dyson equation with the LDA poten-
self-energies and local Green’s functions, which are numeritidl Vers and the frequency-dependent correctibfw) -2,
cally tractable and correctly reproduce the limit of noninter-!-€-:
acting electrons. We also check the limit of strong correla- —V24 Vo + oS g— 1
tions by applying the method to three-band Hubbard [« err* 2(®) = Zae~ o) Wi @
Hamiltonian. Results of this test reproduce the available exA double-counting ternk . appears here to account for the
perimental and theoretical data with very good accuracy. Wéact thatV.¢s is the average field which acts on both heavy
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(localized and light(itinerany electrons. Note that due to the oo M7 (o g+
non-Hermitian nature of the problem, both “righg® and o (w):_ﬁ S ¢S [ de— (e787)
“left” ¢+ eigenvectors should be considered, the latter being #* 4 s '

\ Slcere : wtre. _—€., .
the solution of the same Dyson equatidywith i placed on ss=st kil L, kje™ ke

the left. The local Green’s function is constructed from the [ 1 1 ] f(e7) - f(e")
>< 1

eigenvectors and eigenvalues in the following way:
w

L
ki @F 1~ Ejo
where we have denotesf=c+w/2, and used the shortcut
The local self-energy is calculated from the correspondingmtationséﬁj,:;EEkje, €xje = Ekje- o
impurity problem which is defined by the DMFT self- The matrix element®,;;, are generalizations of the stan-

consistency condition dard dipole allowed transition probabilities which are now
defined with the right and left solutiong® and ¢+ of the
G(w) =[@ = Ejmp= 2(e) = Aipp(@)] 7, (3)  Dyson equation:

whereA;,, is the impurity hybridization matrix ang;,,, are v e
the impur?ty levels. From knowm\jm (), Ejmp and pCou- Miﬁ"ﬂ (e.e ):f (lpije)w,u(lpkjss’)s dr
lomb interactionU, the solution of the Anderson impurity
problem then delivers the local self-eneifw). The system
of equationg1)—(3), together with an impurity solver, i.e., a
functional X[ Ajmy(®) , Eimp, U], is thus closed.

Solution of the Anderson impurity model can be carriedwhere we denoted/;;j8=¢),;js, l%f%ﬂfjs and assumed that
out by available many-body techpiqtlsych as the quantum W) = Vi) a”d(lﬂﬁja)_:lﬁ*js- Expressions7) and(8) rep-
Monte Carlo(QMC) methodo which will be used in our egent generalization of the optical conductivity formula for
work. In practice’® we utilize the LDA+DMFT approxima-  the case of strongly correlated systems, and involve the extra
tion and treat only thel electrons of Ti as strongly corre- yiernal frequency integral appearing in Ea).

lated, thus requiring full energy resollution. All other elec- | gt us consider the noninteracting limit wh&e) -S4
trons are assumed to be well described by the LDA. The_}iy_>0_ In this case, the eigenvalueg,=eg+iv, ¥,

Dyson equation is solved on the Matsubara axis for a finiteE“(j), gk =lkj)* =(kj| and the matrix elements
set of imaginary frequencieRo,, using a localized orbital oS v ,J*’ ) )
representation such as, e.g., linear muffin-tin orbitalsMyj;” (¢,’) are all expressed via the standard dipole tran-
(LMTO’s) for the eigenvectorgj,,. sitions |(kj|V|kj’)|?. Working out the energy denominators
The optical conductivity can be expressed via equilibriumin expressior(7) in the limitiy— 0 and forw # 0 leads us to
state current-current correlation functiérand is given by the usual form for the conductivity which for its interband
contribution can be written as

X f W VS, (®)

+o0

o) = Wezf de (e + 0/2,e - wl2) IO e ORGIASRISHAALSE
e K" #]

X[f(e) — flej) o€ — & + o). 9

To evaluate the expressiar),, () in Eq. (7) numerically,
we need to perform integration over and pay a special

attention to the energy denominator(dA fijg-‘fi;'s+)- To
calculate the integral overwe divide frequency domain into
1 discrete set of points; and assume that the eigenvalugs
du(e,e’)= => THV .0 (€) Voo (1)}, (5)  and eigenvectorgy;, to zeroth order can be approximated
Ykij! by their values at the middle between each pair of points. In
this way, the integral is replaced by the discrete sum over
with V being the unit-cell volume and internal gride; defined for each frequency. To deal with

the strong momentum dependence of cl+ eﬁjs_—eﬁlj,8+),
pijle) == %[ij(s) - Glj(s)] (6) linearization o_f t_he deno_minator with respectkashould be _
i performed as it is done in the tetrahedron method of Lambin
and Vignerornt® On the other hand, the difference between
is expressed via retarded one-particle Green’s functiogingle polegexpression in square brackets of Eg)], after
Gyj(e). Using the solutiong;,, and ¢, of the Dyson equa- integration over frequency, becomes a smooth functiok of
tion (1) we express the optical conductivity in the form and can be treated together with the current matrix elements,

« fle —w/2) = f(e + w/2)

O]

(4)

wheree is free electron chargd{e) is the Fermi function,
and the transport functios,,,(¢,¢’) is defined as
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i.e., by linearizing the numerator. The described procedure 02 [ 04 ]
produces a fast and accurate algorithm for evaluating the &__Sg‘nl’g‘;,”e"’
optical response functions of a strongly correlated material.
0.15 ¢ P
/OZ/ o] o
d
Ill. APPLICATION OF THE METHOD B 01 c; N 6’00
To illustrate the method of the optical conductivity calcu- = 0.1 .02
lation in a str.ongly correlated ;ystem we chose paramagnetic ; =m0 x=0.1 ﬁ;}:
doped Mott insulator La,Sr, TiO5;. LDA cannot reproduce 0.05 o1 S
insulating behavior of this system alreadyxatO, which em- ——-x=02 =
phasizes the importance of correlation effects. Upon doping 0 L— x=0.3 . .
the system becomes a correlated metal, whichxat 0 0.5 1
(SrTiOz) should be considered as a standard band insulator. Energy (Ev)

Photoemission experimeftsas a function of doping display

both a lower Hubbard band located at near energies 2 eV FIG. 1. (Color onling Low-frequency behavior of the optical
below the Fermi leveEg and a quasiparticle band centered conductivity for La,SKTiO5 at x=0.1, 0.2, 0.3 calculated using

at Eg. Previous DMFT based calculation$ of the density ~ the LDA+DMFT method. Experimental resultgef. 19 are shown

of states usetﬂQg degenerate bands of Ti found ne&r and by s.ymblols for the casmco.ll. In the |n§et the effective number of
reproduced both these features with a good accuracy. TH&riers is plotted as afunct.|0n of d_oplng. Squares show the results
studies of the optical properties for LaTjQwith the less of the LDA+DMFT calculations. Circles denote the experimental
accurate LDA+J method® have been also carried ott. data from Ref. 19.

We have calculated the electronic structure ofpodel calculations for threefold degenerate Hubbard model,
L&, ,SKTiO3 using the LDA+DMFT method. A cubic crys- ysed to get the self-energy for B, bands, produce a Mott-
tal structure with five atoms per unit cell is utilized which is Hubbard gap equal to 2.8 eV but once upfolded into the
a simplified version of a fully distorted 20 atoms/cell super-LDA Hamiltonian one needs to take into account Ld 5
lattice. Since the self-energy effects are crucial for the statestates in the vicinity of the Fermi level. The gap between the
near the Fermi energy, we treat correlations only on thdower Hubbard band and Lad%ands is indeed the charge-
downfolded t,, orbitals of Ti atoms as suggested transfer gap and it is equal to 0.2-0.5 eV for the undoped
previously>*® The Anderson impurity model is solved using compound. Optical transitions from the lower Hubbard band
guantum Monte Carlo method with Hubbard parametier to La 5d give the main contribution to the optical conductiv-
=6 eV atT=1/8=1/32 of Tity, bandwidth, which delivers ity in pure LaTiO;.
the self-energy>(w) for these orbitals using the self- Upon doping, carriers are introduced, and the system ex-
consistent DMFT framework. The applicability of QMC is hibits metallic behavior. Figure 1 shows low-frequency part
justified since temperature in our simulation is well belowof oy,(w) at dopingsx=0.1, 0.2, and 0.3. The optical con-
the coherence energy, which is about 1/8 of the bandwidthductivity exhibits a Drude peak whose strength is increased
We also limit our consideration by dopingdarger than 10  with doping. The contribution t@,,(w) at these frequencies
per cent to stay below the coherence temperature. Once the due to transitions frongi) the coherent part of the spec-
self-energy is obtained, we upfold it back into the full orbital trum near the Fermi level to the upper Hubbard and lantha-
space which delivers the one-electron spectrum of the systemum bands,(ii) the transitions from the lower Hubbard
with correlation effects taken into account. Detailed descripband to the upper Hubbard band and lanthanum bands,
tion of downfolding/upfolding procedures to get the self-and (iii) transitions from the lower Hubbard band to the
energy is given in the Appendix. coherent part of the spectra. This trend correctly repro-

To treat doping away frome=0 the self-energy is allowed duces the optical-absorption experiments performed for
to change self-consistently while the one-electron Hamil-La,_,Sr,TiO3.1® Comparison of our data with these measure-
tonian is assumed to be independent on doping. We thements is shown in Fig. 1, where the measured optical con-
evaluate the frequency-dependent eigenvakyes #;, as  ductivity at the doping levek=0.1 is plotted by symbols.
functions of doping. This allows us to evaluate the energyOverall good agreement can be found for the frequency be-
and doping dependent optical conductivity integrals both irhavior of the theoretical and experimental curves.
k and e spaces. The integrals over momentum are taken on The strength of the Drude peak is only slightly overesti-
the (10, 10, 10 mesh using the tetrahedron method of Ref.mated by the present theory as well as some residual discrep-
13. To check the convergence we also performed the calcuancy is seen in the region near 1 eV. We must emphasize that
lations on theg6,6,6 mesh which produces the conductivity corresponding calculations based on the local-density ap-
within 5% of accuracy. The energy-integration mesh wagroximation would completely fail to reproduce the doping
chosen to have a step equal to 0.01 eV. We also broaden tliehavior due to the lack of the insulating state of the parent
imaginary part of the self-energy for noninteracting bandscompound LaTiQ. As a result, the LDA predicts a very large
with 0.0004 eV. This reproduces the LDA density of statesDrude peak even fax=0, which remaindittle changedas a
of the studied compound within the accuracy of 1-2 %.  function of doping. In view of these data, the correct trend

We first discuss the undoped case withO which corre-  upon doping captured by the present calculation as well as
sponds to the insulator with a small gap equal to 0.2—0.5 eVproper frequency behavior can be considered as a significant
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FIG. 3. (Color onling Comparison of the linear coefficient of
specific heaty, as a function of doping obtained from DMK3olid
line with star§ and LDA (solid line) calculations against experi-
mental result(Ref. 20. Experimental points are given by cross
symbols and dot-dashed line is used as a guide for the eye.

FIG. 2. (Color onling Calculated using the DMFT optical con-
ductivity spectrum for Lgli;_,O3 with x=0.1 at large frequency
interval(solid line) as compared with the experimental dedashed
line with symbolg. The results of the LDA calculations are shown
by dashed line.

improvement brought by this realistic DMFT study. the Fermi level, we do not expect DMFT spectrum to be

More insight can be gained by comparing the effectiveessentially different from the LDA one in this frequency
number of carriers participating in the optical transitionsrange. Overall, the agreement at high frequencies is quite
which is defined byNe(wc) = (2m/ me?) [§°o(w)dw, wherem  good, which demonstrates reliability of the present method.
is free electron mass andl, is the cutoff energy. Experimen- As an additional check of the DMFT calculation, we have
tal data for Neef(w,) are available for the frequency extracted the values of the linear specific-heat coefficient
w.=1.1 eV!®They are shown in the inset to Fig. 1 where weas a function of doping. Our comparisons with the
plot the effective number of electrons as a function of holeexperiment® are given in Fig. 3. For example, at0.1,
concentration both from the theory and experim@rtt zero  experimentaly=11 mJ/mol K, while DMFT producesy
doping the system is an insulator which gives very siNg}j  equal to 14 mJ/mol K Note that the LDA value here is only
for x=0 (this value is nonzero since we toak larger than  about 4 mJ/mol K. Since DMFT renormalizes the density
the optical gap of the insulatbrUpon doping, increase in of states at the Fermi levej, obtained by this theory clearly
Nets is expected and its values as well as slafid,;/dx  indicates the importance of band narrowing introduced by
agree well with experiment. correlations.

The main effect introduced by the DMFT calculation on
the strength of the optical transitions can be understood by
looking at the Drude and interband contributions separately
and comparing them with the corresponding LDA values. In conclusion, we have shown how the optical properties
The LDA data give a very larg®le=1.15 which by 90% of a realistic strongly correlated system can be computed
consists of the Drude contribution. The latter can be foundusing recently developed DMFT based electronic structure
from the following equationNEff:(2mV/7-re2)(w,23/8), where  method. We have developed a numerically tractable scheme
plasma frequencyw,=4.87 eV is obtained from LDA calcu- which is reduced to evaluating dipole matrix elements as
lations. This result is not surprising since in LDA thg  well as integrating in momentum and frequency spaces simi-
states crossing the Fermi level are filled with one electrorar to the methods developed for noninteracting systems. As
which gives an estimation for the effective number of elec-an application, we have studied the optical conductivity of
trons participating in optical transitions at this frequencylLa;_,SrTiOz and found its correct dependence as a function
range. Thus, due to proximity to the insulator the DMFT of frequency and doping in comparison to the experiment.
suppresses 90% of the Drude part accounted for incorrectl@ur results significantly advance studies based on static
by the metallic LDA spectrum. mean-field approximations such as LDA.

Now we discuss optical conductivity for the frequency The framework that we presented should be a good start-
interval from 0 to 16 eV. Figure 2 shows,(w) at doping ing point for including vertex corrections. Local vertex cor-
x=0.1 where we compare our DMFT and LDA calculationsrections can be evaluated within DMKRef. 4 while non-
with the measurements in Ref. 18. Sharp increase in opticdpcal ones can be incorporated by extending the calculations
conductivity is seen ab~4 eV. This can be attributed to the of Ref. 21 to the optical conductivity. This is analogous to
transitions from the oxygep band into unoccupied states how LDA spectra can be improved via t&W method®
of Ti. The main peak of optical transitions is located between

IV. CONCLUSION

5 and 10 eV, which is predicted by both DMFT calculation ACKNOWLEDGMENTS
(solid line) and the LDA(dashed ling It is compared well
with the measured spectruiglashed line with symbols This work was supported by the NSF Grant No. DMR-
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APPENDIX: COMPUTATION OF THE SELF-ENERGY, Gk, @) = [Z;lw -H(K) - Ehh]_lv (A4)
DMFT DOWNFOLDING, AND UPFOLDING

) ) . ) where renormalization amplitudg, and effective Hamil-
The approach described in Sec. Il requires evaluation ofynian are given by

the self-energy operator in E@l) using the LDA+DMFT
method® The latter exploits the locality of the self-energy in  Z,* = Onp + K K Oy K Koy = OniK; Ko = KK "0,
some orbital space, and the restriction of the Coulomb inter-
action to a limited set of localizetbr heavy orbitals to be
denoted byh. The rest of the orbitals are taken to be uncor-
related(light) and are denoted bly

. . . K.=H%- uO.. (A5)

Note that the locality of the self-energy is a basis- y= Py T MYy

dependent statement. Under a change of the basis the KOhFl'ereystands for a pair of indicdsor h. Finally, we perform

Sham HamiltoniarHy is transformed intdJ,HUy, with U 3 ynitary transformatio in the heavy block, so as to work
being a unitary transformation. The self-energy transformsg, 5 nearly orthogonal basis in tiesector:

like the Hamiltonian, however, i&(w) is momentum inde-
pendent in one basis, then in the new basis UkE(w)Ul in ST[E zk]'ls: 1. (A6)
general becomes momentum dependent. Hence, we need to k
work in a very localized basis, such as the nonorthogon
LMTO's, where the DMFT approximation is most justified.
Introduction of a basis set allows the partition oﬁf the
double-counting subtracted Kohn-Sham Hamiltonidl - _ _ -1
=H,,—24c and of the Green’s function into the light and Chrl) %[(w+'u)oe”(k) Herk) =X (@)]™,
heavy blocks:

ﬁ(k) = H(r)m‘ Kthﬂlea

a}l\pplying this transformation to EqA5) we arrive to the
local Green'’s function in the new basis,

(A7)
0 0
Gk, w) = l(aH_ ,u)(Ohh Oh') - (th Hh(')) and to a new DMFT self-consistency condition
' On On/k \Hpi Hy7/y 1 -1
Sow) 0 [ Gonn(@) = Gpjy + 2 (). (A8)
o o] (A1)  This set of equations has clearly the form of the DMFT equa-

tions of a model involving heavy electrons only, with a
where[---]"* means matrix inversiory is the chemical po- Hamiltonian and an overlap matrix:
tential, andO is the overlap matrix. Given that the self-

— oft—-1
energy is local, it can be obtained from the Anderson impu- Ogsi(k) = S'Z, 7S, (A9)
rity model
Het(K) = SH(K)S+ uOgs(K). A10
Smo= S CUAGEE (r7)Cu(s) efi )_ _ (K)S+ uOeri(k) (A10)
wa 77! o The self-energy is still computed from the Anderson
U impurity model, but the Coulomb interaction of this model is
+ > —“;ﬁxc;(r)c;(r)cy(r)c 57, (A2)  renormalized to a smaller effective interactiogy; matrix,
. Uity = S [\l d Ly d 2 (321 0
whereg, is the bath Green’s function which obeys the self-  efa'#'7'd"~ aBys VZlatl N2l d V215 N2l D gy
consistency conditiongeneralized to nonorthogonal basis (A11)
set:
1 1 Until now the discussion is general, and applies to any
Gyl(w) = (E 1 ) +3 (). system where there is a set of bands well separated from the
< (0+wO-HK) -3(w)/ rest. Further simplifications are possible, if we assume that

the system has cubic symmetry and that the ove@agp is
(A3) ; ) .
the unit matrix. Ford electrons, cubic symmetry makes the
When a group of bands is well separated from the othersself-energy and local Green’s function diagonal. In this case
it is possible to recast the previous self-consistency conditiothe momentum sum in EgA7) can be replaced by the inte-
at low frequenciesn a form which resembles the DMFT gral over energy. The local Green’s function can be calcu-
equations derived from a Hamiltonian involving thede-  lated as a Hilbert transformation,
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oo The reduction of the self-consistent LDA+DMFT equa-
Glw) = f de D(e) (A12) tions to the form described by EGA12) with D(g) being the
wo+u-3(w)-¢ partial LDA density of states of the heavy orbitals was sug-
o gested and used in Ref. 23. Unfortunately, this partial density

of states contains weight at high energies, and if this is omit-
Here,D(e) is the density of states of the the reduced Hamil-ted, the normalization condition is violated. The derivation
tonian He((k). Note that the cubic symmetry keepl; di- presented in this appendix eliminates these difficulties, and
agonal i? the bare Coulomb matrly has that property. instead suggests an alternative procedure in which we first

Upfolding is a procedure which is “inverse” to the down- ST out a tigh_t—binding fit of the LDA bandsl.ownfolding

folding described above. One simply converts the self-energ§€ar the Fermi level, and then use it to estimate). Our
S, obtained from the DMFT calculation into the block self- derivation also indicates how one goes béak, upfolds the
energy 3,,=S5S", which is to be inserted to the original self-energy to the all-orbital Hamiltonian. In our calcula-
LDA Hamiltonian, in order to compute the local Green's fions using the downfolded equatiopswas adjusted to get
function G(w). the correct density ofl electrons. In the upfolded Green’s

In general, the downfolded density of stal:) obtained function u was taken to be the LDA chemical potential, and

from He¢; has a nonzero first energy moment and depends iEdC was deduced from a constant shift of the heavy orbitals
a nonlinear way on the value of the double-counting correc? y obtaining the total number of electrons from the integral

tion, as well as on the chemical potential which enters thé)f the spectral function

formulation of the original problem containing all electronic 1 K
bands. Furthermore, the value of the chemical potential in Alw) = _;"“2 > Gapk,®)Oyp,
the LDA+DMFT calculations does not need to be the same k of

as the LDA value. multiplied by the Fermi function.
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