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Electronic Coherence in 6-Pu: A Dynamical Mean-Field Theory Study
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A combination of density functional theory and the dynamical mean-field theory (DMFT) is used to
calculate the magnetic susceptibility, heat capacity, and the temperature dependence of the valence band
photoemission spectra for §-Pu. We predict that 6-Pu has a Pauli-like magnetic susceptibility near
ambient temperature, as in experiment, indicating that electronic coherence causes the absence of local
moments. Additionally, we show that volume expansion causes a crossover from incoherent to coherent
electronic behavior at increasingly lower temperatures.
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Pu embodies a forefront of both technology and theo-
retical condensed-matter physics. Elemental Pu displays
exotic physical behavior that continues to defy explana-
tion. For example, it exhibits six allotropic phases at am-
bient pressure, the low-density fcc 6 phase has a negative
coefficient of thermal expansion, and the volume expands
by more than 25% when the system is heated from the
high-density monoclinic « phase to the 6 phase. Regarding
the pure & phase, a complicating factor is that it is only
stable in the temperature range 580 K <7 <700 K.
However, the 6 phase can be stabilized at low temperatures
by a variety of alloying elements such as Ga and Am. This
allows for the experimental exploration of the § phase at
low temperatures, with the caveat that it is not clear what
changes the alloying element may be inducing.

Lashley et al. [1] have measured the magnetic suscepti-
bility to be Pauli-like in both the « and é phases, and hence
detect no presence of localized magnetic moments. Simi-
larly, Heftner et al. [2—4] have used ©SR and showed that
there are no ordered magnetic moments in « Pu nor in
o-stabilized Pu (i.e., 4.3% Ga) for temperatures down to
4 K. Nuclear magnetic resonance (NMR) measurements by
Curro and Morales [5] also show an absence of magnetic
moments.

The linear coefficient of the specific heat for d-stabilized

Pu has been measured by various groups and the resulting
values are 42—/ for alloying with 2% of Ga [1], 64 -2

mol K? mol K?
for 5% of Al [6], and 35-55 m(’)’{JKz for 8% —20% of Am [7].
The large variation among these measurements may be due
to the fact that the 6 phase has been stabilized by a differ-
ent alloying element in each study.

Several previous studies have applied a combination of
density functional theory and the dynamical mean-field
theory (DFT + DMFT) [8] to 6 Pu. DMFT requires a
solution of an auxiliary quantum impurity problem, and
for the corresponding impurity model of Pu, no exact
method was available in the past. Savrasov et al. [9] used
an interpolative solver to calculate the energy and the
photoemission spectra of Pu. The approach yielded a sig-
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nificant improvement for the volume of the é phase of Pu
compared to DFT. Shick et al. [10] computed the photo-
emission spectra using the Hubbard I impurity solver and
were successful in predicting the three-peak structure in
the photoemission spectra. Pourovskii et al. [11] computed
the photoemission spectra and the heat capacity using the
Fluctuation Exchange Approximation (FLEX) as an impu-
rity solver. The applicability of FLEX to Pu is questionable
given the strongly correlated nature of 6-Pu. Zhu et al. [12]
computed the photoemission spectra using the the Hirsch-
Fye quantum Monte-Carlo impurity solver and show that
the occupation of the f orbital is close to ny ~ 5. However,
the limitation of this method to treat the realistic atomic
multiplet structure (Hund’s rule coupling) [8] precludes a
precise description of the problem. Shim et al. [13] pre-
dicted the photoemission spectra, the x-ray absorption
spectroscopy branching ratio, and the mixed-valence na-
ture of Pu. Although the mixed-valence state was identified
in Ref. [13], the temperature and pressure dependence of
the electronic state was not addressed.

In this Letter, we demonstrate the absence of magnetic
moments in 5-Pu by computing the magnetic susceptibility
as a function of temperature. We show that expanding the
Pu lattice results in an incoherent metallic state with Curie-
Weiss susceptibility at increasingly lower temperatures.
Additionally, we elucidate the nature of the mixed-valence
state by predicting the temperature dependence of the
photoemission spectra.

DMFT maps the interacting lattice problem onto an
impurity problem where the noninteracting bath function
is determined self-consistently [14]. The effective impurity
problem is then solved using the continuous-time quantum
Monte-Carlo (CTQMC) method [15,16]. More specifi-
cally, the recently developed hybridization expansion
CTQMC method is used to exactly sum the diagrams
resulting from expansion in powers of the hybridization
strength between the Pu atom and the DMFT fermionic
bath [15]. This method allows one to include the full rota-
tionally invariant exchange interaction without approxima-
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tion, in contrast to Hirsch-Fye QMC [8]. Although our
implementation of CTQMC is extremely efficient, massive
parallel computer resources are required to solve the 14
orbital DMFT impurity problem for Pu. The Atlas super-
computer at Lawrence Livermore National Lab was used to
perform the calculations, and time was awarded under the
Atlas grand challenge program.

DFT + DMFT calculations were performed using an
orthogonalized LMTO basis which provides f orbitals
that have a maximal f character [17]. In accordance with
previous studies, the on-site Coulomb repulsion was
chosen to be U = 4 eV and, the Slater integrals (F,, Fj,
and F) were computed using an atomic physics code [18]
and rescaled by 80% to account for screening in the solid.
Summations over the first Brillioun zone were performed
with 15 X 15 X 15 meshes, with the exception of the heat
capacity calculations where up to 40 X 40 X 40 meshes
were used to ensure convergence. Pu valencies of Ny =
4-7 were retained in the QMC simulation, and retaining
higher/lower valencies had no appreciable influence on the
results. The total occupation of the Pu-5f orbitals in this
study is approximately n, = 5.2, consistent with previous
calculations [13] and electron energy loss experiments of
the N edge [19] and the O edge [20].

We proceed by first exploring the qualitative effect of
electronic correlations on the local spectra. The real-
frequency spectral function is obtained by using the maxi-
mum entropy method to analytically continue the imagi-
nary time Green’s function measured in the CTQMC
simulation. The LDA spectrum displays a strong spin-orbit
splitting among the S = 3 and S = 7 states [see Fig. 1(a)].
The DFT + DMFT spectrum without exchange indicates
that spectral weight from low energies (i.e., near the Fermi
energy) has transferred to higher energies [see Fig. 1(b)].
Including the full exchange interaction reduces the spectral
weight in the § =% quasiparticle peak and hence the
electronic coherence scale. Additionally, the § = 5 peak
above the Fermi energy is broadened due to a multiplet
splitting. The spectrum with full exchange interaction is
similar to the three-peaked spectrum obtained by Shim
et al. [13]. The § = % has a central peak just below the
Fermi energy and a peak near —1 eV, while the S 2%
states have a peak near —0.6 eV. These features are much
broader than those obtained by Shim et al. [13], but this is
expected due to the limitations of the maximum entropy
method in obtaining the real-frequency data.

The self-energy 2 (iw) offers further insight into the
nature of the electronic correlations in 6-Pu. The quasi-
particle weight is determined by the slope of the imaginary

part of the self-energy (ie., Z=1/(1 — %)), and
within DMFT the mass enhancement of the electrons due
to electronic correlations is the inverse of the quasiparticle
weight (i.e., > = 1) In the absence of exchange, the § = Z
states are very weakly correlated, having an average Z =

0.7 while the S = % states have an average Z = 0.41 for the
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FIG. 1 (color online). The spectral functions for the Pu
f-electrons within DFT (top), DFT + DMFT without exchange
(middle), and DMFT + DFT with the full rotationally invariant
exchange (bottom).

equilibrium volume of § Pu [see Fig. 2(a)]. Weak correla-
tions for the S = 7/2 states is expected given that in the
absence of Hund’s coupling the j-j coupling scheme is
adequate, and hence the § = ; states are nearly empty.
Alternatively, the S = % states are much closer to a nonzero
integer filling and are moderately correlated. When the
exchange is included, the quasiparticle weight is substan-
tially decreased, resulting in Zs, = 0.26, Z;,, = 0.32 for
the equilibrium volume. The exchange interaction pushes
Pu towards intermediate coupling, where the S = 7/2
states are more mixed into the ground state and hence

0.8 F ‘ T

&—¢ S=5/2 Full Exchange

&—<¢ S=7/2 Full Exchange |
S=5/2 No Exchange -

&— S=7/2 No Exchange _|

0.6 -

50 -

40 -

4

C /T (mJ/mol-K*)

24 26 28 30 32
Volume (A’)
FIG. 2 (color online). The quasiparticle weight Z (top), and
linear coefficient of the heat capacity (bottom) as a function of

volume. The heat capacity was calculated with the full exchange
interaction.
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they becomes heavier. With increasing volume, the kinetic
energy decreases and hence correlations increase resulting
in a smaller Z. The only exception is the 7/2 orbital in the
absence of exchange, where the occupation slightly de-
creases with increasing volume.

We proceed to explore the heat capacity and the mag-
netic susceptibility. Within Fermi liquid theory, the linear
coefficient of the heat capacity is given by vy =
%Za L ;LO), where a runs over all orbitals, p, is the
local density of states, and Z,, is the corresponding quasi-
particle weight. The heat capacity as a function of volume
is shown in Fig. 2. As the volume is increased, the heat
capacity increases due to the fact that the quasiparticle
renormalization amplitude Z decreases and the spectral
density at the Fermi energy increases. The predicted heat
capacity for the equilibrium volume of 6-Pu is 20.4 m(’)’fJKZ .
The difference between the predicted value of the heat
capacity and the experimentally measured values of
35-55- (;’f_JKz may be due to several factors. Given that the
f-electron spectral function is extremely steep in the vi-
cinity of the Fermi level (see Fig. 1), it is clear that the
value of v is sensitive to small changes in the Fermi energy.
Therefore, approximations in the DFT calculation may
have a non-negligible influence. The second potential
cause of this difference might be that the electron-phonon
coupling may further renormalize the hoppings and this is
not included in our calculation. Given that our prediction is
smaller than experiment, inclusion of electron-phonon
coupling would improve agreement with current experi-
ments. It should be noted that the largest volume point is
not yet in the Fermi liquid regime, as demonstrated below,
and hence the Fermi liquid formula for the heat capacity
should only be considered as an estimate for the largest
volume.

The local magnetic susceptibility is calculated as a
function of temperature for different volumes using the
following expression [15]:

Xiocal = ﬁ) ? arMMO),

where M = L + 25, L is the total orbital angular momen-
tum, and S is the total spin angular momentum. For the
equilibrium volume of Pu, the susceptibility is relatively
flat (i.e., Pauli-like) below 600 K and diminishes at higher
temperatures (see Fig. 3). This behavior is consistent with
experimental measurements. Our calculations predict that
the reason that magnetic moments are not seen in 6 Pu is
because the system is coherent and the moments are there-
fore screened. Physically, this means that the electrons
from the spd bands and from neighboring f orbitals align
themselves antiparallel to the moment of a particular Pu-
atom, effectively cancelling the net moment. This pre-
dicted behavior is in agreement with experimental obser-
vations [1-5]. As the volume is increased by 16%, the low-
temperature Pauli-like contribution has been renormalized
to higher values and transitions to a Curie-like behavior
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FIG. 3 (color online). Local magnetic susceptibility as a func-
tion of temperature for different volumes.

around 400 K (see Fig. 3). The increase in the Pauli
contribution is consistent with the decrease in Z as the
volume is increased, and this illustrates an enhancement of
the electronic correlations.

As the volume is further increased by an additional 16%,
the susceptibility is Curie-like to the lowest temperatures
reached in this study (see Fig. 3). These results clearly
indicate a decoherence of the electrons. As the volume is
increased, the coherence energy of the electrons decreases
and therefore a transition from coherent to incoherent
behavior (i.e., Pauli-like to Curie-like) occurs at increas-
ingly smaller temperatures. This signifies that a local mag-
netic moment has emerged at progressively lower
temperatures as the volume is increased.

The general behavior observed in these magnetic sus-
ceptibility calculations is consistent with experiments.
First, doping Pu with Americium causes the Pu lattice to
expand, effectively increasing the volume. The Pauli con-
tribution of the Pu atom is shown to increase as the
Americium content is increased and the effective volume
is increased [21]. This is consistent with the enhancement
of the Pauli term that we observed. Second, when hydrogen
is doped into the system, the fcc Pu lattice expands by more
than 50% and Curie-like behavior is measured for the
magnetic susceptibility down to temperatures of 50 K
[22]. This is qualitatively consistent with the largest vol-
ume expansion in our calculations.

When the electronic behavior departs from the Fermi
liquid theory and enters the incoherent regime, there is a
clear signature in the spectra. In Fig. 4, we show the
temperature dependence of the local spectral function at
ambient pressure. At high temperatures, the spectrum is
diffuse. As the temperature is decreased, a quasiparticle
peak continually builds and eventually saturates at 7T =
500 K. The coherence temperature may be defined as the
temperature at which the quasiparticle peak nears satura-
tion, and we define 75% saturation to be the onset of
coherence. Hence our estimation for the coherence tem-
perature is approximately 800 K, consistent with Ref. [13].

The inset of Fig. 4 shows the temperature dependence of
the height of the quasiparticle peak. Notice that this be-
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FIG. 4 (color online). The temperature dependence of the S =
% f-electron spectral function using the rotationally invariant
exchange interaction. The inset displays the peak height as a
function of temperature. The red points correspond to our data,
while the blue curve is the parametrization from Ref. [24]
assuming an onset temperature of 800 K.

havior is very different from the temperature dependence
in heavy-Fermion compounds [23] recently parametrized
in Ref. [24]. For comparison, we plot the best fit of the
parametrization of Ref. [24] to our data. The inability of
this parametrization to describe our data is due to the
mixed-valence nature of plutonium.

In conclusion, we have performed approximation-free
DMEFT calculations including the rotationally-invariant ex-
change interaction for 6-Pu. The efficient CTQMC algo-
rithm has allowed us to reach both high temperatures and
temperatures below ambient. The quasiparticle weight for
the § = % states of §-Pu is found to be Z = 0.25, indicating
the presence of appreciable electronic correlations.
Calculation of the magnetic susceptibility indicates Pauli-
like behavior for the equilibrium volume of 6-Pu, in sup-
port of experimental measurements. This indicates that in
6-Pu the moments are screened. Expanding the volume
causes the electrons to crossover from coherent to incoher-
ent behavior at increasingly lower temperatures. This
crossover is illustrated in the temperature dependence of
the spectra. The prediction of incoherent electronic behav-
ior, manifested as Curie-like behavior in the magnetic
susceptibility, is consistent with experimental measure-
ments in PuH,. The importance of the inclusion of the
rotationally invariant exchange is illustrated in the spec-
trum and in the reduction of the quasiparticle renormaliza-
tion amplitude from Z = 0.41 to Z = 0.25.
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