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Fractional power-law behavior and its origin in iron-chalcogenide and ruthenate superconductors:
Insights from first-principles calculations
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We perform realistic first-principles calculations of iron chalcogenides and ruthenate-based materials to
identify experimental signatures of Hund’s-coupling-induced correlations in these systems. We find that FeTe and
KxFe2−ySe2 display unusual orbital-dependent fractional power-law behavior in their quasiparticle self-energy
and optical conductivity, a phenomenon first identified in SrRuO3. Strong incoherence in the paramagnetic state of
these materials results in electronic states hidden to angle-resolved photoemission spectroscopy which reemerge
at low temperatures. We identify the effective low-energy Hamiltonian describing these systems and show that
these anomalies are not controlled by the proximity to a quantum critical point but result from coexistence of fast
quantum mechanical orbital fluctuations and slow spin fluctuations.
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I. INTRODUCTION

The study of the Hund’s coupling effects in solids has
a long history. Van der Marel and Sawatsky1 pointed out
that, unlike the Hubbard U which is strongly screened, the
atomic Hund’s JH persists essentially unrenormalized in
the solids and increases the splittings between the lower
and the upper Hubbard bands for a half-filled shell, while
decreasing it away from half filling. The Hund’s term was
also shown to have important consequences on the low-energy
physics of quasiparticles, when a transition metal impurity is
screened in a metallic host. The Hund’s coupling was shown
to dramatically reduce the value of the Kondo temperature.2,3

Recent interest in this problem arose from dynamical mean-
field theory4 (DMFT) investigations of the recently discovered
iron-pnictide superconductors. It was proposed that in these
materials strong correlations arise from the Hund’s rule
coupling JH ,5 rather than from the Hubbard U , resulting in
large mass enhancements. These calculations5 showed that for
a reasonable value of the Hubbard U , the mass enhancement
due to interactions is very small when JH = 0, whereas it is
exponentially enhanced by the Hund’s rule coupling. Optical
spectroscopy studies have shown that in both iron pnictides and
chalcogenides the optical masses are many times larger than
the band masses.6–9 The trend in mass enhancements is well
accounted for by DMFT combined with density functional
theory (DFT) calculations.10 Since the strength of correlations
in these solids is almost entirely due to the Hund’s coupling,
these materials are dubbed Hund’s metals.10 The role of
Hund’s coupling in iron pnictides and chalcogenides has been
addressed from different perspectives in the literature.10–26

Power-law behavior in the quasiparticle self-energy of model
Hamiltonians with Hund’s coupling was discovered in Ref. 27
and related to observations in ruthenates.28,29 Many anomalous
properties of ruthenates30 and other 4d compounds were
shown to be governed by Hund’s physics.31

While at low energies and low temperatures Hund’s
metals are describable by Fermi liquid theory, the physical
properties in their incoherent regime are anomalous and
surprising. In the iron pnictides and chalcogenides there is
a strong tendency towards orbital differentiation,10 and the
large mass enhancement can occur even though no clear

Hubbard band exist in the one-particle spectra of these
Hund’s metals.32

In this article, we use first-principles methods and model
Hamiltonians to search for experimental signatures of Hund’s
physics in iron chalcogenides and ruthenates, which are the
subject of current intensive experimental studies. We show
how the incoherence in iron chalcogenides above the Néel
temperature can blur portions of the Fermi surface, rendering
them dark to photoemission spectroscopy. We show that the
fractional power-law behavior in optical conductivity that
received significant attention in the ruthenates also takes place
in the FeTe system, deepening the analogies between these
systems. We compare the power-law exponents in optical
conductivity extracted from first-principles DFT + DMFT
calculations with experiments in a broad class of materials,
and elucidate the control parameters that govern this behavior.
The fractional power-law behavior is characteristic of an
intermediate regime where the orbital degrees of freedom are
quenched but the spin degrees of freedom are not. This physics
is most pronounced at the special valence of one unit of charge
away from half filling.

II. RESULTS

A. DFT + DMFT results

We first show results of our realistic DFT + DMFT
calculation33,34 for three compounds currently under extensive
investigations: the ruthenates Sr2RuO4 and the iron chalco-
genides FeTe and KxFe2−ySe2. In all the DFT + DMFT
calculations, we use the same Coulomb repulsion U = 5.0 eV
and Hund’s JH = 0.80 eV, as determined ab initio in Ref. 32,
and used in our previous work.10,12 Notice that we include
all the electronic states in a large energy window (−10 to
10 eV) as opposed to three- or five-band model calculations;
thus the Hubburd U appropriate for our calculations is
much less screened than in those studies. The electronic
charge is computed self-consistently on the DFT + DMFT
electronic density. The quantum impurity problem is solved
by the continuous-time quantum Monte Carlo (CTQMC)
method,35,36 using the Slater form of the Coulomb repulsion in
its fully rotationally invariant form. We use the experimentally
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FIG. 1. (Color online) Fractional power law in (a) theoretical
self-energy and (b) experimental optical conductivity in iron chalco-
genides and ruthenates. Experimental data are taken from Ref. 42 for
FeTe0.91 and FeTe0.7Se0.3, Ref. 43 for Fe1.06Te0.88S0.14, Ref. 28 for
Sr2RuO4, and Ref. 29 for SrRuO3.

determined lattice structures, including the internal positions
of the atoms for Sr2RuO4,37 FeTe,38 KxFe2−ySe2,39 and
FeSe.40

We show in Fig. 1(a) the imaginary part of the self-energy
of the t2g orbitals in Sr2RuO4, FeTe, and KxFe2−ySe2 on the
imaginary axis, plotted in log10 scale. In the intermediate
energy range from a low-energy cutoff ∼0.1 eV, below which
the materials gain coherence, to roughly Hund’s JH ∼ 0.8 eV,
the imaginary part of the self-energy clearly shows a fractional
power-law behavior, i.e., Im�(iωn) ∝ −ωα

n . For the normal
Fermi liquid, this exponent is unity, and at finite temperature
correlated materials have an additional constant scattering rate.
The fractional powerlaws are however very uncommon.

From the quantum chemistry perspective, both iron chal-
chogenides and ruthenates share a common theme: they con-
tain correlated electrons with the d valence of one unit charge
away from half filling. In iron pnictides (chalcogenides),
the Fe ion is surrounded by a tetrahedron of pnictogen
(chalcogen), and the resulting crystal field splittings are very
small compared to Fe-pnictogen hybridization;5 hence all five
Fe 3d orbitals are active. Their average occupancy is close
to d6, one unit of charge away from the half-filled d5. For
the ruthenates, the coordination of the Ru is octahedral, and
the oxygen ligands induce a large t2g-eg splitting, with only

the t2g orbitals active, containing approximately four electrons
in three t2g orbitals, one electron more than in the half-filled
shell.

The values of the apparent power-law exponents differ from
material to material and deviate even for different orbitals of
the same material, which is connected to the orbital occupancy.
As shown in Fig. 1(a), the xz and yz orbitals of Sr2RuO4 show
an exponent of 0.5, while the more correlated xy orbital, which
is closer to half filling, show a smaller exponent of 0.42. In
iron pnictides and chalcogenides, the average occupancy per
orbital is even closer to half filling (only 1/5 away, as opposed
to 1/3 in ruthenates). As we will show below by a model study,
one expects stronger electronic correlations in this case and a
smaller power-law exponent. Indeed, the xz and yz orbitals
in FeTe show an exponent of ≈0.36, whereas for the more
strongly correlated xy orbital, the exponent is only ≈0.24.
Iron vacancies in KxFe2−ySe2 make the compound even more
correlated than FeTe, and the power-law exponent is further
reduced to 0.27 for the xz and yz orbitals, and to only 0.07 for
the xy orbital.

The power-law behavior of the self-energy manifests itself
in optical conductivity studies. In a simplified treatment,
the optical conductivity can be approximated by σ (ω) ∝
Re{1/[ω + i�′′(ω) + �′(ω) − �′(ω = 0)]}.41 In Fig. 1(b),
we present experimental data on FeTe0.91,42 FeTe0.7Se0.3,42

Fe1.06Te0.88S0.14,43 Sr2RuO4,28 and SrRuO3.29 As can be seen
in Fig. 1(b), the optical conductivity in these materials can be
roughly approximated by σ1(ω) ∼ Bω−α in about the same
energy range as the theoretical self-energy. The experimental
exponents obtained from optical conductivity are very similar
to the theoretical exponents for the self-energy, as expected
from the simplified relation between optical conductivity and
self-energy.

Hund’s metals have a very low temperature scale, called
the coherence temperature, below which a Fermi-liquid-like
coherence regime is reached. This phenomenon has been
discussed in other contexts such as heavy fermions44,45 and
transition metal oxides46 and can be fruitfully probed by
photoemission spectroscopy. At finite temperatures, some
electronic states can be very incoherent, and coherence in dif-
ferent electronic states is usually not reached simultaneously.
Due to the strong orbital differentiation discussed in Ref. 10,
the t2g orbitals have lower coherence temperature than the eg

orbitals in the iron-based superconductors. Within the t2g shell,
the xy orbital has the lowest coherence temperature. In Fig. 2
we show the gradual evolution of the Fe t2g orbitals from a
very incoherent state at high temperature to a partially coherent
state at lower temperature in paramagnetic (PM) state of FeTe.
We display the momentum- and orbital-resolved density of
electronic states at temperatures of 387, 232, 116, and 58 K.
For comparison, we also show the momentum-resolved density
of states of PM FeSe at 116 K, where all electronic states
are quite coherent. The buildup of coherence in the orbitally
resolved spectra of FeTe is seen as a gradual buildup of the
quasiparticle peak from a broad hump at elevated temperature
to a sharper peak at lower temperature in Figs. 2(e) and 2(f). In
momentum space, the coherence is achieved more unevenly.
While some bands can be identified at 116 K, and become
pretty sharp at 58 K, other bands are barely noticeable even at
58 K. In particular, the band of primarily xy character circled
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FIG. 2. (Color online) Incoherence-coherence crossover in FeTe.
A(k,ω) along the path � → X → M → � → Z → R → A → Z

for FeTe at (a) 232 K, (b) 116 K, and (c) 58 K and for (d) FeSe
at 116 K in the PM states. (e), (f) A(ω) for the Fe 3d xy and the
xz and yz orbitals at 387, 232, 116, and 58 K in PM FeTe. (g), (h)
Color-coded Fermi surface in the � plane for PM FeTe and FeSe,
respectively. Red, green, and blue colors correspond to xy, xz, and
yz orbital character, respectively. Due to the incoherent nature of the
xy orbital above TN , the outer hole pocket around � is not easy to
detect in ARPES experiments.

by the blue ellipse has an enormous scattering rate at 58 K
and should be hard to detect by angle-resolved photoemission
spectroscopy (ARPES). The missing Fermi surface is drawn
in Fig. 2(g) as a large red pocket centered at the � point,
which is very incoherent above TN , and hence is missing
in the photoemission of the paramagnetic FeTe, in strong
contrast to paramagnetic FeSe [Fig. 2(h); see also Ref. 47].
Our calculation shows that K-intercalated FeSe (KxFe2−ySe2)
is even more correlated than FeTe, and has smaller power-law
exponents and lower coherence temperature than FeTe. This
is in agreement with recent angle-resolved photoemission
spectroscopy experiments on AxFe2−ySe2 compounds (A =
K, Rb, Cs) where an orbital-dependent incoherence-coherence
crossover was observed by Yi and collaborators.48

B. Low-energy Hamiltonian

To gain some understanding of the Hund’s physics in
these systems, we derive below a low-energy Hamiltonian

of the three-band Hubbard model, the simplest model
which shows power-law behavior of the self-energy. The
starting Hubbard Hamiltonian is H = Ht + HU , with the
hopping term Ht = ∑

ijσ,a,b t
ij

abf
†
iaσ fjbσ and Coulomb

term HU = 1
2

∑
iσ,abcd U [a,b,c,d]f †

iaσ f
†
ibσ ′ficσ ′fidσ . Here

a,b,c,d (i,j ) are orbital (site) indices, and σ stands for
the spin. The hopping term is taken to be locally SU(6)
symmetric (no crystal fields), while the Coulomb interaction
is set to U [a,b,c,d] = Uδadδbc + Jδacδbd , which reduces
the symmetry to SU(3) × SU(2). Within DMFT, this
model maps to an SU(3) × SU(2) impurity Hamiltonian.
To understand why the Hund’s rule coupling has such a
dramatic effect on the physical properties, we first perform
a Schrieffer-Wolff transformation (for its derivation, see
the Appendix) to obtain a Kondo-like Hamiltonian, of the
form H Kondo

eff = H0 + H1 + H2 + H3, with the potential
scattering term H0 = Jp

∑
aσ ψ

†
aσ (0)ψaσ (0), the spin-spin

Kondo part H1 = J1
∑

α Sα
∑

aσσ ′ ψ
†
aσ (0)σα

σσ ′ψaσ ′(0), the
orbital-Kondo part, H2 = J2

∑
α T α

∑
abσ ψ

†
aσ (0)λα

abψbσ (0),
and the coupled spin-orbital part H3 =
J3

∑
αβ T αSβ

∑
abσ ψ

†
aσ (0)λα

abσ
β

σσ ′ψbσ ′ (0). Here Sα =∑
aσσ ′ f

†
aσ

1
2σα

σσ ′faσ ′ and T β = ∑
abσ f

†
aσ λ

β

abfbσ ′ are spin and
SU(3) orbital operators acting on the impurity site, ψ(0)
are field operators of the conduction electrons coupled to
the impurity, while σα

σσ ′ and λα
ab are Pauli matrices and the

Gell-Mann 3 × 3 matrices of the SU(3) group, respectively.
Notice that in our picture the same electrons carry both

orbital and spin degrees of freedom, in contrast to the point of
view of Ref. 49, which emphasizes the spin and orbital degrees
of freedom being carried by different type of electrons, i.e., t2g

the spin, and eg the orbital.
While the form of the low-energy impurity model is dictated

by symmetry considerations, the exchange couplings J1,J2,J3

depend crucially on the impurity valence and Hund’s coupling
JH . For the half-filled shell and large JH , only the spin-spin
term J1 survives, and a well-known reduction of the J1 Kondo
coupling for a factor of (2l + 1) was derived in Refs. 2 and 3
compared to a corresponding one-band model. Consequently,
a huge reduction of the Kondo temperature for a factor of
(2l + 1)2 in the exponent was derived in Ref. 3. This regime
is relevant for the half-filled d5 shell realized in the Hund’s
insulators LaMnPO.50

For the above Hund’s metals, the relevant valence of the
transition metal ion is one unit of charge away from half filling.
When JH is negligible, the Hamiltonian is SU(6) symmetric,
and all three Kondo couplings J1,J2,J3 are positive (antiferro-
magnetic). For the valence nimp = 2 (or nimp = 4), their numer-
ical values are J1 = J0/3, J2 = J0/4, and J3 = J0/2, where
J0 = V 2/(2U + εf ) [or J0 = V 2/(3U + εf )] is a positive
number, which depends on the corresponding Anderson impu-
rity model parameters, i.e., hybridization V and impurity level
εf . The ground state is a Fermi liquid, because antiferromag-
netic couplings between conduction electrons and impurity de-
grees of freedom ensure complete quenching of both the orbital
and spin moments. On the other hand, when JH is large, the
spin-spin Kondo coupling J1 changes sign to ferromagnetic,
while the orbit J2 and spin-orbit J3 couplings remain positive.
In the three-band SU(2) × SU(3) model and for large JH , their
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FIG. 3. (Color online) Quasiparticle self-energies for a three-
band model with JH = 2.0 at different fillings nd = 1.75, 2.00,
and 2.26. (a) The self-energies at two temperatures T = 0.01 and
0.001 25 show the incoherence-coherence crossover with decreasing
temperature. (b) The self-energies plotted in log10 scale display
fractional power-law behavior in the intermediate frequency range
from ε∗

0 to ε∗
1 as indicated by arrows.

numerical values are J1 = −J0/9, J2 = J0/3, and J3 = J0/3,
where J0 = V 2/(2U − 2JH + εf ) > 0 [or J0 = V 2/(3U +
JH + εf ) > 0] for valence nimp = 2 (or nimp = 4). This change
of sign is due to the orbital blocking mechanism,10 which al-
lows only those virtual charge excitations that go through an or-
bital singlet intermediate state (see the Appendix). We note that
for valence d6 in iron pnictides and chalcogenides, the correct
low-energy Hamiltonian has three terms, not just the spin-spin
term, as proposed earlier.51 It is, however, the spin-spin J1 term
that changes sign in the limit of large JH , and impedes quench-
ing of the spin degrees of freedom (termed spin freezing in
Ref. 27). This substantially reduces the coherence temperature;
however, the J3 term, which couples spin and orbital, is positive
and gives rise to the Fermi liquid state at very low temperature.

FIG. 4. (Color online) (a) The coherent temperature and (b) the
spin and orbital susceptibility, as functions of nd for a three-band
model with JH = 2.0 (solid lines) and JH = 1.0 (dashed lines).

C. Model Hamiltonian calculations

To demonstrate the above picture, we numerically solve a
simplified three-band model with the nearest-neighbor diago-
nal hopping tαα = 0.4, and the next-nearest-neighbor hopping
t ′αα = 0.4 and t ′α �=β = 0.2, which give a total bandwidth of
the tight-binding model W ≈ 3.5. We take U = 6 and large
Hund’s coupling JH = 2 and JH = 1 for the power law to
extend over a larger frequency range.

In Fig. 3(a), we show the imaginary part of the quasiparticle
self-energies for JH = 2. At the intermediate temperature
T = 0.01, the self-energies of nd = 2.00 and 2.26 display
finite values at zero frequency by extrapolation, which suggests
incoherent properties at this temperature. However, at a lower
temperature T = 0.001 25, the corresponding self energies
clearly display Fermi liquid behavior at low frequencies.
Therefore there is an incoherence-coherence crossover with
decreasing temperature. We determine the coherence temper-
ature as the temperature at which the renormalized scattering
rate is equal to the temperature, i.e., −zIm�(iω = i0+,T ∗) =
kBT ∗, where 1/z = 1 − ∂Im�(iω = i0+,T ∗)/∂ω and kB is
the Boltzmann constant. We show the coherent temperature in
Fig. 4(a) as a function of electron occupation nd . We reached
an eight-times lower temperature than previous studies27 to
access the Fermi liquid state at filling far beyond nd = 2, and
map out the coherence-incoherence crossover temperature T ∗.

A good power-law fit to the self-energy, as shown in
Fig. 3(b), is obtained only in a limited range of frequency
between the low-energy cutoff proportional to the Fermi liquid
scale [ε∗

0 in Fig. 3(b)] and the high-energy cutoff (ε∗
1), which

is always smaller than the Hund’s coupling. The range of
frequencies at which the power law is valid [ε∗

0 < ωn < ε∗
1 ,

as indicated by arrows in Fig. 3(b)] is largest at valence
nd = 2, where the exponent is close to 1/2, as previously
reported in Ref. 27. The much lower temperatures reached in
this work show that the exponent α decreases monotonically
with increasing nd [see Fig. 3(b) and Figs. 5 and 6 in the
Appendix], in contrast to Ref. 27; hence stronger correlations
approaching the Mott state at nd = 3 lead to smaller exponents
at low temperatures, in qualitative agreement with our realistic
calculations for Fe and Ru compounds. Most importantly, there
is no signature of a quantum phase transition to a non-Fermi-
liquid spin-frozen state around valence nd = 2, where the
power-law exponents are found, and the crossover temperature
scale does not follow the power-law behavior T ∗ ∼ (x − xc)zν

expected in a quantum critical scenario. Hence we can exclude
the possibility that the exponents are due to the proximity to
the quantum phase transition, as proposed in Refs. 27 and 52.

III. DISCUSSION

The power-law exponents are found in the temperature
and frequency regime where the spin degrees of freedom
are very slow and unquenched (the spin susceptibility has
Curie-Weiss form and a large static value) while the orbital
degrees of freedom are very fast and quenched (the orbital
susceptibility is Pauli-like, but enhanced) [see Fig. 4(b) and
Fig. 7 in the Appendix] This is an interesting regime in
which two degrees of freedom behave in different ways,
one fluctuating very fast (positive J2), the other very slowly
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(negative J1), and both coupled by a third antiferromagnetic
coupling J3. This situation is similar to the intermediate phase
of the extended Hubbard model study of Ref. 53, where
similar continuously varying exponents were shown to exist
in the metallic non-Fermi-liquid phase in which there was a
quenched spin degree of freedom and an unquenched charge
degree of freedom. Notice that at nd = 3 only the large-spin
state is possible; hence the orbital degrees of freedom are
gapped, and exponents disappear, while the effect is maximal
one unit of charge away from half filling, i.e., at nd = 2.

IV. CONCLUSIONS

In conclusion, we have shown in this paper that the Hund’s
rule coupling has a strong impact on the electronic states
at valence of one unit of charge away from half filling.
The strongly correlated state in such materials can have a
very low coherence temperature, and the self-energy and
optical conductivity show fractional power-law behavior at
intermediate energy. We have derived the effective low-energy
Hamiltonian describing these systems and identified a negative
Kondo coupling in the spin-spin part of the corresponding
low-energy Kondo model. We have shown that these anomalies
are not controlled by the proximity to a quantum critical
point but result from coexistence of fast quantum mechanical
orbital fluctuations and slow spin fluctuations. This is relevant
for ruthenates and iron chalcogenides, as well as many other
materials with similar valence and sizable Hund’s coupling.
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APPENDIX

1. Schrieffer-Wolff transformation

We start our discussion with the three-band Hubbard model
H = Ht + HU , with the hopping term

Ht =
∑

ijσ,a,b

t
ij

abf
†
iaσ fjbσ (A1)

and the Coulomb repulsion term

HU = 1

2

∑
iσ,abcd

U [a,b,c,d]f †
iaσ f

†
ibσ ′ficσ ′fidσ . (A2)

Here the index a runs over the three orbitals, i,j over lattice
sites, and σ over spin. The hopping term is taken to be
locally SU(6) symmetric, while the Coulomb interaction is
set to U [a,b,c,d] = Uδadδbc + Jδacδbd , which reduces the
symmetry to SU(3) × SU(2).

Within the dynamical mean-field theory, this model maps to
the SU(3) × SU(2) impurity Hamiltonian of the form Himp =
Hbath + Hhyb + Hlocal,

Hbath =
∑
kaσ

εkaψ
†
kaσ ψkaσ , (A3)

Hhyb =
∑
kaσ

Vkaψ
†
kaσ faσ + H.c., (A4)

Hlocal =
∑
aσ

εf f †
aσ faσ + HU. (A5)

To gain further insights into the low-energy degrees of
freedom of this Hamiltonian, we perform the Schrieffer-Wolff
transformation, which takes the form

Heff = PnHhyb
Pn±1

�E
HhybPn, (A6)

where Pn is the projector to the impurity ground-state
multiplet, and �E is the energy cost for the charge excitation
from the ground-state multiplet to the n ± 1 lowest-energy
multiplet states, and is always negative.

Here we will limit our discussion to the case of a ground-
state valence nf = 2 and virtual charge excitations into valence
nf = 3. A direct way of evaluating this effective Hamiltonian
is to perform exact diagonalization of Hlocal, then express
matrix elements of faσ operators in terms of atomic eigenstates
(F †

aσ )m1m2 = 〈m1|f †
aσ |m2〉, and finally evaluate all terms which

appear in the sum

Heff =
∑

kk′abσσ ′

VkaV
∗

k′b

�E
ψ

†
kaσ ψk′bσ ′

×
∑

m1m2m3

(Faσ )m1m2 (F †
bσ ′)m2m3 |m1〉〈m3|. (A7)

Here m2 runs over the ground-state multiplet at valence n + 1,
while m1 and m3 run over the ground-state multiplet at valence
n. Finally we need to express the impurity degrees of freedom
in terms of the impurity operators such as the total spin S and
the orbital isospin operator T .

This tedious derivation can be circumvented by a
trick. We Fourier-transform the bath operators V 2ψ

†
aσ (0) =∑

k Vkaψ
†
kaσ and introduce the combined spin-orbit index

i ≡ (aσ ). We can then rewrite the effective Hamiltonian for
charge excitations from valence n to valence n + 1 as

Heff =
∑
ijkl

V 2

�E
ψ

†
i (0)ψj (0)PnfkPn+1f

†
l Pn δ(i,k)δ(j,l).

(A8)

We next find a complete orthonormal basis in the space of spin
and orbit degrees of freedom [Tr(IαIβ†) = δαβ], in which the
completeness relation takes the form

δ(i,k)δ(j,l) =
∑

α

(Iα∗)ij (Iα)kl . (A9)

Here the matrices Iα form a complete basis for the SU(3) ×
SU(2) group. For the SU(2) and SU(3) groups we use Pauli
2 × 2 matrices σα , and Gell-Mann 3 × 3 matrices λα . In terms
of these, the complete basis Iα is

Iα =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1√
3
1 ⊗ 1 1√

2
,

1√
3
1 ⊗ σ 1√

2
,

1√
2
λ ⊗ 1 1√

2
,

1√
2
λ ⊗ σ 1√

2
.

(A10)
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The normalization factors come from the fact that Tr(σασβ) =
2δ(α,β) and Tr(λαλβ) = 2δ(α,β). We can then simplify the
low-energy Hamiltonian as

Heff =
∑
ijkl,α

V 2

�E
(Iα)kl PnfkPn+1f

†
l Pn ψ

†
i (0)(Iα∗)ijψj (0).

(A11)

Next we realize that even in the presence of an arbitrary
projector, the local operators keep the same form of the
expansion in terms of the electron field operator∑

kl

(1 ⊗ σα)kl PnfkPn+1f
†
l Pn ∝ −Sα, (A12)

∑
kl

(λα ⊗ 1)kl PnfkPn+1f
†
l Pn ∝ −T α, (A13)

∑
kl

(λα ⊗ σβ)kl PnfkPn+1f
†
l Pn ∝ −T α ⊗ Sβ, (A14)

but the proportionality constants need to be determined by an
explicit calculation. Notice that just as in the Wigner-Eckart
theorem, we need to consider only one matrix element to de-
termine the proportionality constant, which greatly simplifies
this derivation.

Now we can recognize that the first term in Eq. (A10) gives
rise to potential scattering of the form

H0 = Jp

∑
aσ

ψ†
aσ (0)ψaσ (0), (A15)

the second term in Eq. (A10) gives the spin-Kondo part

H1 = J1

∑
α

Sα
∑
aσσ ′

ψ†
aσ (0)σα

σσ ′ψaσ ′ (0), (A16)

the third gives the orbital-Kondo part

H2 = J2

∑
a

T a
∑
ασβ

ψ(0)†ασ λa
α,βψ(0)βσ , (A17)

and the last gives the spin-orbit Kondo part

H3 = J3

∑
a,b

T a ⊗ Sb
∑
ασβ

ψ(0)†ασ λa
α,βσ b

σ,σ ′ψ(0)βσ ′ (A18)

The Kondo couplings J1,J2,J3 depend on the valence nf

and type of the projector P . We first consider the SU(6)-
symmetric case, which is realized in the absence of Hund’s rule
coupling. In this case, the projector P is irrelevant, since all
states at some valence have equal energy. The local operators
are then simply given by

∑
aσσ ′

faσ σα
σσ ′f

†
aσ ′ = −2Sα,

∑
abσ

faσ λα
abf

†
bσ ′ = −T α,

∑
abσσ ′

faσλα
abσ

β

σσ ′f
†
bσ ′ = −2T αSβ,

and the Kondo couplings become J1 = 2/6 J0 = J0/3, J2 =
J0/4, and J3 = 2/4 J0, where J0 = V 2

2U+εf
> 0. Notice that

all Kondo couplings are positive (the minus sign comes
from �E and from the proportionality constant) and hence
antiferromagnetic couplings ensure complete quenching of the

FIG. 5. (Color online) Quasiparticle self energy for JH = 2.0.
The imaginary part of the quasiparticle self-energy in the log10-log10

scale as a function of electron occupation nd for U = 6.0 and JH =
2.0. Note the data are shifted along the y axis for better illustration.
The linear dispersion of the self-energy in the plot indicates that
power-law behavior exists in the intermediate frequency region as
indicated by the arrows.

spin and orbital moments. The ground state is thus a Fermi
liquid.

In the limit of large Hund’s coupling, the projector Pn+1

projects to the subspace of high-spin states only, which in the
case of the three-band model and nf = 3, take the following
forms:

|1〉 ≡ |↓↓↓〉, (A19)

|2〉 ≡ 1√
3

(|↓↓↑〉 + |↓↑↓〉 + |↑↓↓〉), (A20)

|3〉 ≡ 1√
3

(|↓↑↑〉 + |↑↓↑〉 + |↑↑↓〉), (A21)

|4〉 ≡ |↑↑↑〉. (A22)

Projection to the ground state multiplet Pn is achieved by
projecting to the following states:

|5〉 ≡ |↓0↓〉, (A23)

|6〉 ≡ |0↓↓〉, (A24)

|7〉 ≡ |↓↓0〉, (A25)

|8〉 ≡ 1√
2

(|↓0↑〉 + |↑0↓〉), (A26)

|9〉 ≡ 1√
2

(|0↓↑〉 + |0↑↓〉), (A27)
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FIG. 6. (Color online) Quasiparticle self-energy for JH = 1.0.
The imaginary part of the quasiparticle self-energy in the log10-log10

scale as a function of electron occupation nd for U = 6.0 and
JH = 1.0. Note that the data are shifted along the y axis for better
illustration. The linear dispersion of the self-energy in the plot
indicates that power-law behavior exists in the intermediate frequency
region as indicated by the arrows.

|10〉 ≡ 1√
2

(|↓↑0〉 + |↑↓0〉), (A28)

|11〉 ≡ |↑0↑〉, (A29)

|12〉 ≡ |0↑↑〉, (A30)

|13〉 ≡ |↑↑0〉. (A31)

An explicit calculation can be used to determine the
proportionality constants:

∑
aσσ ′

Pnfaσ σα
σσ ′Pn+1f

†
aσ ′Pn = 2

3
Sα,

∑
abσ

Pnfaσ λα
abPn+1f

†
bσ ′Pn = −4

3
T α,

∑
abσσ ′

Pnfaσ λα
abσ

β

σσ ′Pn+1f
†
bσ ′Pn = −4

3
T αSβ.

We can finally determine the Kondo couplings in the limit of
large Hund’s coupling. Their value is J1 = −2/3 × 1/6J0 =
−J0/9, J2 = 4/3 × 1/4J0 = J0/3, and J3 = 4/3 × 1/4J0 =
J0/3. Here J0 = V 2

2U−2JH +εf
> 0.

The crucial result of this calculation is that the spin-spin
Kondo coupling J1 changes sign when Hund’s coupling is
strong. This comes from the fact that the spin operator in the
projected subspace

∑
aσσ ′ Pnfaσ σα

σσ ′Pn+1f
†
aσ ′Pn = 2

3Sα has

FIG. 7. (Color online) Local spin, orbital, and charge suscepti-
bilities at zero frequency as functions of temperature for nd = 1.75,
2.00, 2.26 and U = 6.0, JH = 2.0. The spin susceptibility has large
static values and takes the Curie-Weiss form while the orbital
susceptibility is Pauli-like and enhanced at intermediate temperature
and around nd = 2.0. Note that the charge susceptibility is two orders
of magnitude smaller than the orbital susceptibility and thus does not
play an important role.

very different expansion in terms of the electron field operator
than in the nonprojected case

∑
aσσ ′ faσσα

σσ ′f
†
aσ ′ = −2Sα .

The origin of this sign change is in the orbital blocking
mechanism, which ensures that the intermediate state at
nf = 3 is a high-spin state (in this case S = 1) but is orbitally
a singlet state, such as states (A19)–(A22). Orbital blocking is
a restriction in the Hilbert space imposed by large Hund’s rule
coupling. It modifies the Kondo couplings away from their
SU(N ) symmetric values (J1 = J0/3, J2 = J0/4, J3 = J0/2).
This blocking results in different Kondo couplings in different
valences. For the half-filled shell (relevant for Mn2+) it results
in J2 = 0, J3 = 0, and a strong reduction of the value of J1,
first recognized by Schrieffer.2 For the valence of one unit of
charge away from half-filling (relevant for Fe2+ and Ru4+),
orbital blocking results in the sign reversal of J1.

2. Results for the three-band Hubbard model

Using our numerical quantum Monte Carlo methods, we
cannot obtain high-precision real axis self-energies; however,
we can infer its analytic properties from imaginary-axis
analogs. The fractional exponent in the scattering rate on the
real axis [Im�(ω) ∝ ωα] leads to the same power law on the
imaginary axis for the imaginary part [Im�(iωn) ∝ −ωα

n ].
The real part, on the other hand, shows the power law
only when the scattering rate is very asymmetric around
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zero frequency. For example, for �′′(ω > 0) = A|x|α and
�′′(ω < 0) = B|x|α , the real part on the imaginary axis is
Re�(iωn) ∝ (A − B)

∫ �

0 x|x|α/(x2 + ω2
n)dx (where � is the

upper cutoff for the power law), and does not show power-law
behavior in the symmetric A = B case. Our calculation shows
that the real part does not show a very clear power law on the
imaginary axis; hence we infer that the scattering rate is quite
symmetric at low frequency on the real axis.

Figure 5 and 6 show the imaginary part of the quasiparticle
self-energy in the log10-log10 scale as a function of electron
occupation nd for U = 6.0 and JH = 2.0 and 1.0, respectively.
The linear dispersion of the self-energy in the plots indicates
that power-law behavior exists in the intermediate frequency
region as indicated by the arrows. For both values of JH ,
the power-law exponent α decreases monotonically with
increasing nd towards half filling, i.e., nd = 3. The upper
energy cutoff ε∗

1 drops rapidly for nd > 2.0, suggesting that the

power-law behavior is vanishing quickly when nd goes away
from 2 to half filling. Compared to the power-law behavior for
JH = 2.0, that for JH = 1.0 is valid in a smaller frequency
region and the corresponding power-law exponent is larger,
suggesting the important role of Hund’s coupling in giving rise
to the power-law behavior. Therefore the power-law behavior
is most visible at electron occupation one unit of charge away
from half filling, in this case, nd = 2

Figure 7 shows the local spin, orbital, and charge sus-
ceptibilities at zero frequency as a function of temperature
for nd = 1.75, 2.00, 2.26 and U = 6.0, JH = 2.0. The spin
susceptibility has large static values and takes the Curie-Weiss
form while the orbital susceptibility is Pauli-like and enhanced
at intermediate temperatures and around nd = 2.0. Note that
the charge susceptibility is two orders of magnitude smaller
than the orbital susceptibility and thus does not play an
important role.
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