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Our objective is to study resonant tunneling of an electron in the presence of inelastic scattering by optical
phonons. Using a recently developed technique, based on exact mapping of a many-body problem onto a
one-body problem, we compute transmission through a single site at finite temperatures. We also compute
current through a single site at finite temperatures and an arbitrary strength of the potential drop over the
tunneling region. Transmission vs incident electron energy at finite temperatures displays additional peaks due
to phonon absorption processes. Current at a voltage bias smaller than the phonon frequency is dominated by
elastic processes. We apply the method to an electron tunneling through the Aharonov-Bohm ring coupled to
optical phonons. The elastic part of electron-phonon scattering does not affect the phase of the electron.
Dephasing occurs only through inelastic procesg®8163-182¢09)11819-§

[. INTRODUCTION tron tunnels in the presence of phonon degrees of freedom
that are limited to the tunneling region. The main goals of
Advances in crystal-growth techniques and constanththis work are(a) to extend the existing method to finite tem-
shrinking semiconductor devices have motivated researcheperatures(b) to derive an approximate formula for electric
to study electron tunneling in mesoscopic structures. Theurrent in the presence of inelastic degrees of freedom, and
ability to grow nearly perfect microscopic devices has en-(c) to apply developed formalism to the case of a single site
abled experimental confirmation of many theoretical prediccoupled to phonons as well as to an Aharonov-Bohm ring.
tions based on rather simple microscopic models. In particuThe method we use allows numerically exact calculation of
lar, some basic ideas about electron-phonon interactiotransmission at finite temperatures. We treat bands exactly in
motivated an explanation of the seemingly unusual propereontrast to some previous works, where the wide-band
ties of electrons tunneling in the presence of interactionsimit was used. We derive an approximate formula for the
with phonons and other excitatioh$,where inelastic pro- electric current that contains an exact expression for the
cesses affect the peak-to-valley current ratio. This is importransmission matrix and provides results for the current at an
tant in device applications. Another line of research in me-arbitrary voltage drop through the tunneling region, as pre-
soscopic  structures is focused on Aharonov-Bohncisely as the one-electron approximation allows. In deriving
oscillations in a mesoscopic rirfg’ Special attention in this the equation for current we treat the forward and backward
field is devoted to a loss of coherence, or dephasing, undeurrent on an equal footing. We also take into account ex-
the influence of inelastic scattering leading to suppression oflusion from the filled final states. However, we neglect the
hc/e oscillations. effects of Coulomb interaction and phonon mediated
Most previous treatments of this problem use a Green’selectron-electron interaction. Our method can be applied to
function approach often based on Keldysh formalfs#?. complicated tunneling structures containing multiple-phonon
Exact solutions were obtained only in the wide-band limitdegrees of freedom. In this work we present results for two
and for certain special cases. Calculating the current in theases{i) a single site coupled to optical phonons diijlto
presence of inelastic scattering, some authors work in than Aharonov-Bohm ring in a tight-binding approximation
limit of large bias through the tunneling region. This resultswhere each site is coupled to Einstein phonons. We study the
in neglecting the backward current and the exclusion of theffect of inelastic scattering on transmission and conse-
filled final state€ The independent-boson model has beemuently the current through the ring. We finally comment on
successfully used to directly solve the one-dimensionathe effect of inelastic scattering on Aharonov-Bohm oscilla-
Schralinger equation for arbitrary barrier structdfeThe  tions.
transfer-matrix approach has proven very efficient to model This work is organized as follows. In Sec. Il we introduce
realistic barrier structures and compare calculations to exthe Hamiltonian for resonant tunneling in the presence of
periment. Electron-phonon interaction is in this case treateéhelastic degrees of freedofoptical polaronsthat are lim-
via Fermi’s golden rulé? Other attempts rely on linear- ited to a small region of space. We describe the method and
response theory using the Kubo formdla. derive an approximate equation for current. In Sec. Ill we
This work is based on a recently developed methdar  present results for transmission and current, at zero and finite
studying inelastic electron tunneling. The method providegemperature, through a single site coupled to phonons. In
exact solutions for tunneling problems where a single elecSec. IV we give results for transmission and current at zero
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temperature through the Aharonov-Bohm ring. Concluding i
remarks and suggestions for future work are presented in 4._._.,_+..._‘_‘_ n=2
Sec. V. . '{77&

IIl. METHOD )---0—0—0— n=!

The Hamiltonian we use can be written as a sum of the A
electron partH,, the phonon partH,,, and finally the i
electron-phonon interactiod g, —.—.T"E’.‘{O . n=0
3 - 14701 2 3
H=He+HpntHer_pn» 3 2
FIG. 1. Each dot represents a basis-state wave fungiigg in
H. = cfe— t. (cle,+H.c. , the many-body Hilbert space. The lowest row of dots are the sites
el 2 N % i C ) j=—3,...,3with diagonal energies; . The rows above represent

(1) the same sites with=1,2 phonon quanta on the site=0. Their
T diagonal energies arg+ » and €;+ 2w, respectively. The bonds
Hph= wE 8mam; represent nonzero off-diagonal matrix elements in the Hamiltonian.
m The horizontal bonds are the hopping amplitutgs The vertical
bonds represent the electron-phonon interaction. The dots can also
Hel—ph=— 2 )\J-CJ-TCJ-(a]T%—aj). bg ir]terpreted as Wannier orbitals in an equivalent one-body tight-
i binding model.

The potentiale; on sitej, can describe a tunnel barrier or a
voltage bias. Since we treat left and right lead exactly, w ;

) o . plane wave on the lower left leathere are no excited
choose a constant potentigl g, within the left (right) lead.

The voltage drop is thus limited to the tunneling region. Thep.honons on site O It hf“‘s an ampl[tude to exit on any of the
. . . L ; six leads, corresponding to elastic and inelastic backscatter-
hopping amplitude; \ is set tot within the leads}, is the

. ) : ; . ng and transmission. At finite temperatures a finite number
hopping amplitude from the lead to the tunneling region, an . A .
X . ) - of phonon quanta are excited on sitg=0 before scattering
\; is the (diagonal coupling of an electron on siteto the

phonon mode on the same site. Electron-phonon coupling i%\’ith the probabilityP(n) =(1-e"#*)e" 2. Thus an elec-
limited to the tunneling region. We consider dispersionlesstgogifﬁzpere]tn ;ewg f;g :;I\tf;eﬂ?gr;ct)n;}':lleles;ﬂt?oﬁzr:ﬁsg%ndlng
Einstein phonons with frequenay. ) d

S , taking into account the boundary condition specifying that an
The problem we are facing is to solve a scattering prob- ; .
. . . ) electron can enter only through one lead at a time. Solutions

lem of a single electron in the presence of inelastic degrees.., . .
) . . within the leads for an electron approaching from the left are

of freedom. Since a detailed explanation of the method was

Jerature, an electron incident from the left is an incoming

given in previous work? we will present only a short over- lﬁ(j<o,n)=A(”)eXF(ik(Ln)j)+ BMexp —ik(™}),

view that is necessary for the reader to understand our gen-

(raéﬁltlzatlon to finite temperature and computation of the cur- ¢(j>o,m)=C(m)eXF(ik(Rm)j), 3)
Consider for simplicity the case where the tunneling re- lr//(j<0,m¢n):B(m)eXF(_ik(Lm)j)’

gion consists of a single sitg €0) with a single phonon

mode that couples to the electron density on sisde the Wheren(m) represents the number of excited phonon quanta
lowest row in Fig. }. Hopping matrix elements arg =t before(aften scatteringA(™ is the amplitude of the incident
for the lead nearest neighbded # =0, andt, | =t, between Wwave, andB™ and C™ represent reflection and transmis-
site 0 and sitest1. The wave function can be written as Sion amplitudes. Wave vectors are defined by the conserva-
W(i.n, Where the site indek represents the position of the tion of total energy,

electron anch represents the number of phonons on the site

. S . . ; — (n)y — — (m)
j=0. The Schrdinger equation can be written for this €.+t Nw—2tcogky") = € gyt Mo —2t cogki(g)). (4)
simple problem in the compact form, Using the pruning technigt®we can remove all the leads
that contain outgoing waves from the calculation. We are
Ed.n=€¥(n— > i n T ONY(G ) thus left with a system of linear equations that connect wave
' R ’ ’ functions on the central sité,, with the lead that carries

the incoming electron. This problem can be solved easily b
NG o(VNH 1 et ‘/ﬁ¢(1,n—1))' 2) recursion fo? essentially anypnumber of phonon quanta.yTh)é

It is already apparent from Eq2) that a one-dimensional transmission matriq|""x(€,€’) is defined a¥

many-body problem, consisting of an electron and different

numbers of phonon quanta, can be visualized as an effective m),

two-dimensional one-body problem withas the second di- Tir(€ €)=

mension. For a better perception we present Epgraphi-

cally in Fig. 1 as a tight-binding model in two dimensions. where n(m) represent incomingoutgoing channels[by a

For illustrative purposes we have restricted the variationathannel we denote the lead with a specified number of

space to a maximurhl,,=2 phonon quanta. At zero tem- phonons )], ande (e’) are incoming(outgoing electron

2 .
sink{™

sink(™

c(m
A

®
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energies counted from the middle of the band, ies

— 2t cos™). We define the total and elastic transmission as

a sum over all incoming channefs weighted by the prob-

ability P(n) and a sum over all outgoing channels. Since

P(n) depends on the temperature of the tunneling region, w
must assume that the temperature of the tunneling region
well defined. This is achieved by coupling it to the external
heath bath:

Tto«e):;n P(MTMR(e,€), (6)
Telam(e>=§ P(M)T{™ A€, €"). 7

Using the presented technique we can compute transmission

at zero and finite temperatures with any desired accurac
However, transmission is not in principle a directly measur
able quantity. One has to compute electric current in order t

provide a measurable quantity. The total transmission as de-

fined in Eq.(6) enters the equation for current only in the
case of a high-voltage bias where neither the backward cu
rent nor the exclusion of filled states in the right lead ar
taken into accourft.

In deriving the equation for the current we start by ob-
serving that inelastic processes can be viewed as multichal

nel electron tunneling. The current from the left lead, due to

an electron entering the tunneling region through a chamnel
and exiting throughm, is given by the integral over the in-

coming momentadk{" times the velocity of the incoming

electronv, =(1/4)de/dk(™, times the transmission prob-
ability T(L’L”Q(e,e’), times the appropriate combination of
Fermi functions from the left and the right lead. The total
current from the left is expressed as a sum over all channe
weighted with the appropriate Boltzmann factor. The net cur

rent is given finally by the difference between the right- and

the left-flowing currents

e 2t
1= =7 deS P TR e fre)
h ) _ ot n,m
e 2t
-7 4 T At -
7h -2t m,n
®
whereT{™" is the transmission matrix for an electron com-

ing from the right. Electron energies are constrained by the

energy conservation lavg+ e, + Nw =€’ + eg+mw. Fermi
functions f| gy describe the lef(right) lead. We can write
equation for current8) in a more compact form, by taking

advantage of the time-reversal symmetry under which

T (e’ €)—T"M(€,€e') and the fact that the transmission

matrix is nonzero when both electron energéeand ¢’ are
within the band,

e

2t
d T
WﬁJ—Zt en,Em

—P(m)fr(e")(1—f(e)].

(n,m)
L—R

(e,€)[P(N)f (e)(1—fr(e"))

Jiot=

©)
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FIG. 2. Transmission probability as a function of the incident
lectron energy calculated for different temperatufe3he heavy
ine is the total transmissiof,,;, and the dashe@lower) line the

elastic partTg ;. The parameters of the Hamiltonian ake
=0.25, ¢,= €,= €3=0.0 (no voltage drop across the got,=0.2,
»=0.5, andNp,=17. Also presented are sum rules thﬁe

r=277t(t0/t)2.

®We can also compute the elastic contribution to the total

current in Eq.(9) by imposing the constraint of elastic tun-
nelingn=m:

n_
e (2t
Jelast:%f_mdfz T

X[fL(e)—frle+Au)],

whereA =€ — eg. The total energy of the electrda= ¢
+ € =€ +egis in this case conserved. In the limit of zero
femperature Eq(10) gives the correct result for elastic tun-
neling (see, e.g., Ref.)8

Our derivation of Eq.(9) is based on the one-electron
approximation which leads to neglecting many-body effects
as are(a) the Coulomb repulsion an(b) phonon mediated
electron-electron interaction. Closely connected to the latter
is our assumption that phonon distributi®tin) is indepen-
dent of electron current through the tunneling region. The
validity of Eq. (9) is therefore limited to cases when the
current is small and the tunneling region is strongly coupled
to the external heat bath. This can be achieved even at large
voltage bias when coupling to the leads is weak, tg<t.

(n,n)

L R(€,etAu)P(n)

(10

Ill. RESULTS FOR A SINGLE SITE

In our calculation we have set the hopping within the lead
to t=1. The maximum number of allowed phonon guanta
Npn Was selected such that results fully converged for all
chosen parameters of the system at different temperatures.

A. Transmission

In Fig. 2 we show the total and elastic transmisdiBqs.
(6) and(7)] as a function of the incoming electron energy
at different temperatures. At low temperatures we see a cen-
tral peak positioned at~ e,— \?/ w, a one phonon side peak
at e~ €y+ w—\?/w, and a small two phonon peak at higher
e. Positions of the peaks approximately correspond to po-
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laron energies, given bypo,(n)=eo—>\2/w+nw, wheren
represents thath excited state of a polaron. By polaron we
symbolize a state of an electron, coupled to phonon degrees
of freedom located on the same site in the limit whgn
—0. It is important to emphasize that all peaks have an
elastic and an inelastic contributi¢see also Refs. 8 and 15
Elastic contributions correspond to tunneling through the
ground or the excited state of a polaron without emittiog
absorbing a phonon. Inelastic parts correspond to tunneling
through a given state with simultaneous phonon emission or
absorption. At zero temperature only phonon emission pro-
cesses are allowed since before tunneling the phonon state
contains no phonons.

At finite temperature other processes can take place. As
an electron enters the tunneling region there may be one 1
more phongns _excned in the system. The side peak at total current are shown. Shaded areas represent filled one-electron
~ €~ w—\w is due to a process when an electron entergyates. In elastic processéa} and{2}) the total electron energy is
the tunneling region and absorbs a phonon. Such a proceggnserved+ e, = €' + eg, while in inelastic one$(3} and{4}) it is

13 H . .
has been observed by Cat al.” As the temperature in- not. For clarity, only zero- and one-phonon states on the central site
creases more inelastic channels open for electron tunnelingre included.

giving rise to an increased strength of side peaks. Interest-

ingly enough, the sum rule, valid at zero temperature anghajn reason for this interesting effect is that the chemical
within the wide-band approximatibrl 19=[deT,o(€)  potential difference across the tunneling region is smaller
=2mt(to/t)?, remains valid in our numerically exact ap- than the minimum energy changenecessary for the inelas-
proach at small temperatures, and it changes at most 5% @t tunneling. The necessary condition for an electron, with
large temperaturesee values in the ingeWe would like to  an incoming energy, to contribute to the current at=0,
stress that sum rulek} (and 19, see the next subsection besides having a finite tunneling rate, can be expressed with
defined in the work of Wingreeet al.2 do not represent sum two inequalities: e+ e <u,, and € +eg+mw>ug. At

rules in a strict sense. They instead represent identities thaimall A . this condition leads to well defined peaks in the
are derived on the basis of two main approximations: disper3,,, .,.s{€,) curves since only electrons with a total energy
sionless bands and a large bias limit used when calculating a narrow interval between the left and right chemical po-
the current. Even though our calculations are not limited bytential can give rise to current. Therefore only processes la-
these approximations, we nevertheless chose to compare ibeled by{1} and{2} in Fig. 3 contribute to formation of the
tegrals of transmission With(T’ and in the next chapter inte-
grals of current WitHS’. As the temperature rises, peaks due
to multiphonon processes increase in strength. It almos: 2.0}
seems as though finite temperature increases the effectiv
coupling strength\ as seen in Ref. 12. However, an in-
creased coupling strength would also shift the peaks. Peak 1.0 |
in Fig. 2 do not shift with increasing temperature. The in-
creased strength of multiphonon side peaks is a consequenc %
of the increased number of excited phonons in the tunnelinc?
region at higher temperatures. 3

FIG. 3. A schematic representation of the positioning of the
nds. Some elastic and inelastic processes that contribute to the

L AN=05 (b))
b 1,=0.63

0.

o

B. Current through a single site

——

We continue with a discussion of current. The relative
positioning of bands and the choice of chemical potentials in
X . A 0.0 . . : ; . .
the calculation are presented schematically in Fig. 3. We )20 10 00 ¢ 10 20 10 005 10 20
have positioned the chemical potentials in the left and right 0 0
lead in the middle of each band. This situation corresponds i .
to both leads being made from the same metal. The value %f FIG. 4. The total current,, (solid line) and elastic current

: . oL . Jelast (dashed lingvs €, at T=0 for four different choices oA w.
the chemical potential within each lead is constant and COTAIl curves are in units o19 (see definition beloy Note also that

respondg to asymptotic Valugs In t.he '?ads' Bands are Sh'fte[ e ordinates in figure&@) and(b) are different than ir(c) and (d).
symmetrically due to an applied bidsu i.e., €, =Au/2 and Current flows at differeng, through different channels. Opening or
€r=—Au/2, thuse, — eg=Au=eV, whereVrepresents the ¢|osing of different channelprocessesas e, increases is reflected
potential drop across the tunneling region. in peaks, shoulders, or dips in the curves. Those anomdiesled
In Fig. 4 we present the total and elastic currenty$the  py small letters at differentA u correspond to the following pro-

on-site energy of the sitg=0) for four different values of cesseqsee Fig. 3 (a) a:{1}, b:{2}; (b) a:{1}, b:{2}; (c) a:{1},
Auw. At a smallA u=0.02<w there is no inelastic contribu- b:{1,2,3, b':{2}, c:{2,4; (d) a:{1}, b:{1,2,3, ¢:{1,2,34,
tion to the current(solid and dashed curves overlaghe c’:{2,4.
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FIG. 6. Schematic representation of the Hamiltonian describing
the Aharonov-Bohm ring. Dots surrounded by circles represents
sites coupled to Einstein phonons. For simplicity we have chosen
on-site energies on the ring to be constgnt ;. Magnetic flux®
penetrates the center of the ring.

Jtot

mission we were unable to obtain additional peaks corre-
sponding to phonon absorption processes. With increasing
temperature the smearing by the Fermi functions overcomes
development of those peaks. The effects of raising the tem-
FIG. 5. The total currend, vs €, at T=0, 0.075, and 0.2 for  perature are more intense at smaller biases where peaks are

four different choices oA w. All curves are in units of . All other  narrower. Phonon side peaks disappear arotmd/2.
parameters are the same as in Fig. 4.

) ) IV. TUNNELING THROUGH AHARONOV-BOHM RING
side (a) and the central peakb], respectively. We should

stress that phonons nevertheless still play an important role Next, we consider tunneling and consequently the current
even at small voltage biases. The side péakat approxi- through an Aharonov-Bohm ring. The purpose of this section
mately e,=\?% w— o represents an elastic process where aris to investigate the effect of dephasing by phonon modes on
electron elastically tunnels through the first excited state of &1 electron as it tunnels through a ring. In detail, we will

polaron whose energy ig,o(1)=—\%w+w, while the focus on the effect of dephasing on the transmission and

main peak(b) corresponds to elastic tunneling through thecurrent through the ring. o _
polaron ground state,,(0). The model is schematically presented in Fig. 6. The ring

As Ap increases ta\ u=w=0.5 the side peak develops consists of four sites, connected py hopping _matrix elem_ent
into a shoulder and moves towards lowes~w?/\ —w t’, th.at are coupled to t\No-connectlng_IeaQS with the hopping
— Au/2 while the central peak broadens. This is a conseMatrix elementt,. Each site of the ring is coupled to an
quence of separating the left and right chemical potential§instein phonon mode with frequenay. There are four dif-
and thus imposing less restrictive conditions on the tunnelingérént phonon modegone on each sifewith identical fre-
electron energies. In particular, the broadening of the centrdlUencyw. A magnetic flux is penetrating the circle. This is
peak is caused by simultaneous tunneling through procességflected in an additional phase¢ that the electron gains
labeled{1} and {2} in Fig. 3; also note the figure caption. each time it hops from one site on the circle to another. The
Inelastic contribution is still small. electron part of the Hamiltoniarl), describing hopping

The main features appearing at larger bias, dgt=0.8, within the ring, has to be_ modified in order to encompass the
are (a) the emergence of the inelastic currétite solid and effect of a vector potential
dashed lines do not overlppnd (b) development of a new
structure in the central peak region. The appearance of the
inelastic current is caused by the opening of the inelastic
channels atA u>w. The new structure in the central peak
region is caused by opening and closing of elastic or inelastigvhere the sum runs over the sites of the ring. All on-site
tunneling channels ag, increasegsee caption to Fig.)4At  energies within the ring were, for simplicity, set &g. We
even larger biad u=4w=2.0 the currend,(€y) broadens solve this problem using the method described ab@es
even though the effects of different channel contributions aralso Ref. 15, and generalized to many phonon degrees of
still visible. The inelastic current increases relatively to thefreedom. By increasing the maximum allowed number of
elastic current. phononsN,, on each site this problem can be solved with

We have also computed integrals= [degJ(ep) that ac-  any desired accuracy. There are of course computer limita-
cording to Wingreen etal® should equal IS’ tions. In practice, for moderate electron-phonon coupling and
= (el 7h)2mt(te/t)?Ax. Our findings are that even though low temperatures\,,= 3 is enough to obtain results with at
the current does scale withu, nevertheless, our integrals least 1% accuracy. The number of many-body states in-
deviate from sum rules that exist in the wide band and largereases afNg;=N(N,,+ 1)N=1024, which corresponds to
bias limit. The main reason is that the current flows throughthe number of channeN;,=2Ng;. N is the number of sites
only selected channels allowed by the difference in than the ring. In a scattering problem where the energy of the
chemical potentials and not through all the channels as is thiacoming electron is known in advance, we have to solve a
case in the limit of large bias and wide bands. large (Ng:X Ng;) sparse system of complex linear equations

The effect of finite temperatures on the total current isfor eache. Due to computer limitations, we restricted calcu-
presented in Fig. 5. In contrast to the case of the total trandations to zero temperature.

He,=50; c}rc,-—t’; (e'%cfciy+He), (1D
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FIG. 9. The total current,, (solid line) and elastic current
FIG. 7. Transmission probability as a function of the incident Jelast (dashed ling calculated atA .=0.5 vs e, at T=0 for four
electron energy at T=0 calculated at differenf. The heavy line  different choices of phase. The rest is the same as in Fig. 8.
is the total transmissiom,,;, and the dashe@dower) line the elastic
part Tejasi- The parameters of the Hamiltonian ave-0.2, ¢, =€, neling due to negative interference, transmission is exactly
=€=0.0,1=0.3, wy=0.41"=0.5 andN,,=3. In the inset we  zero for anye. At finite electron-phonon coupling we obtain,
show(insets are in the same units as the rest of the figures in Fig. %or g= a, a finite total transmission. However, the elastic
transmissionT g4, for the noninteracting case, i.e.=0. part of transmission remains exacttyown to numerical ac-
curacy zero. This result is surprising considering that elastic
We have computed the total and elastic transmissioa vs tunneling processes are possible when an electron first emits
through an Aharonov-Bohm ring at different values of totaland then reabsorbs a phonon. A phase shift that the electron
phase,f= ¢N. In Fig. 7 we show results for the total and undergoes while emitting a phonon is thus exactly canceled
elastic transmission through a ring. Positions of the mairby the phase shift after reabsorbing a phonon. Tunneling at
peaks are approximately located close to energies corréd= m is therefore exclusively due to inelastic processes. This
sponding to solutions of a tight-binding problem oMNa4  finding is in accordance with the well accepted fact that im-
site ring with a phasep, i.e., E(k)=—2t’cosk+¢) for k  purity (elasti scattering cannot destroy Aharonov-Bohm
=27i/N. One and two phonon side peakshoulders are oscillations!® since it does not cause phase decoherence.
also visible at approximately, ,=E(k)+nw. The height Furthermore, we have calculated current, E(5. and
and the width of the main peaks change substantially whefiL0), Vs €, through the Aharonov-Bohm ring at small bias,
the position of the main peak coincides with the position ofAx=0.1, zero temperature and differehtThese results are
the phonon-side pealseed= m/4). presented in Fig. 8. As we have already shown in the previ-
The most interesting result is found @t 7 which corre-  0ous section, only elastic current can flow at small bias. Nev-
sponds to a phase, where in the case of noninteracting tugrtheless, effects of electron-phonon interaction are clearly
visible. There is no net current &t= 7 since only the elastic
part of the transmission can contribute to the elastic current.

ol We predict that at small bias <<« Aharonov-Bohm oscil-

' lations through the mesoscopic Aharonov-Bohm ring should
not diminish significantly due to electron-phonon coupling,

05 | where coupling is limited to optical phonons.

7 Last, we present results for current through the Aharonov-
= 0.0 : Bohm ring at large bias\ u=0.5>w. Results are presented
2 B=/2 in Fig. 9. Two most important effects of larger bias are
= 10t broadening of the peaks and the appearance of the inelastic

current Jioi— Jelas) - AS @ consequence of dephasing by in-
05 | Tom0 64 eemz ] elastic scattering we observe finite inelastic currer=atr.
6=n
0.0 . . . . . . V. CONCLUSIONS
-2.0 -1.0 0.08 1.0 -2.0 -1.0 0.0 g, 1.0 24

In summary, we have extended a numerically exact
FIG. 8. The total current, (solid line) and elastic current method®® for inelastic tunneling, to calculate transmission
. 8. o

Jeiae: (dashed ling calculated ath u=0.1 vs e, at T=0 for four  through a single site coupled to phonons at finite tempera-

different choices of phase. All curves are in units of. Note that ~ tures. We have further proposed an approximate formula for
the solid and the dashed lines overlap indicating=Je . Asin  CUITENt based on exact results for the transmission matrix,

the previous section we set=Au/2 andeg=—Au/2. The restof ~ taking into account filled Fermi seas left and right from the
the parameters remain the same as in Fig. 7. In the inset we shotdnneling region and left- and right-flowing currents. The
for comparison the elastic curredy,, s, for the noninteracting case. presented formalism gives correct result in the limit of elastic
Insets are in the same units as the rest of the Fig. 8. current. Our approach is entirely based on a one-electron
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approximation. By investigating tunneling through anphonons does not affect Aharononv-Bohm oscillations.
Aharonov-Bohm ring coupled to optic phonons, we have ob-Dephasing occurs only through inelastic processes. This is
tained numerically exact results for transmission at zero temthe reason why interference effects, measured at small bias
perature. We have also computed the current through thAu<w across the tunneling region, display strong

ring. Aharonov-Bohm oscillations by changing the flux through
We highlight some of the important findings of this work the ring. Calculation of current at larger biAg> » shows
as follows. that only inelastic current flows through the Aharonov-Bohm

Transmission through a single site vs incident electrorring in the case whe®= 7. The voltage drop over the re-
energy at finite temperatures displays additional peaks due @ion has to be larger than the minimal energy difference
phonon absorption processes. The sum rglevalid in the  necessary for inelastic scattering i.Au> w.
wide-band limit and zero temperatures, remains approxi- It would be interesting to study the tunneling through the
mately obeyed in our exact approach even at finite temperaAharonov-Bohm ring at finite temperatures. Such computa-
tures. Deviations are within 5% even at temperatiiesw.  tion would demand larger Hilbert space and more computa-

Current through a single site mimics the transmissiontional time. Our method also allows the implementation of
curve at small biad\ u<w and T=0. At voltage biasAx  the nonlinear electron-phonon interaction and linear and non-
<w, and zero temperature only current due to elastic prolinear phonon-phonon interactions. It would be fascinating to
cesses is possible, since inelastic processes are excluded doeestigate how phonon-phonon interactions, leading to in-
to filled final states. With increasing temperature, featuresernal phonon dynamics, affect dephasing of the tunneling
due to inelastic processes disappear arclindo/2. Phonon  electrons through an Aharonov-Bohm ring.
absorption peaks do not appear in the current at finite tem-

peratures since they are smeared by Fermi functions. ACKNOWLEDGMENTS
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