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Inelastic tunneling through mesoscopic structures
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Our objective is to study resonant tunneling of an electron in the presence of inelastic scattering by optical
phonons. Using a recently developed technique, based on exact mapping of a many-body problem onto a
one-body problem, we compute transmission through a single site at finite temperatures. We also compute
current through a single site at finite temperatures and an arbitrary strength of the potential drop over the
tunneling region. Transmission vs incident electron energy at finite temperatures displays additional peaks due
to phonon absorption processes. Current at a voltage bias smaller than the phonon frequency is dominated by
elastic processes. We apply the method to an electron tunneling through the Aharonov-Bohm ring coupled to
optical phonons. The elastic part of electron-phonon scattering does not affect the phase of the electron.
Dephasing occurs only through inelastic processes.@S0163-1829~99!11819-8#
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I. INTRODUCTION

Advances in crystal-growth techniques and constan
shrinking semiconductor devices have motivated researc
to study electron tunneling in mesoscopic structures. T
ability to grow nearly perfect microscopic devices has e
abled experimental confirmation of many theoretical pred
tions based on rather simple microscopic models. In part
lar, some basic ideas about electron-phonon interac
motivated an explanation of the seemingly unusual prop
ties of electrons tunneling in the presence of interacti
with phonons and other excitations,1,2 where inelastic pro-
cesses affect the peak-to-valley current ratio. This is imp
tant in device applications. Another line of research in m
soscopic structures is focused on Aharonov-Bo
oscillations in a mesoscopic ring.3–7 Special attention in this
field is devoted to a loss of coherence, or dephasing, un
the influence of inelastic scattering leading to suppressio
hc/e oscillations.

Most previous treatments of this problem use a Gree
function approach often based on Keldysh formalism.8–12

Exact solutions were obtained only in the wide-band lim
and for certain special cases. Calculating the current in
presence of inelastic scattering, some authors work in
limit of large bias through the tunneling region. This resu
in neglecting the backward current and the exclusion of
filled final states.8 The independent-boson model has be
successfully used to directly solve the one-dimensio
Schrödinger equation for arbitrary barrier structure.13 The
transfer-matrix approach has proven very efficient to mo
realistic barrier structures and compare calculations to
periment. Electron-phonon interaction is in this case trea
via Fermi’s golden rule.14 Other attempts rely on linear
response theory using the Kubo formula.7

This work is based on a recently developed method15 for
studying inelastic electron tunneling. The method provid
exact solutions for tunneling problems where a single e
PRB 590163-1829/99/59~20!/13087~7!/$15.00
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tron tunnels in the presence of phonon degrees of freed
that are limited to the tunneling region. The main goals
this work are~a! to extend the existing method to finite tem
peratures,~b! to derive an approximate formula for electr
current in the presence of inelastic degrees of freedom,
~c! to apply developed formalism to the case of a single s
coupled to phonons as well as to an Aharonov-Bohm ri
The method we use allows numerically exact calculation
transmission at finite temperatures. We treat bands exact
contrast to some previous works,8,9 where the wide-band
limit was used. We derive an approximate formula for t
electric current that contains an exact expression for
transmission matrix and provides results for the current a
arbitrary voltage drop through the tunneling region, as p
cisely as the one-electron approximation allows. In deriv
the equation for current we treat the forward and backw
current on an equal footing. We also take into account
clusion from the filled final states. However, we neglect t
effects of Coulomb interaction and phonon mediat
electron-electron interaction. Our method can be applied
complicated tunneling structures containing multiple-phon
degrees of freedom. In this work we present results for t
cases:~i! a single site coupled to optical phonons and~ii ! to
an Aharonov-Bohm ring in a tight-binding approximatio
where each site is coupled to Einstein phonons. We study
effect of inelastic scattering on transmission and con
quently the current through the ring. We finally comment
the effect of inelastic scattering on Aharonov-Bohm oscil
tions.

This work is organized as follows. In Sec. II we introdu
the Hamiltonian for resonant tunneling in the presence
inelastic degrees of freedom~optical polarons! that are lim-
ited to a small region of space. We describe the method
derive an approximate equation for current. In Sec. III
present results for transmission and current, at zero and fi
temperature, through a single site coupled to phonons
Sec. IV we give results for transmission and current at z
13 087 ©1999 The American Physical Society
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temperature through the Aharonov-Bohm ring. Conclud
remarks and suggestions for future work are presente
Sec. V.

II. METHOD

The Hamiltonian we use can be written as a sum of
electron partHel , the phonon partHph , and finally the
electron-phonon interactionHel2ph

H5Hel1Hph1Hel2ph ,

Hel5(
j

e j cj
†cj2(

j ,k
t j ,k~cj

†ck1H.c.!,

~1!

Hph5v(
m

am
† am ,

Hel2ph52(
j

l j cj
†cj~aj

†1aj !.

The potential,e j on sitej, can describe a tunnel barrier or
voltage bias. Since we treat left and right lead exactly,
choose a constant potentialeL(R) within the left ~right! lead.
The voltage drop is thus limited to the tunneling region. T
hopping amplitudet j ,k is set tot within the leads,t0 is the
hopping amplitude from the lead to the tunneling region, a
l j is the ~diagonal! coupling of an electron on sitej to the
phonon mode on the same site. Electron-phonon couplin
limited to the tunneling region. We consider dispersionle
Einstein phonons with frequencyv.

The problem we are facing is to solve a scattering pr
lem of a single electron in the presence of inelastic degr
of freedom. Since a detailed explanation of the method w
given in previous work,15 we will present only a short over
view that is necessary for the reader to understand our
eralization to finite temperature and computation of the c
rent.

Consider for simplicity the case where the tunneling
gion consists of a single site (j 50) with a single phonon
mode that couples to the electron density on site 0~see the
lowest row in Fig. 1!. Hopping matrix elements aretk,l5t
for the lead nearest neighborsk,lÞ50, andtk,l5t0 between
site 0 and sites61. The wave function can be written a
c ( j ,n) , where the site indexj represents the position of th
electron andn represents the number of phonons on the
j 50. The Schro¨dinger equation can be written for th
simple problem in the compact form,

Ec ( j ,n)5e jc ( j ,n)2 (
^ j ,k&

t jkc (k,n)1vnc ( j ,n)

2ld j ,0~An11c ( j ,n11)1Anc ( j ,n21)!. ~2!

It is already apparent from Eq.~2! that a one-dimensiona
many-body problem, consisting of an electron and differ
numbers of phonon quanta, can be visualized as an effec
two-dimensional one-body problem withn as the second di
mension. For a better perception we present Eq.~2! graphi-
cally in Fig. 1 as a tight-binding model in two dimension
For illustrative purposes we have restricted the variatio
space to a maximumNph52 phonon quanta. At zero tem
g
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perature, an electron incident from the left is an incomi
plane wave on the lower left lead~there are no excited
phonons on site 0!. It has an amplitude to exit on any of th
six leads, corresponding to elastic and inelastic backsca
ing and transmission. At finite temperatures a finite num
of phonon quantan are excited on sitej 50 before scattering
with the probabilityP(n)5(12e2bv)e2nbv. Thus an elec-
tron can enter on any of the horizontal leads correspond
to different n. We can solve the set of equations in Eq.~2!
taking into account the boundary condition specifying that
electron can enter only through one lead at a time. Soluti
within the leads for an electron approaching from the left

c ( j ,0,n)5A(n)exp~ ikL
(n) j !1B(n)exp~2 ikL

(n) j !,

c ( j .0,m)5C(m)exp~ ikR
(m) j !, ~3!

c ( j ,0,mÞn)5B(m)exp~2 ikL
(m) j !,

wheren(m) represents the number of excited phonon qua
before~after! scattering,A(n) is the amplitude of the inciden
wave, andB(m) and C(m) represent reflection and transmi
sion amplitudes. Wave vectors are defined by the conse
tion of total energy,

eL1nv22t cos~kL
(n)!5eL(R)1mv22t cos~kL(R)

(m) !. ~4!

Using the pruning technique15 we can remove all the lead
that contain outgoing waves from the calculation. We a
thus left with a system of linear equations that connect w
functions on the central sitec (0,n) with the lead that carries
the incoming electron. This problem can be solved easily
recursion for essentially any number of phonon quanta. T
transmission matrixTL→R

n,m (e,e8) is defined as15

TL→R
(n,m)~e,e8!5UC(m)

A(n)U2
sinkR

(m)

sinkL
(n)

, ~5!

where n(m) represent incoming~outgoing! channels@by a
channel we denote the lead with a specified number
phonons (n)#, ande (e8) are incoming~outgoing! electron

FIG. 1. Each dot represents a basis-state wave functionc ( j ,n) in
the many-body Hilbert space. The lowest row of dots are the s
j 523, . . . ,3with diagonal energiese j . The rows above represen
the same sites withn51,2 phonon quanta on the sitej 50. Their
diagonal energies aree j1v and e j12v, respectively. The bonds
represent nonzero off-diagonal matrix elements in the Hamilton
The horizontal bonds are the hopping amplitudest j ,k . The vertical
bonds represent the electron-phonon interaction. The dots can
be interpreted as Wannier orbitals in an equivalent one-body ti
binding model.



a

ce
w
n
a

s
ac
ur
r
d
e
cu
r

b
ha

t
e
-

-
f

ta
ne
u
n

-
th

ic
n

tal
-

o
-

n
cts

tter

he
e
led
arge

ad
ta
all
es.

en-
k
er
po-

nt

PRB 59 13 089INELASTIC TUNNELING THROUGH MESOSCOPIC STRUCTURES
energies counted from the middle of the band, i.e.,e5
22t cos(kL

(n)). We define the total and elastic transmission
a sum over all incoming channelsn, weighted by the prob-
ability P(n) and a sum over all outgoing channels. Sin
P(n) depends on the temperature of the tunneling region,
must assume that the temperature of the tunneling regio
well defined. This is achieved by coupling it to the extern
heath bath:

Ttot~e!5(
n,m

P~n!TL→R
(n,m)~e,e8!, ~6!

Telast~e!5(
n

P~n!TL→R
(n,n) ~e,e8!. ~7!

Using the presented technique we can compute transmis
at zero and finite temperatures with any desired accur
However, transmission is not in principle a directly meas
able quantity. One has to compute electric current in orde
provide a measurable quantity. The total transmission as
fined in Eq.~6! enters the equation for current only in th
case of a high-voltage bias where neither the backward
rent nor the exclusion of filled states in the right lead a
taken into account.8

In deriving the equation for the current we start by o
serving that inelastic processes can be viewed as multic
nel electron tunneling. The current from the left lead, due
an electron entering the tunneling region through a channn
and exiting throughm, is given by the integral over the in
coming momenta\dkL

(n) times the velocity of the incoming
electron vL5(1/\)de/dkL

(n) , times the transmission prob
ability TL→R

(n,m)(e,e8), times the appropriate combination o
Fermi functions from the left and the right lead. The to
current from the left is expressed as a sum over all chan
weighted with the appropriate Boltzmann factor. The net c
rent is given finally by the difference between the right- a
the left-flowing currents

J5
e

p\E22t

2t

de(
n,m

P~n!TL→R
(n,m)~e,e8! f L~e!„12 f R~e8!…

2
e

p\E22t

2t

de8(
m,n

P~m!TR→L
(m,n)~e8,e! f R~e8!„12 f L~e!…,

~8!

whereTR→L
(m,n) is the transmission matrix for an electron com

ing from the right. Electron energies are constrained by
energy conservation law,e1eL1nv5e81eR1mv. Fermi
functions f L(R) describe the left~right! lead. We can write
equation for current~8! in a more compact form, by taking
advantage of the time-reversal symmetry under wh
TR→L

(m,n)(e8,e)→TL→R
(n,m)(e,e8) and the fact that the transmissio

matrix is nonzero when both electron energiese ande8 are
within the band,

Jtot5
e

p\E22t

2t

de(
n,m

TL→R
(n,m)~e,e8!@P~n! f L~e!„12 f R~e8!…

2P~m! f R~e8!„12 f L~e!…#. ~9!
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We can also compute the elastic contribution to the to
current in Eq.~9! by imposing the constraint of elastic tun
neling n5m:

Jelast5
e

p\E22t

2t

de(
n

TL→R
(n,n) ~e,e1Dm!P~n!

3@ f L~e!2 f R~e1Dm!#, ~10!

whereDm5eL2eR . The total energy of the electronE5e
1eL5e81eR is in this case conserved. In the limit of zer
temperature Eq.~10! gives the correct result for elastic tun
neling ~see, e.g., Ref. 8!.

Our derivation of Eq.~9! is based on the one-electro
approximation which leads to neglecting many-body effe
as are~a! the Coulomb repulsion and~b! phonon mediated
electron-electron interaction. Closely connected to the la
is our assumption that phonon distributionP(n) is indepen-
dent of electron current through the tunneling region. T
validity of Eq. ~9! is therefore limited to cases when th
current is small and the tunneling region is strongly coup
to the external heat bath. This can be achieved even at l
voltage bias when coupling to the leads is weak, i.e.,t0!t.

III. RESULTS FOR A SINGLE SITE

In our calculation we have set the hopping within the le
to t51. The maximum number of allowed phonon quan
Nph was selected such that results fully converged for
chosen parameters of the system at different temperatur

A. Transmission

In Fig. 2 we show the total and elastic transmission@Eqs.
~6! and ~7!# as a function of the incoming electron energye
at different temperatures. At low temperatures we see a c
tral peak positioned ate;e02l2/v, a one phonon side pea
at e;e01v2l2/v, and a small two phonon peak at high
e. Positions of the peaks approximately correspond to

FIG. 2. Transmission probability as a function of the incide
electron energy calculated for different temperaturesT. The heavy
line is the total transmissionTtot , and the dashed~lower! line the
elastic part Telast. The parameters of the Hamiltonian arel
50.25, e l5e r5e050.0 ~no voltage drop across the dot!, t050.2,
v50.5, and Nph517. Also presented are sum rules whereI T

0

52pt(t0 /t)2.
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13 090 PRB 59KRISTJAN HAULE AND JANEZ BONČA
laron energies, given byepol(n)5e02l2/v1nv, wheren
represents thenth excited state of a polaron. By polaron w
symbolize a state of an electron, coupled to phonon deg
of freedom located on the same site in the limit whent0
→0. It is important to emphasize that all peaks have
elastic and an inelastic contribution~see also Refs. 8 and 15!.
Elastic contributions correspond to tunneling through
ground or the excited state of a polaron without emitting~or
absorbing! a phonon. Inelastic parts correspond to tunnel
through a given state with simultaneous phonon emissio
absorption. At zero temperature only phonon emission p
cesses are allowed since before tunneling the phonon
contains no phonons.

At finite temperature other processes can take place
an electron enters the tunneling region there may be on
more phonons excited in the system. The side peak ae
;e02v2l2/v is due to a process when an electron ent
the tunneling region and absorbs a phonon. Such a pro
has been observed by Caiet al.13 As the temperature in
creases more inelastic channels open for electron tunne
giving rise to an increased strength of side peaks. Inter
ingly enough, the sum rule, valid at zero temperature
within the wide-band approximation8,9 I T

05*deTtot(e)
52pt(t0 /t)2, remains valid in our numerically exact ap
proach at small temperatures, and it changes at most 5
large temperatures~see values in the inset!. We would like to
stress that sum rulesI T

0 ~and I J
0 , see the next subsection!,

defined in the work of Wingreenet al.,8 do not represent sum
rules in a strict sense. They instead represent identities
are derived on the basis of two main approximations: disp
sionless bands and a large bias limit used when calcula
the current. Even though our calculations are not limited
these approximations, we nevertheless chose to compar
tegrals of transmission withI T

0 and in the next chapter inte
grals of current withI J

0 . As the temperature rises, peaks d
to multiphonon processes increase in strength. It alm
seems as though finite temperature increases the effe
coupling strengthl as seen in Ref. 12. However, an in
creased coupling strength would also shift the peaks. Pe
in Fig. 2 do not shift with increasing temperature. The
creased strength of multiphonon side peaks is a consequ
of the increased number of excited phonons in the tunne
region at higher temperatures.

B. Current through a single site

We continue with a discussion of current. The relati
positioning of bands and the choice of chemical potential
the calculation are presented schematically in Fig. 3.
have positioned the chemical potentials in the left and ri
lead in the middle of each band. This situation correspo
to both leads being made from the same metal. The valu
the chemical potential within each lead is constant and c
responds to asymptotic values in the leads. Bands are sh
symmetrically due to an applied biasDm i.e., eL5Dm/2 and
eR52Dm/2, thuseL2eR5Dm5eV; whereV represents the
potential drop across the tunneling region.

In Fig. 4 we present the total and elastic current vse0 ~the
on-site energy of the sitej 50) for four different values of
Dm. At a smallDm50.02!v there is no inelastic contribu
tion to the current~solid and dashed curves overlap!. The
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main reason for this interesting effect is that the chemi
potential difference across the tunneling region is sma
than the minimum energy changev necessary for the inelas
tic tunneling. The necessary condition for an electron, w
an incoming energye, to contribute to the current atT50,
besides having a finite tunneling rate, can be expressed
two inequalities:e1eL,mL , and e81eR1mv.mR . At
small Dm this condition leads to well defined peaks in th
Jtot,elast(e0) curves since only electrons with a total ener
in a narrow interval between the left and right chemical p
tential can give rise to current. Therefore only processes
beled by$1% and $2% in Fig. 3 contribute to formation of the

FIG. 3. A schematic representation of the positioning of t
bands. Some elastic and inelastic processes that contribute t
total current are shown. Shaded areas represent filled one-ele
states. In elastic processes~$1% and $2%! the total electron energy is
conservede1eL5e81eR , while in inelastic ones~$3% and$4%! it is
not. For clarity, only zero- and one-phonon states on the central
are included.

FIG. 4. The total currentJtot ~solid line! and elastic current
Jelast ~dashed line! vs e0 at T50 for four different choices ofDm.
All curves are in units ofI J

0 ~see definition below!. Note also that
the ordinates in figures~a! and~b! are different than in~c! and~d!.
Current flows at differente0 through different channels. Opening o
closing of different channels~processes! ase0 increases is reflected
in peaks, shoulders, or dips in the curves. Those anomalies~labeled
by small letters! at differentDm correspond to the following pro-
cesses~see Fig. 3! ~a! a:$1%, b:$2%; ~b! a:$1%, b:$2%; ~c! a:$1%,
b:$1,2,3%, b8:$2%, c:$2,4%; ~d! a:$1%, b:$1,2,3%, c:$1,2,3,4%,
c8:$2,4%.
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PRB 59 13 091INELASTIC TUNNELING THROUGH MESOSCOPIC STRUCTURES
side ~a! and the central peak (b), respectively. We should
stress that phonons nevertheless still play an important
even at small voltage biases. The side peak~a! at approxi-
matelye05l2/v2v represents an elastic process where
electron elastically tunnels through the first excited state
polaron whose energy isepol(1)52l2/v1v, while the
main peak~b! corresponds to elastic tunneling through t
polaron ground stateepol(0).

As Dm increases toDm5v50.5 the side peak develop
into a shoulder and moves towards lowere0;v2/l2v
2Dm/2 while the central peak broadens. This is a con
quence of separating the left and right chemical potent
and thus imposing less restrictive conditions on the tunne
electron energies. In particular, the broadening of the cen
peak is caused by simultaneous tunneling through proce
labeled$1% and $2% in Fig. 3; also note the figure caption
Inelastic contribution is still small.

The main features appearing at larger bias, i.e.,Dm50.8,
are ~a! the emergence of the inelastic current~the solid and
dashed lines do not overlap! and ~b! development of a new
structure in the central peak region. The appearance of
inelastic current is caused by the opening of the inela
channels atDm.v. The new structure in the central pea
region is caused by opening and closing of elastic or inela
tunneling channels ase0 increases~see caption to Fig. 4!. At
even larger biasDm54v52.0 the currentJtot(e0) broadens
even though the effects of different channel contributions
still visible. The inelastic current increases relatively to t
elastic current.

We have also computed integralsI J5*de0J(e0) that ac-
cording to Wingreen et al.8 should equal I J

0

5(e/p\)2pt(t0 /t)2Dm. Our findings are that even thoug
the current does scale withDm, nevertheless, our integra
deviate from sum rules that exist in the wide band and la
bias limit. The main reason is that the current flows throu
only selected channels allowed by the difference in
chemical potentials and not through all the channels as is
case in the limit of large bias and wide bands.

The effect of finite temperatures on the total current
presented in Fig. 5. In contrast to the case of the total tra

FIG. 5. The total currentJtot vs e0 at T50, 0.075, and 0.2 for
four different choices ofDm. All curves are in units ofI J

0 . All other
parameters are the same as in Fig. 4.
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mission we were unable to obtain additional peaks co
sponding to phonon absorption processes. With increa
temperature the smearing by the Fermi functions overco
development of those peaks. The effects of raising the t
perature are more intense at smaller biases where peak
narrower. Phonon side peaks disappear aroundT;v/2.

IV. TUNNELING THROUGH AHARONOV-BOHM RING

Next, we consider tunneling and consequently the curr
through an Aharonov-Bohm ring. The purpose of this sect
is to investigate the effect of dephasing by phonon modes
an electron as it tunnels through a ring. In detail, we w
focus on the effect of dephasing on the transmission
current through the ring.

The model is schematically presented in Fig. 6. The r
consists of four sites, connected by hopping matrix elem
t8, that are coupled to two connecting leads with the hopp
matrix elementt0. Each site of the ring is coupled to a
Einstein phonon mode with frequencyv. There are four dif-
ferent phonon modes~one on each site! with identical fre-
quencyv. A magnetic flux is penetrating the circle. This
reflected in an additional phase6f that the electron gains
each time it hops from one site on the circle to another. T
electron part of the Hamiltonian~1!, describing hopping
within the ring, has to be modified in order to encompass
effect of a vector potential

Hel5e0(
j

cj
†cj2t8(

j
~eifcj

†cj 111H.c.!, ~11!

where the sum runs over the sites of the ring. All on-s
energies within the ring were, for simplicity, set toe0. We
solve this problem using the method described above~see
also Ref. 15!, and generalized to many phonon degrees
freedom. By increasing the maximum allowed number
phononsNph on each site this problem can be solved w
any desired accuracy. There are of course computer lim
tions. In practice, for moderate electron-phonon coupling a
low temperatures,Nph53 is enough to obtain results with a
least 1% accuracy. The number of many-body states
creases asNst5N(Nph11)N51024, which corresponds to
the number of channelsNch52Nst . N is the number of sites
in the ring. In a scattering problem where the energy of
incoming electron is known in advance, we have to solv
large (Nst3Nst) sparse system of complex linear equatio
for eache. Due to computer limitations, we restricted calc
lations to zero temperature.

FIG. 6. Schematic representation of the Hamiltonian describ
the Aharonov-Bohm ring. Dots surrounded by circles represe
sites coupled to Einstein phonons. For simplicity we have cho
on-site energies on the ring to be constante j5e0. Magnetic fluxF
penetrates the center of the ring.
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We have computed the total and elastic transmission ve
through an Aharonov-Bohm ring at different values of to
phase,u5fN. In Fig. 7 we show results for the total an
elastic transmission through a ring. Positions of the m
peaks are approximately located close to energies co
sponding to solutions of a tight-binding problem on aN54
site ring with a phasef, i.e., E(k)522t8cos(k1f) for k
52p i /N. One and two phonon side peaks~shoulders! are
also visible at approximatelyen,k5E(k)1nv. The height
and the width of the main peaks change substantially w
the position of the main peak coincides with the position
the phonon-side peak~seeu5p/4).

The most interesting result is found atu5p which corre-
sponds to a phase, where in the case of noninteracting

FIG. 8. The total currentJtot ~solid line! and elastic current
Jelast ~dashed line! calculated atDm50.1 vs e0 at T50 for four
different choices of phaseu. All curves are in units ofI J

0 . Note that
the solid and the dashed lines overlap indicatingJtot5Jelast. As in
the previous section we seteL5Dm/2 andeR52Dm/2. The rest of
the parameters remain the same as in Fig. 7. In the inset we s
for comparison the elastic currentJelast for the noninteracting case
Insets are in the same units as the rest of the Fig. 8.

FIG. 7. Transmission probability as a function of the incide
electron energye at T50 calculated at differentu. The heavy line
is the total transmissionTtot , and the dashed~lower! line the elastic
part Telast. The parameters of the Hamiltonian arel50.2, e l5e r

5e050.0, t050.3, v050.4 t850.5 andNph53. In the inset we
show~insets are in the same units as the rest of the figures in Fig!
transmissionTelast for the noninteracting case, i.e.,l50.
l

n
e-

n
f

n-

neling due to negative interference, transmission is exa
zero for anye. At finite electron-phonon coupling we obtain
for u5p, a finite total transmission. However, the elas
part of transmission remains exactly~down to numerical ac-
curacy! zero. This result is surprising considering that elas
tunneling processes are possible when an electron first e
and then reabsorbs a phonon. A phase shift that the elec
undergoes while emitting a phonon is thus exactly cance
by the phase shift after reabsorbing a phonon. Tunnelin
u5p is therefore exclusively due to inelastic processes. T
finding is in accordance with the well accepted fact that i
purity ~elastic! scattering cannot destroy Aharonov-Boh
oscillations,16 since it does not cause phase decoherence

Furthermore, we have calculated current, Eqs.~9! and
~10!, vs e0 through the Aharonov-Bohm ring at small bia
Dm50.1, zero temperature and differentu. These results are
presented in Fig. 8. As we have already shown in the pre
ous section, only elastic current can flow at small bias. N
ertheless, effects of electron-phonon interaction are cle
visible. There is no net current atu5p since only the elastic
part of the transmission can contribute to the elastic curr
We predict that at small biasDm!v Aharonov-Bohm oscil-
lations through the mesoscopic Aharonov-Bohm ring sho
not diminish significantly due to electron-phonon couplin
where coupling is limited to optical phonons.

Last, we present results for current through the Aharon
Bohm ring at large bias,Dm50.5.v. Results are presente
in Fig. 9. Two most important effects of larger bias a
broadening of the peaks and the appearance of the inel
current (Jtot2Jelast). As a consequence of dephasing by i
elastic scattering we observe finite inelastic current atu5p.

V. CONCLUSIONS

In summary, we have extended a numerically ex
method,15 for inelastic tunneling, to calculate transmissio
through a single site coupled to phonons at finite tempe
tures. We have further proposed an approximate formula
current based on exact results for the transmission ma
taking into account filled Fermi seas left and right from t
tunneling region and left- and right-flowing currents. Th
presented formalism gives correct result in the limit of elas
current. Our approach is entirely based on a one-elec

ow

FIG. 9. The total currentJtot ~solid line! and elastic current
Jelast ~dashed line! calculated atDm50.5 vs e0 at T50 for four
different choices of phaseu. The rest is the same as in Fig. 8.
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approximation. By investigating tunneling through a
Aharonov-Bohm ring coupled to optic phonons, we have
tained numerically exact results for transmission at zero t
perature. We have also computed the current through
ring.

We highlight some of the important findings of this wo
as follows.

Transmission through a single site vs incident elect
energy at finite temperatures displays additional peaks du
phonon absorption processes. The sum ruleI T , valid in the
wide-band limit and zero temperatures, remains appro
mately obeyed in our exact approach even at finite temp
tures. Deviations are within 5% even at temperaturesT.v.

Current through a single site mimics the transmiss
curve at small biasDm!v and T50. At voltage biasDm
,v, and zero temperature only current due to elastic p
cesses is possible, since inelastic processes are exclude
to filled final states. With increasing temperature, featu
due to inelastic processes disappear aroundT;v/2. Phonon
absorption peaks do not appear in the current at finite t
peratures since they are smeared by Fermi functions.

Transmission through the Aharonov-Bohm ring consi
only of inelastic transmission atu5p. The lack of elastic
transmission is considered as evidence that elastic proce
even though they are a part of inelastic electron-phonon s
tering, do not change the phase of the tunneling electron.
have thus presented numerical proof that elastic scatterin
.
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phonons does not affect Aharononv-Bohm oscillatio
Dephasing occurs only through inelastic processes. Thi
the reason why interference effects, measured at small
Dm,v across the tunneling region, display stron
Aharonov-Bohm oscillations by changing the flux throu
the ring. Calculation of current at larger biasDm.v shows
that only inelastic current flows through the Aharonov-Boh
ring in the case whenu5p. The voltage drop over the re
gion has to be larger than the minimal energy differen
necessary for inelastic scattering i.e.,Dm.v.

It would be interesting to study the tunneling through t
Aharonov-Bohm ring at finite temperatures. Such compu
tion would demand larger Hilbert space and more compu
tional time. Our method also allows the implementation
the nonlinear electron-phonon interaction and linear and n
linear phonon-phonon interactions. It would be fascinating
investigate how phonon-phonon interactions, leading to
ternal phonon dynamics, affect dephasing of the tunne
electrons through an Aharonov-Bohm ring.
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