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Effects of electron correlations on transport
properties of iron at Earth’s core conditions
Peng Zhang1, R. E. Cohen1,2 & K. Haule3

Earth’s magnetic field has been thought to arise from thermal con-
vection of molten iron alloy in the outer core, but recent density
functional theory calculations have suggested that the conductivity
of iron is too high to support thermal convection1–4, resulting in the
investigation of chemically driven convection5,6. These calculations
for resistivity were based on electron–phonon scattering. Here we
apply self-consistent density functional theory plus dynamical mean-
field theory (DFT 1 DMFT)7 to iron and find that at high tempera-
tures electron–electron scattering is comparable to the electron–phonon
scattering, bringing theory into agreement with experiments and
solving the transport problem in Earth’s core. The conventional ther-
mal dynamo picture is safe. We find that electron–electron scattering
of d electrons is important at high temperatures in transition metals,
in contrast to textbook analyses since Mott8,9, and that 4s electron
contributions to transport are negligible, in contrast to numerous
models used for over fifty years. The DFT1DMFT method should
be applicable to other high-temperature systems where electron cor-
relations are important.

Recent DFT calculations by Pozzo et al.3 predict the electrical resis-
tivity of iron to be (6.3–7.5) 3 1025V cm at temperatures from 4,580 K
to 6,400 K and pressures from 120 GPa to 340 GPa. The thermal con-
ductivities they predicted are approximately three times the currently
used values of 46–63 W m21 K21 in geophysics10. The results of Pozzo
et al.3 are consistent with previous DFT studies1,2,4,11. The large electrical
and thermal conductivities, however, challenge current Earth models.

Efforts to constrain the transport properties of iron at core condi-
tions have a long history. Elsasser estimated the resistivity of iron to be
r < 10.0 3 1025V cm at core conditions on the basis of geophysical
arguments12. By assuming the resistivity of iron to be constant along
the melting line, Stacey and Anderson obtained r 5 11.2 3 1025V cm
at 4,971 K and 330 GPa (ref. 10).

All previous calculations neglect electron–electron scattering. It has
long been believed that resistivity in ordinary metals arises primarily
from electron–phonon scattering, except at cryogenic conditions9. Cal-
culations of resistivity from electron–electron scattering only now have
become possible owing to developments in computational theory and
technology and access to large-scale computational resources. The DFT
1 DMFT approach has proved successful in providing results that are
in good agreement with experiments for iron-bearing compounds13,14

and other strongly correlated materials. It quantitatively predicts prop-
erties such as magnetic moments and the effective mass of a series of
compounds in iron pnictides and iron chalcogenides. It also explains
why superconducting gaps in these compounds are strongly Fermi-
surface dependent.

Our primary interest is in the properties of Earth’s core, so we first
present resistivities at the core density of iron (throughout we refer to
Earth’s core density from seismology of 13.04 g cm23, or an atomic vol-
ume of 47.8 atomic units 5 7.083 Å3) (Fig. 1). The resistivities calculated
by Sha and Cohen1, de Koker et al.2 and Pozzo et al.3 at the core con-
ditions are approximately half the value obtained by extrapolating from
the systematics of Stacey and Anderson10 and half the value obtained by

extrapolating from previous shock compression experimental results15–17.
The thermal conductivity k of pure iron at core conditions obtained from
their3 calculations ranges from 150 W m21 K21 to about 250 W m21 K21.
Assuming a large thermal conductivity, the calculated heat conduction
down the core adiabat is about 15 terawatts (TW)3, which overlaps the
estimates18,19 of total heat loss from the core of 8–16 TW. No energy is
left to drive the thermal convection in the geodynamo. To sustain the
geodynamo, compositional convection is therefore required3,5. However,
this mechanism leads to a new paradox:6 Earth’s inner core solidification
is believed to have started about one billion years ago4, so before that
there would be no compositional convection to drive the dynamo, yet
we know that Earth’s geodynamo has existed for more than 3.4 billion
years20.

We find that at high temperatures the resistivity from electron–
electron scattering, ree, computed with DFT 1 DMFT is of the same
order as the electron–phonon scattering, rep, computed with DFT (Fig. 1)1.
The sum of the two parts of the resistivity, from the electron–electron
and the electron–phonon scattering, is in agreement with earlier geo-
physical estimates. After including both the electron–electron scatter-
ing and the electron–phonon scattering, traditional resistivity values
are recovered. We checked the systematics of Stacey and Anderson using
resistivity results at other density as well. Considering the uncertainty
of iron’s melting temperature (,6500 K) the resistivity of iron is
around 13.5 3 1025 V cm along its melting line. Our results support
Stacey and Anderson’s systematics.
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Figure 1 | Resistivity versus temperature of hcp iron at Earth’s core density.
The black vertical line indicates Earth’s core temperature30,31. The black squares
are the extrapolations to this density using the systematics of Stacey and
Anderson10. The green diamond is an interpolation to this density of previous
shock compression results15–17. The DFPT resistivity line is from the linear
extrapolation of low-temperature results1,32. The DFT 1 molecular dynamics
(MD) resistivities are extracted from refs 2,3. The statistical error bars of
DFT 1 DMFT and the total resistivities are smaller than their symbols. Values
are given in the Extended Data Tables 1 and 2. All error bars are 1s.
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Direct comparisons of our results with shock compression and dia-
mond anvil cell experimental resistivities are provided in Fig. 2. Along
the Hugoniot, we find that our electron–phonon plus electron–electron
resistivities are linear at high temperatures (Fig. 2a). So we fitted the
shock data along the Hugoniot to a straight line as well, and also derived
the 95% mean confidence interval from the data. It is not justified to fit
a higher-order function to the data given the experimental scatter. The
total resistivity rep 1 ree, which is the summation of the density func-
tional perturbation theory (DFPT) and DFT 1 DMFT results, nicely
overlaps the best-fitting line of the shock data. In contrast, the rep line
falls below the confidence interval, showing that it is a poor model to
explain the results. We note that Keeler et al.’s15,16 error bars are too
small, both from the scatter of their own data, and from Bi et al.17,
which provided no error estimates. Furthermore, Bi et al. suggested that
Keeler et al.’s values were systematically low, owing to shunting of the
current. Our total resistivities ree 1 rep agree well within experimental
error with diamond anvil cell experimental results at room temper-
ature4,21–23, and also at the P 5 65 GPa, T 5 383 K point of ref. 4. Our
results are in slightly better agreement with Seagle et al.23 than with
Gomi et al.4, but this difference probably represents the experimental
uncertainty, since both are state-of-the-art experiments. At room tem-
perature the resistivity from the electron–electron scattering is insigni-
ficant relative to that from the electron–phonon scattering. We expect
resistivity contributions also from defects and grain boundaries, and the
DFT electron–phonon values do not include contributions from antifer-
romagnetic correlations24,25, which are expected to be important at mod-
erate to low temperatures. We find that the temperature dependence
of the resistivity is much more important than changes with pressure.

When the mean-free path is comparable to the lattice spacings,
saturation in resistivity is expected at the Ioffe–Regel value for the
electron–phonon component. We estimate the saturation resistivity to
be 11.4 3 1025 V cm at the core density, which is higher than our esti-
mated resistivity for electron–phonon scattering at rep 5 9.153 1025V cm

at 6,000 K. Since the resistivity from electron–electron scattering may
exceed the Ioffe–Regel value26, we do not expect saturation effects to be
important at the core conditions.

We estimate the thermal conductivity using the Wiedemann–Franz
law (k 5 LT/r, with Lorentz parameter L 5 2.44 3 1028 WVK22), giv-
ing about 105 W m21 K21 at temperatures from 4,000 K to 7,000 K.
Earth’s core is not pure crystalline iron but is liquid and contains light
elements of the order of 10% by mass. Since the light elements will de-
crease the electrical and thermal conductivities, this thermal conduc-
tivity is close to previously accepted values10. Furthermore, resistivity
increases with melting27, so that there is now no problem driving the
dynamo with thermal convection. Although the absolute values of the
core resistivity and thermal conductivity cannot be constrained exactly
owing to uncertainties in temperature and composition, it is clear (1) that
electron–electron scattering is an important component, and (2) that
including electron–electron scattering removes any problem with core
conductivity being too high to explain the geodynamo. Thus, the trans-
port crisis is solved.

Contrary to general belief that at high temperatures the resistivity of
transition metals comes mainly from electron–phonon scattering9, our
DFT 1 DMFT computations have shown that the electron–electron
scattering is as important as the electron–phonon scattering in hexagonal
close packed (hcp) iron. According to the Fermi-liquid theory, at low
temperature T the resistivity of metals from electron–electron scatter-
ing ree(T) is proportional to T2. Mott suggested that the T2 behaviour
would have a broad crossover region before saturating, but gave no
theory for the form, nor has one yet been developed8. Above 2,000 K,
we find ree(T) in Fig. 1 to be linear with temperature at constant volume.
Interestingly, the linear T dependence of resistivity is widely observed
in correlated materials, including high-temperature superconducting
cuprates28, heavy Fermion and other correlated metals26,29. In DMFT
simulations of the Hubbard model26,29, linear-T resistivity arises from
the linear-T dependence of quasiparticle weight at temperatures above
the Fermi-liquid coherent energy scale. However, in hcp iron we find
that the quasiparticle weight is only weakly dependent on temperature.
As shown in Fig. 3a, the conduction electron scattering rate C is linear
with T above 2,000 K.
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Figure 2 | Our computed resistivities of hcp iron are compared with
experimental results. a, Resistivity versus temperature along the Hugoniot
from shock data15–17, electron–phonon scattering from DFPT calculations1

(violet), and electron–phonon scattering (DFPT) plus electron–electron
scattering (DFT 1 DMFT) (red). The blue line is the linear fit of shock
compression data, and the black lines are the 95% mean confidence interval.
b, Resistivity versus pressure at T 5 300 K and at P 5 65 GPa, T 5 383 K.
Previous diamond anvil cell experimental results4,21–23 are compared with the
DFPT calculations of ref. 1 (violet dashed lines) and ref. 4 (orange dashed lines).
The data of refs 21,22 were analysed in ref. 1. Red plus symbols indicate the
sum of DFPT electron–phonon1 and our DFT 1 DMFT electron–electron
resistivities. The statistical 1s error bars of total resistivities are smaller than
their symbols. Values are given in Extended Data Tables 1 and 2.
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Figure 3 | Scattering rates, density of states and spectral function at Earth’s
core density of hcp iron. a, Orbitally resolved scattering rates as a function
of temperature. Cdz2 , Cdx2{y2 ,xy

and Cdxz,yz represent the scattering rates on
respective d orbitals. b, Density of states of s, dz2 , dx2{y2zxy , dxz1yz and dtotal

orbitals at 6,000 K. c, Spectral function A(k, E), where k is the wave vector and
E is the electron energy relative to the Fermi level, at 6,000 K. The x axis is
the k-path in the first Brillouin zone of the hcp lattice. The statistical 1s error
bars of the scattering rates are smaller than their symbols.
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Since the density of s electrons at the Fermi level, Ns(EF), is very small
(Fig. 3b) and in our calculations Ns(EF)/[Ns(EF) 1 Nd(EF)] , 1% (where
EF is the Fermi energy and Ns,d is the partial density of states) at all
temperatures, ree(T) is determined mostly by the scattering rates of
d-electrons in hcp iron. We suggest that the linear-T scattering in iron
arises from scattering off thermally excited local states which originate
from strong electron–electron interactions, a process not included in
Fermi-liquid theory. In contrast, the linear resistivity from electron–
phonon scattering comes from the near-linear dependence on number
of phonons (the quantized lattice vibrations) with temperature.

We find correlated bands in the low-energy region, all being iron 3d
states (Fig. 3b, 3c). The correlated states at the Fermi level are the origin
of large electron–electron scattering and substantial electron–electron
resistivity. We expect some other transition metals to have incoherent
states at EF and to show similar behaviour, and those with sharp quasi-
particle states at EF to have normal behaviour with dominant electron–
phonon resistivity.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Code availability. The DFT 1 DMFT code was developed by K.H. and is available
at http://hauleweb.rutgers.edu/downloads/.
The DFT1DMFT formalism. In the DFT1DMFT method33,34 a functional (equa-
tion 118 of ref. 33) that includes all local two particle irreducible skeleton diagrams
is optimized. The interaction Hamiltonian is given by the Slater form (equation 28
of ref. 7) with the Slater integral F0 5 U, F2 5 (14/1.625) J, and F4 5 (8.75/1.625) J,
where U is the Hubbard parameter and J is the Hund’s coupling. The double
counting energy Edc is calculated from the fully localized limit35 formula

Edc~U n0
cor{

1
2

� �
{

J
2

n0
cor{1

� �
and n0

cor is the nominal electron occupancy of

the correlated atom (iron in this case). We also tested the around-mean-field
double-counting36 and found an increment of resistivity of up to 16% at core con-
ditions, which is not significant. Our DFT calculations show ncor 5 6.6 at the core
density of iron, so we choose n0

cor 5 Int(ncor) 5 7, where Int means choosing the
nearest integer number of ncor. We tested n0

cor 5 6 and 8, but did not find large
changes, and n0

cor 5 7 gives the lowest resistivity. More details are given in ref. 7. In
our calculation, we choose an energy window of 610 eV around the Fermi level EF

for the projector. We use the continuous time quantum Monte Carlo method to
sample all diagrams in the hybridization expansion, as described in detail in refs 37
and 38.

The all-electron LAPW (linearized augmented plane wave) WIEN2K code39 is
used for the DFT calculations, with the Wu–Cohen exchange-correlation potential40.
A test at core conditions with the Perdew–Burke–Ernzerhof exchange-correlation
functional did not change the resistivity much (only by 2.5%), indicating that our
results are robust. The k-space summation is on a 12 3 12 3 12 grid using a mod-
ified tetrahedron integration scheme41. The cut-off energy separating the core from
valence states is 29.0 Ry. RmtKmax is 9.0 (where Rmt is the smallest atomic sphere
radius and Kmax is the maximum number of wavevectors used) and the magnitude
of the largest vector GMAX is 19.0. There is no spin-orbital coupling/splitting in our
calculation.

The DFT1DMFT method iterates as follows: (1) the lattice problem is solved as
in DFT, but with added self-energy for the correlated states (which is zero for the
first iteration), which makes the problem non-Hermitian and frequency depend-
ent. The eigenvalues, wavefunctions, charge density and potential are output. Step 1
can be iterated as an inner loop. (2) The impurity levels Eimp and the hybridization
function D(v) between the lattice and the impurity are computed and input into
the continuous time quantum Monte Carlo impurity solver to find the DMFT solu-
tion. Step 2 can be iterated as an inner loop. (3) The self-energy and the electron
density are updated; the new self-energy and electron density are inserted into step
(1) and (2) for the next DFT1DMFT iteration.

For Earth’s core density of hcp iron we use 13.04 g cm23 and the corresponding
lattice volume of 47.8 atomic units42,43. The pressure–temperature relationship at
this density is presented in Extended Data Fig. 1. The lattice parameter ratio c/a is
1.615 at all volumes44. We used a Hubbard U 5 5 eV and Hund’s coupling J 5

0.943 eV on the basis of numerous previous studies of iron compounds. We checked
that U 5 2 eV gives very similar results; the resistivity is weakly dependent on U
(the largest difference is smaller than 12%). Reducing J to zero halves the computed
electron–electron resistivity, showing that the Hund’s coupling is quantitatively im-
portant but not solely responsible for the scattering. Reducing U and J to near zero
reduces the electronic resistivity to near zero, as expected. Without the electron–
electron correlations, the electron–phonon interactions would dominate, as prev-
iously believed.
Accuracy of the DFT 1 DMFT method. The DFT 1 DMFT method combines
the accurate treatment of the many-body physics as well as a fully self-consistent
treatment of the crystal and atomic bonding and hybridization. The DFT 1 DMFT
method is one of the most important advances in numerical simulation of con-
densed matter physics. By introducing correlation effects, this method works in the
region where DFT fails to predict experimental results. Its accuracy has been
proved in research on various correlated electron materials from transition metals
and their compounds to heavy fermion materials33,45. At ambient conditions the
transition-metal oxide FeO is an insulator but DFT predicts it to be a metal46. In
contrast, DFT 1 DMFT not only makes FeO an insulator at ambient conditions,
but also successfully predicted the existence of a metallic phase at high pressure47.
DFT 1 DMFT has also been used in research on heavy fermion materials. Using
DFT 1 DMFT, Shim et al.48 identified the ground-state electronic configurations of
curium and plutonium. They found that curium has a single-valence ground state
with magnetic ordering, whereas plutonium has a ground state that comes from
superposition of two atomic valences. The different magnetic properties of curium
and plutonium are explained by the interplay between their ground-state electronic
configurations, the electronic itinerancy and localization, as well as the spin-orbit
coupling. The same group also investigated CeIrIn5 using DFT 1 DMFT49, where
they found the numerically calculated temperature resolved spectral functions to

be in good agreement with experimental results. The consistency between numer-
ical simulations and experimental results enabled them to explain the experiment-
ally observed features in the optical conductivity. The accuracy of DFT 1 DMFT
predictions are not limited to the single-particle level. In an inelastic neutron
scattering experiment of the iron pnictide BaFe1.9Ni0.1As2 by ref. 50, their experi-
mental data were compared with the dynamical magnetic susceptibility from
DFT 1 DMFT calculations. They found systematic consistency between the exper-
imental and the numerical results at different energy and moment slices. From these
results, they confirm that magnetic excitations in the iron pnictide BaFe1.9Ni0.1As2

are partially localized, which indicates the strongly correlated nature of this high-
temperature superconducting material.
Scattering rate and analytic continuation. In our DFT 1 DMFT calculations the
scattering rate of d electrons at the Fermi level is given by:

Ca
EF

~{Za
kF

ImSa(v) v?0j ð2Þ

in which Za
kF

~ 1{ LReSa(v)=Lvð Þ½ �{1
v?0j , a is the d-orbital index of dz2 ,

dx2{y2 ,xy and dxz,yz and S(v) is the self-energy in real frequency from maximum
entropy (MaxEnt) analytic continuation51 (Extended Data Figs 2 and 3).

Another DFT 1 DMFT computation for hcp iron (atomic volume of 47.6 atomic
units, hcp lattice ratio c/a 5 1.6, U 5 3.37 eV, J 5 0.93 eV, projection energy win-
dow [210.8 eV, 4.0 eV] around the Fermi level, around-mean-field double count-
ing) is presented in ref. 52. We duplicate all of their results by exactly following their
methods. In ref. 52 the scattering rate of hcp iron is calculated by extrapolating
the imaginary frequency to zero C T, i0zð Þ~{Z T, ivnð ÞIm

P
T, ivnð Þ½ � ivn?i0zj .

They claim that hcp iron is in the Fermi-liquid state up to 5,800 K with a quadratic
scattering rate in temperature. Although we agree with their results at room temper-
ature, we find very different behaviour at high temperatures. Their extrapolation
in imaginary frequency is poorly constrained at high temperatures. At Earth’s core
temperature (T 5 6,000 K), the first positive imaginary frequency is at v0 5 1.62 eV,
and there are only two points that could be used in extrapolation below 5 eV. This
makes the self-energy, and consequently the scattering rate, at i01 depend heavily
on the choice of extrapolation. In Extended Data Fig. 2, three methods (linear, cubic
and Akima) are used to extrapolate the imaginary part of the self-energy to i01. The
results from the three extrapolations are distributed over a wide range. In Extended
Data Fig. 2, the imaginary part of self-energy at i01 ranges from 20.23 eV to
20.12 eV, giving 100% uncertainty for the absolute values. Such uncertainty at
high temperatures leads ref. 52 to conclude that hcp iron is a Fermi liquid at high
temperatures, which is contrary to our results, owing to insufficient accuracy in
their analysis. In contrast, the self-energy from our MaxEnt has a very dense mesh,
where the smallest energy scale is 0.0025 eV, as shown in the inset of Extended
Data Fig. 3. There is a v 5 0 point, so extrapolation is no longer needed.

Three independent methods were used to check the stability and accuracy of our
analytic continuation; we used both the Padé and the singular value decomposi-
tion methods in addition to MaxEnt. As presented in Extended Data Fig. 3 and its
inset, the imaginary part of the self-energies from the three analytic continuations
agree in the low-energy region needed for the conductivity. At energies around the
Fermi level, the three analytic continuations give identical self-energies. This proves
that our MaxEnt results are precise and stable.
Optical conductivity calculation in DMFT. The optical conductivity is calculated
using the self-energy on the real frequency axis from the MaxEnt, with the low
frequency limit giving the direct-current conductivity. In DMFT, since the vertex
corrections to conductivity can be safely omitted53, the formula we use in the opti-
cal conductivity calculation is45
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			 E
and i, j are orbital indices, the fermionic distribution function

f �ð Þ~ eb �{mð Þz1
� �{1

and the trace is over all valence states.
Equation of state. Our resistivity results at core conditions are independent of any
equation of state. We use the known density43 and the temperature of Earth’s core.
For our comparisons with experiments under other conditions, we estimate the
pressures of our DFT 1 DMFT calculations from the thermal equation of state
given by ref. 31. The Hugoniot line is from the same paper31. The pressure–
temperature relationship at Earth’s core density and along the Hugoniot line are
shown in Extended Data Fig. 1.
Extrapolations. In Fig. 1 we estimated the resistivities of iron at Earth’s core den-
sity using the systematics of ref. 10 as well as three sets of parameters (P, Tm) (where
Tm is the melting temperature of iron) along iron’s melting curve54–56. Stacey and
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Anderson10 assume that the resistivity of iron (1) is constant along the melting line
at 13.5 3 1025V cm and (2) is a linear function of temperature at constant pres-
sure. In Extended Data Table 1a the temperature Tc at the core density corres-
ponding to (P, Tm) is derived from the equation of state in ref. 31 (see Extended
Data Fig. 1). The resistivities at the core density are given by rc 5 rmTc/Tm, where
rm is the melting resistivity. We also tested the effectiveness of Stacey and Ander-
son’s systematics10 using our resistivity data at the atomic volume of 45 atomic units
and temperature 6,000 K. The derived melting resistivity is always close to 13.5 3

1025V cm. Interestingly, our calculations support the systematics of Stacey and
Anderson10, in spite of the importance we find of electron–electron scattering, and
their assumption that electron–phonon scattering would give scaling with the melt-
ing curve.

The shock compression experiment extrapolation point in Fig. 1 is derived from
the formula:

r Tð Þ~1:58z2:59|10{3T ð4Þ
which is the best linear fit of resistivity data from previous shock experiments by
Keeler et al.15,16 and Bi et al.17. r(T) is in units of 1025V cm. The pressure and tem-
perature of this point come from the Hugoniot line at Earth’s core density, as given
in Extended Data Fig. 1.
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Extended Data Figure 1 | Pressure versus temperature relationship of hcp iron at Earth’s core density and along the Hugoniot line31. The two lines cross at
P 5 269.9 GPa, T 5 6,658 K at Earth’s core density.
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Extended Data Figure 2 | Extrapolation of ImS(ivn) to zero imaginary
frequency. The self-energy is from the dz2 orbital of hcp iron at Earth’s core
density and 6,000 K. Three extrapolation methods are used: linear, cubic spline

and Akima spline. The imaginary part of self-energy at i01 ranges from
20.23 eV to 20.12 eV.
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Extended Data Figure 3 | The imaginary part of self-energies in real
frequency on the dz2 orbital of hcp iron at Earth’s core density and 6,000 K.
The self-energies are from three analytic continuation methods: MaxEnt,
Padé and singular value decomposition. The inset shows the same imaginary

part of self-energies in energy range [20.01 eV, 0.01 eV] around the Fermi
level. The self-energies from three analytic continuation methods agree at the
low-energy region.
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Extended Data Table 1 | Resistivities from extrapolations and previous experiments

a, The extrapolated resistivities in Fig. 1 at Earth’s core density using the systematics of ref. 10. b, The extrapolated resistivity in Fig. 1 at Earth’s core density on the Hugoniot. c, The resistivities from DFT 1 MD
calculations in Fig. 1 at Earth’s core density, extracted from refs 2 and 3. d, The atomic volumes, pressures, temperatures and resistivities from shock compression experiments15,16 in Fig. 2a. e, The atomic volumes,
pressures, temperatures and resistivities from shock compression experiments by ref. 17 in Fig. 2a.
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Extended Data Table 2 | The atomic volumes, pressures, temperatures and resistivities from our study in Fig. 1 and Fig. 2

a, DFT1DMFT calculated resistivities in Fig. 1 at Earth’s core density. b, DFT 1 DMFT calculated resistivities in Fig. 2a, along the Hugoniot line. c, DFT 1 DMFT calculated resistivities in Fig. 2b, compared with DAC
experimental results. rep is the DFPT-calculated resistivity by ref. 1. ree is the resistivity from our DFT 1 DMFT study.
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