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We revisit Nagaoka ferromagnetism in the two-dimensional U = ∞ Hubbard model using the
dynamical mean-field theory (DMFT). A recently developed continuous time quantum Monte Carlo
method is applied to solve the DMFT impurity problem. The stability of Nagaoka ferromagnetism
is studied as a function of both the nearest-neighbor lattice hopping t and the next-nearest-neighbor
lattice hopping t′. It is shown that the ferromagnetic state is strongly stabilized when t′ is negative.
A second order ferromagnetic to paramagnetic transition at t′ = 0 changes to a first order transition
at t′/t = −0.1. At a finite temperature T close to half filling, ferromagnetism becomes unstable
as T exceeds the coherence temperature Tcoh, while in the large doping regime the ferromagnetism
emerges from a more conventional fermi liquid . We use the DMFT results to benchmark slave-boson
calculations which can be used to study more complicated geometries.

I. INTRODUCTION

The possibility of the existence of a ferromagnetic
phase in the U = ∞ Hubbard model is a long stand-
ing question. Nagaoka1 showed that for a single hole in
a bipartite lattice the ground state is a fully polarized
ferromagnet, and the term ”Nagaoka ferromagnetism” is
commonly used to describe this state. Whether a fully or
a partially polarized phase persist for a finite hole density
(δ) has been a subject of numerous investigations2.

The problem has been addressed with variational wave
functions 3–7, slave particle methods 8,9, quantum Monte
Carlo (QMC) methods10, and variational QMC meth-
ods11. In all these methods the ferromagnetism survives
up to a critical value of doping δc. It is known from these
approaches that the size of the ferromagnetic region de-
pends strongly on the lattice through the electronic dis-
persion. Even for one hole in the U = ∞ square lattice
with a small positive next-nearest neighbor hopping t′,
the ferromagnetic state is unstable12. At an intermedi-
ate or a large U , a flat band below the Fermi level 13

or a peak in the density of states below the Fermi level
14–16, as realized in the fcc lattice17,18 or a Van Hove
singularity19, stabilize the ferromagnetic state.

The dynamical mean-field theory (DMFT) has also
been used to address the Nagoaka problem, however the
number of impurity solvers available to reach the U = ∞
limit is very limited. Obermeier et al.

20 carried out the
first DMFT study of this problem using the non-crossing
approximation as an impurity solver, and they confirmed
a ferromagnetic state below a critical temperature Tc in
the hypercubic lattice in infinite dimensions. The ex-
istence of a ferromagnetic state in this model was con-
firmed using the numerical renormalization group as an
impurity solver21.

In this study, we revisit the problem of Nagaoka ferro-
magnetism in the U = ∞ Hubbard model within DMFT,
using the recently developed continuous time quantum
Monte Carlo (CTQMC) as an impurity solver22,23. This
impurity solver allows the numerically exact solution of
the DMFT equations for all values of δ and at very low

temperatures for U = ∞. We find that at large doping,
the ferromagnetism emerges from a conventional Fermi
liquid, while at small doping the Curie temperature is
very close to the coherence temperature, hence the fer-
romagnetism emerges from an incoherent state. We pay
particular attention to the possibility of phase separa-
tion and its dependence on the sign of t′/t. Finally we
benchmark simpler approaches to the problem such as
the slave boson method, and we identify the physical
quantities for which this method, in spite of its simplicity
and limitations, is remarkably accurate. This is impor-
tant since the detailed modeling of optical lattices of cold
atoms, which provide a clean realization of the Hubbard
model, will require incorporating spatial inhomogeneities
into the treatments of strong correlations. At present,
this can only be done with simpler techniques such as
slave bosons methods.

We study the Hamiltonian of the U = ∞ Hubbard
model given by.

Ĥ = −
∑
ijσ

tijP̂sĉ
†
iσ ĉjσP̂s (1)

where P̂s is a projection operator which removes states
with double-occupied sites. We consider both nearest-
neighbor (n.n) hopping t and next-nearest-neighbor
(n.n.n) hopping t′. The units are fixed by choosing t = 1

2
.

II. A DMFT+CTQMC APPROACH

DMFT maps the partition function of the Hubbard
model onto the partition function of an effective Ander-
son impurity model (AIM) resulting in the following ef-
fective action.

Seff = Satom +

∫ β

0

dτ

∫ β

0

dτ ′
∑

σ

c†σ(τ)∆σ(τ − τ ′)cσ(τ ′)(2)

where Satom represents the action of the isolated impu-
rity, and ∆σ(τ − τ ′) is the hybridization function of the
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effective AIM. In this U = ∞ case, the double occupied
state of the impurity should be excluded when evaluat-
ing Satom. ∆σ(τ − τ ′) is not initially known and it must
be determined by the DMFT self-consistency condition
given below. The impurity Green function and the im-
purity self-energy are given by the following equations

Gσ(τ − τ ′) = −〈Tcσ(τ)c†σ(τ ′)〉Seff
(3)

Σσ(iωn) = iωn + µ − ∆σ(iωn) − G−1
σ (iωn). (4)

The DMFT self-consistency condition requires that the
self-energy of the lattice is equivalent to the self-energy
of the effective AIM, and that the local Green’s function
of the lattice is equivalent to the Green’s function of the
effective AIM

∑
k

1

iωn + µ + hσ − ǫ(k) − Σσ(iωn)

=
1

iωn + µ + hσ − ∆σ(iωn) − Σσ(iωn)
, (5)

where ǫ(k) = −2t(cos kx +cos ky)−4t′ cos kx cos ky and h
is the external magnetic field. For a given hybridization
∆σ(iωn) , the effective action Seff is constructed and the
AIM is solved for the new Gσ(iωn) and Σσ(iωn). This
iterative procedure continues until the Green function is
converged.

To solve the impurity problem (Eq. 2), CTQMC is used
as the impurity solver. In CTQMC, the hybridization
part of the effective action is treated as a perturbation
around the atomic part and all diagrams are summed
up by stochastic Metropolis sampling.23 In this U = ∞
case, doubly occupied state of the atom is excluded from
atomic eigenstates. CTQMC converges well in the low
Matsubara frequency region, but it is poorly behaved in
the high frequency region. Therefore, one needs the ana-
lytic expression for the self-energy in the high frequency
limit and it has to be interpolated to the low frequency
region. The lowest order Σσ(∞) in the U = ∞ Hub-
bard model is related to the high frequency moments of
Green’s function as follows:

Re[Σσ(∞)] = m1σ/m2
0σ + µ (6)

Im[Σσ(∞)] = (1 − 1/m0σ)ω (7)

where m0σ = 〈{cσ, c†σ}〉 = 1 − n−σ , m1σ =
〈{[cσ, H ], c†σ}〉 = −µ(1 − n−σ) − Tr[∆−σG−σ].

CTQMC can calculate various spin dependent physical
quantities such as occupation numbers (n↑,n↓) and the
local magnetic susceptibility (χloc). The q = 0 magnetic
susceptibility of a lattice can be calculated from χloc by
evaluating complicated vertex functions. To circumvent
this difficulty, χq=0 of a lattice can be calculated from the
ratio of magnetization to the external magnetic field (χ =
dm
dh |h=0). The external field h alters the effective action
(Eq. 2) by adding hσ to atomic energies and the self-
consistency condition (Eq. 5) is enforced to include the

spin dependent hσ term during DMFT iterations. The
exclusion of the double occupancy (U = ∞) implies the
Hubbard potential energy to vanish and the only relevant
energy is the kinetic energy. The kinetic energy of spin σ
electrons in a AIM is given by Tr[∆σGσ], and it is related
to the average of the perturbation order k as follows:

Ekin,σ = Tr[∆σGσ] = −T 〈kσ〉 (8)

where T is temperature. Therefore, it is possible to cal-
culate the kinetic energy precisely by evaluating 〈kσ〉.
The free energy, F , can also be derived from the kinetic
energy as long as it is in the fermi liquid regime.

F (T ) ∼= Ekin − π2

3
Z−1ρ0(µ)T 2 (9)

where Z is the renormalization residue and ρ0 is the non-
interacting density of states.
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FIG. 1: (Color online) (a) The reduced magnetization
mr=(n↑ − n↓)/(n↑ + n↓) vs the electron density n at t′/t=-
0.1, 0, and 0.1 (b) the chemical potential µ vs n at t′/t=-0.1,
0, and 0.1. Filled points indicate a FM state. Inset : FM
free energy and PM free energy vs n at t′/t=-0.1. The dot-
ted line is constructed using the Maxwell construction. All
calculations were performed at T=0.01.



3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.01  0.02  0.03

m
r

T

←t′/t= -0.1

←t′/t= 0

FIG. 2: (Color online) mr vs T at fixed n =0.85 with t′/t=-
0.1 and 0. The fully polarized FM state (mr = 1) is expected
only when t′/t=-0.1.

Fig. 1.(a) shows the reduced magnetization mr=(n↑ −
n↓)/(n↑ + n↓) as a function of the electron density n at
three distinct t′/t ratios. The result is notably different
as t′/t varies, with the spontaneously broken ferromag-
netic (FM) state (mr 6= 0) being favored for t′/t < 0
and eventually becoming unstable for t′/t > 0. The crit-
ical density (nc) at which the transition occurs increases
as t′/t increases to a positive value, reducing the FM
region. Moreover, at t′/t = −0.1 mr changes abruptly
at nc=0.705 indicating a first order transition, while at
t′/t = 0 mr increases continuously indicating a second
order transition at nc=0.815.

Notice that close to half filling the Curie temperature
becomes small and at fixed temperature (T = 0.01) it be-
comes increasingly difficult to converge the DMFT equa-
tions near the transition temperature due to the standard
critical slowing down.

Near half filling the quasiparticle bandwidth becomes
small due to the strong correlations hence the thermal
fluctuations become comparable to the Curie tempera-
ture in this region.

A stable FM state is possible again if T is lowered
sufficiently below Tcoh. In the region above 0.95, an in-
coherent paramagnetic (PM) state becomes stable as T
exceeds Tcoh. Inspecting the chemical potential as a func-
tion of density reveals that the nature of the transition
changes with t′/t (see figure 1.(b)). For t′/t = −0.1,
there is a region of constant chemical potential which
corresponds to a first-order transition, while for t′/t = 0
the transition is continuous. The flat chemical potential
region (n = 0.696 − 0.715) indicates that two different
DMFT solutions (FM, PM) can be converged depending
on the initial conditions and it indicates phase separation
(PS) of the FM and PM state. This region is determined
by Maxwell construction which connects common tan-
gents between two phases in the free energy vs n graph.
(Fig. 1. inset)
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FIG. 3: (Color online) The spectral functions A(ω) at t′/t=-
0.1 (top), 0 (middle), and 0.1 (bottom) for fixed n =0.85.
Inset: Non-interacting spectral functions (A0(ω)) of the ma-
jority spin at the corresponding t′/t values. (µ0 = µ−ReΣ(0))
All calculations were performed at T=0.01.

The original debate on the Nagaoka problem was fo-
cused on the existence of the fully polarized FM state at
finite δ in the T → 0 limit. Therefore, it is necessary to
investigate mr at very low T . Fig. 2 shows that the fully
polarized Nagaoka state is not stabilized at least when
δ = 0.15 and t′/t = 0. Nevertheless, at t′/t = −0.1, the
fully polarized FM state is realized. As the spins become
fully polarized (t′/t = −0.1, T → 0), numeric requires
high statistics and an error-bar is specified to take into
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FIG. 5: (Color online) The critical temperature Tc vs n at
t′ = 0. nc at T = 0 is obtained from the extrapolation. The
dotted line represents the coherence temperature Tcoh vs n.

account the numerical error.

The spectral functions on the real frequency axis are
shown in Fig. 3. Because CTQMC works on the imagi-
nary frequency axis, one needs to perform the analytical
continuation of the Green function to the real axis. Here
we use the maximum entropy method24. The spectral
functions show noticeable differences to small perturba-
tions in t′ at fixed n=0.85. At t′/t = −0.1, the majority
spin spectral function shows no quasiparticle peak and
large spectral weight at ω < 0. The overall shape is
similar to the non-interacting spectral function (Fig. 3.
inset). The minority spin spectral function has a narrow
quasiparticle band and a small lower Hubbard band. The
quasiparticle band narrows by a factor Z. At t′/t = 0
and t′/t = 0.1, the spectral functions consist of a narrow
quasiparticle band and a lower Hubbard band, similar to
the minority spin state for t′/t = −0.1. In the U = ∞
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FIG. 6: (Color online) The local susceptibility (χ−1

loc) vs T and
the uniform susceptibility (χ−1

q=0
) vs T (t′/t = 0)

Hubbard model, the upper Hubbard band disappears due
to the exclusion of double occupancy. The stability of the
FM state at t′/t = −0.1 originates from the large spectral
weight of the ω < 0 region making the FM state energeti-
cally stable. This is a consequence of the non-interacting
DOS shown in the inset of Fig. 3.

The inverse of the q = 0 magnetic susceptibility (χ−1
q=0)

of the PM state vs n at t′/t = 0 and 0.1 is shown in Fig. 4.
The extrapolated line at t′ = 0 indicates that χ diverges
near n = 0.815, confirming the second order transition
at the critical density (nc = 0.815). At t′/t = 0.1, one
might expect χ will diverge near n = 1. However, as
Tcoh becomes smaller than T near n = 1, the incoherent
PM state is stabilized. In other words, at t′/t = 0.1, the
crossover from the coherent PM state to the incoherent
PM state occurs instead of the transition to the FM state.

Fig. 5 shows the critical temperature (Tc) vs n at
t′/t = 0. In the region below Tc a partially polarized FM
state is found, and it is determined by observing n↑ 6= n↓

in a CTQMC result. This graph shows that the lower
critical density (nc) at T = 0 is about 0.8. At half filling
critical temperature should vanish due to the following
reason. The kinetic energy at half filling is zero in both
the paramagntic and ferromagnetic state because of the
blocking of charge density. The entropy of the paramag-
net is much larger than the entropy of the ferromagnet
due to the large spin degeneracy of the paramagnetic
state. In other words, PM state is thermodynamically
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FIG. 7: (Color online) ImΣ(iωn) vs iωn at the coherent
FM state (the top panel), the coherent PM state (the mid-
dle panel), and the incoherent PM state (the bottom panel).
(t′/t = 0)

stable at any finite temperature at n = 1.

As the width of the quasiparticle band becomes smaller
near n = 1, Tcoh is also reduced making it hard to sustain
the quasiparticle peak. At T > Tcoh, the PM state is
clearly stabilized. The Tcoh boundary can be determined
from the imaginary part of self energy (ImΣ(iωn)) on
the imaginary frequency axis. In a coherent region (T <
Tcoh), the renormalization residue Z is well defined (0 <
Z < 1) by evaluating the negative slope of ImΣ(iωn)
at ω = 0. (Z = (1 − dImΣ

dω |ω=0)
−1). However, in the

incoherent regime (T > Tcoh), the slope of ImΣ(iωn)
at ω = 0 becomes positive making the concept of Z ill
defined (Fig. 7). Therefore, we determined Tcoh as the
temperature where the slope of the low energy self energy
vanishes, and found that it is almost proportional to δ3/2,
in surprising agreement with the findings of a previous
study of doped Mott-insulator25.

In general, n↑−n↓ exhibits small fluctuations near the
boundary of Tc due to the finite T . The fluctuations be-
come especially severe through the transition from the
FM state to the incoherent PM state near n = 1. There-
fore, the boundary points can be determined more pre-
cisely by examining the temperature dependence of χ−1

q=0

(Fig. 6). χ−1
q=0 near a transition point obeys the Curie-

Weiss form (χ−1
q=0 ∼ T − Tc). Both coherent (n = 0.85)

and incoherent (n = 0.95) regions show linear depen-
dence of χ−1

q=0 on T . The χ−1
q=0 for n = 0.75 barely de-

pends on T , exhibiting Pauli paramagnetic behavior. χ−1
loc

is greater than χ−1
q=0 and it increases as n decreases. This

is because in DMFT χ−1
loc ∼ T + Tcoh and Tcoh increases

as n decreases25.
Fig. 7 shows the behavior of ImΣ(iωn) for the three

different phases in the Tc phase diagram of Fig. 5. For
n = 0.85 and T = 0.01, a coherent FM state is expected
from the phase diagram. A coherent Fermi liquid is vali-
dated by investigating the negative slope of ImΣ(iωn) at
ω = 0. The slope for spin σ at the high frequency part
is given by −n−σ/1 − n−σ (Eq. 7) and the inequality of
the slope indicates n↑ 6= n↓ confirming FM state. The
majority spin state has a smaller slope at high frequency
because n−σ of the majority spin is smaller than that of
the minority spin. Also, because the slope of the ma-
jority spin at ω = 0 is smaller, Z of the majority spin
is larger than that of the minority spin. This means the
quasiparticle band of the minority spin is more renormal-
ized by strong correlations while the majority spin state
tends to be similar to the non-interacting energy disper-
sion. For n = 0.85 and T = 0.02, a coherent PM state is
established by observing a negative slope at ω = 0 and no
spin symmetry breaking. For n = 0.95 and T = 0.02, an
incoherent PM state is expected from the positive slope
at ω = 0 because the concept of Z is no longer valid and
the application of Fermi liquid theory fails. Lastly, for
fixed T = 0.02, as n increases from 0.85 to 0.95 the slope
at high frequency also increases because n−σ increases.

III. NAGAOKA FERROMAGNETISM FROM A

4-SITE PLAQUETTE
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FIG. 8: (Color online) The lowest energies of a S=1/2 state
and a S=3/2 state in a U = ∞ 4-site toy model varying t′/t.
E is the energy in units of t = 1/2.
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In order to provide a simple interpretation of why
decreasing t′ stabilizes the Nagaoka state, we examine
the simplest possible model which retains the physics
of the Nagaoka problem. We consider a 4-site plaque-
tte with three electrons (one hole). The ground state of
this model may be characterized by the quantum num-
ber corresponding to the total spin angular momentum
(ie. S = 3

2
, 1

2
) and the z-direction of the spin angular

momentum (Sz = ± 3
2
, Sz = ± 1

2
). The whole Hamilto-

nian matrix is a 32×32 matrix excluding double-occupied
sites and it is block-diagonalized to 6 distinct spin sectors
by performing the unitary transform in the proper S, Sz

basis. The ground state energy at each spin sector is
determined by the exact diagonalization of Hamiltonian
matrix.

The lowest energy in a S = 3
2

sector is given by −2t+t′

and in the S = 1
2

sector is given by −
√

3t2 + t′2. The

energy dependence of a S = 3
2

state is noticeably different

from that of a S = 1
2
. In a S = 3

2
case, doubly occupied

states are excluded by the Pauli principle regardless of
U . Therefore, the U = ∞ Hamiltonian is equivalent to
the U = 0 Hamiltonian where the addition of the positive
n.n.n hopping t′ contributes linearly to the increase of the
kinetic energy. However, doubly occupied states in a S =
1
2

sector are excluded only for U → ∞. Therefore, unlike

the S = 3
2

case, the energy dependence on t′ is greatly
reduced as the Hilbert space shrinks due to infinite U .

A S = 3
2

ground state is indicative of the Nagaoka

ferromagnetic state while a S = 1
2

ground state is indica-

tive of a paramagnetic state. The S = 3
2

state is the
ground state for t′/t < 0.24 and the energy difference in-
creases approximately linearly thereafter indicating that
the Nagaoka state is stabilized as t′/t is decreased. This
is in agreement with the DMFT results presented in the
previous section. The energy of the S = 1

2
state weakly

depends on t′ while the S = 3
2

energy decreases as t′/t
decreases. This also explains that the stability of Na-
gaoka ferromagnetism originates from the minimization
of the kinetic energy.

IV. A MEAN-FIELD SLAVE BOSON

APPROACH

In this section, Nagaoka ferromagnetism in a two-
dimensional U = ∞ Hubbard model will be studied us-
ing a mean-field slave boson approach. In a slave boson
method, a fermion operator is accompanied by bosonic
operators (ie. slave bosons) which keeps track of the lo-
cal occupation number. The three slave boson operators
are ê, p̂↑, p̂↓ and they act on unoccupied sites, spin-up
sites, and spin-down sites, respectively. In this U = ∞
case, the doubly occupied sites are excluded. Constraints
regarding the conservation of the occupation number
are imposed with Lagrange multipliers (λ, λ↑, λ↓). The
Hamiltonian is given in terms of the slave bosons as fol-
lows:

Ĥ = −
∑
ijσ

tij ĉ
†
iσ ẑiσ ẑ†jσ ĉjσ −

∑
iσ

λiσ(p̂†iσ p̂iσ − ĉ†iσ ĉiσ) +

∑
iσ

λi(p̂
†
iσ p̂iσ + ê†i êi − 1) (10)

where ẑiσ = 1√
1−p̂†

iσ
p̂iσ

ê†i p̂iσ
1

q

1−ê†
i
êi−p̂†

i−σ
p̂i−σ

. tij=t if i,j

are n.n, and tij=t′ if i,j are n.n.n. The non-interacting
ǫ(k) is given by −2t(cos kx+cos ky)−4t′ cos kx cos ky just
as the DMFT case. The original Fock space has been en-
larged including the slave boson fields. The partition
function can be calculated from the Feynman functional
path integral over the original fermi fields, slave boson
fields, and Lagrange multipliers. The integral over the
fermi fields is straightforward because the Hamiltonian
is quadratic in the fermi fields. The integral over the
slave boson fields and Lagrange multipliers should be per-
formed using the saddle-point approximation, where the
integral over the slave boson fields and Lagrange multi-
pliers is approximated by putting their space and time in-
dependent mean-field values which minimize the Hamil-
tonian. The physical meaning of slave boson mean-field
value is clear. The expectation value 〈ê†ê〉 corresponds
to the fraction of unoccupied sites, i.e. the hole density

δ(1 − n). Similarly, 〈p̂†↑p̂↑〉 equals to the spin up occu-

pation number (n↑), and 〈p̂†↓p̂↓〉 corresponds to the spin

down occupation number (n↓).
The free energy can be derived from the partition func-

tion (F = −kBT lnZ) and it is necessary to compare the
free energies between ferromagnetic state and paramag-
netic state to investigate the transition. The free energy
is a function of magnetization m = n↑ − n↓, δ, and T .
At T = 0, the free energy becomes the ground state en-
ergy. The energies of the fully polarized ferromagnetic
(FPFM) state (m = n↑) and the paramagnetic (PM)
state (m = 0) are given by.

EFPFM (δ) =
1

Ns

∑
k

ǫ(k)Θ(µ − ǫ(k)) (11)

EPM (δ) =
1

Ns

∑
k,σ

Zǫ(k)Θ(µ∗ − Zǫ(k)) (12)

where Ns is the number of total sites, Z is the renor-
malization residue given by 2δ/(1 + δ), µ is the chem-
ical potential in a fully polarized ferromagnetic state
satisfying (1/Ns)

∑
k

Θ(µ − ǫ(k)) = n↑ = 1 − δ, and
µ∗ = (µ−λσ) is the effective chemical potential in a para-
magnetic state satisfying (1/Ns)

∑
k

Θ(µ∗ − Zǫ(k)) =
n↑ = n↓ = (1 − δ)/2. The DOS of the FPFM state
is the same as the non-interacting DOS (ρ0(ǫ)) while the
DOS of the PM state is renormalized by a factor Z to
1/Z ·ρ0(ǫ/Z). Unlike the DMFT method, the slave boson
approach considers only the renormalized quasiparticle
DOS ignoring the incoherent contribution. EPM is given
by Z ·E0 where E0 is the non-interacting energy. In other
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words, as δ reduces to 0, the energy for a paramagnetic
state is strongly renormalized by a factor 2δ/(1 + δ) to
avoid the doubly occupied states. That makes FM state
more stable at small δ.
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FIG. 9: (Color online) (a) The fully polarized ferromagnetic
(FPFM) energy and paramagnetic (PM) energy vs n varying
t′/t (0.1 (top), 0 (middle), and -0.1 (bottom)) Inset : Maxwell
construction to determine the PS region. (b) The inverse of
uniform magnetic susceptibility (χ−1) at m=0 vs n varying
t′/t (0.1, 0, and -0.1). (c) The chemical potential (µ) vs n at
t′/t = 0.1, 0, and -0.1.

In Fig. 9.(a), fully polarized ferromagnetic (FPFM) en-
ergy and PM energy vs n are shown for t′/t = 0.1, 0, and
−0.1. For all values of t′/t, the FPFM energy is stable
at large n while the PM energy is stable at small n. The
intermediate PS region is constructed by the Maxwell
construction and is indicative of a fist order transition.
At large n, as in the plaquette case, the energy curve
for the paramagnet state depends weakly on t′ while the
FPFM energy curve becomes much lower as t′/t becomes
negative. This results is in agreement with the previ-
ous DMFT results. As t′/t becomes more negative, the
FPFM state is more stable and the critical density, nc de-
creases. Just as in the DMFT, the large spectral weight of
the non-interacting DOS at a low energy makes FPFM
state energetically stable at t′/t = −0.1. When t′ is
0, the energy difference between FPFM and PM is 0 at
nc=2/3 which agrees with the previous slave boson cal-
culations8,9.

We also calculate the inverse of uniform magnetic sus-
ceptibility (χ−1) to study the instability of the PM state.
The analytic expression is

χ−1|m=0 =
1

2ρ(µ∗)
+

2µ∗

1 + δ
+

1

Ns

∑
k

4

(1 + δ)2
Zǫ(k)Θ(µ∗ − Zǫ(k)) (13)

where ρ(µ∗) is the renormalized DOS given by 1/Z ·
ρ0(µ

∗/Z).
The trends in χ−1 are consistent with the results shown

in Fig. 9.(a). As t′/t decreases, PM state becomes un-
stable (χ−1=0) at smaller n and it indicates FM state is
mostly favored at t′/t = −0.1. (see Fig. 9 (b)) However,
the instability of the PM state occurs at a larger density
than nc of Fig. 9 (a) which is indicative of a first order
transition. At t′/t = −0.1, the high spectral peak at
lower energy causes ρ to be larger at the fixed nσ(< 0.5)
and it makes χ−1 smaller than other t′/ts. (Eq. 13)

Fig. 9 (c) shows the flat chemical potential region ex-
ists at any t′/ts in a µ vs n graph. This is the generic
feature of first order transition and the region represents
the coexistence of the FPFM and PM phase. This coexis-
tence region is larger for negative t′/t favoring transition
to the FM phase.

V. COMPARISON OF THE SLAVE BOSON

RESULT AND THE DMFT+CTQMC RESULT

The slave boson method overestimates the region of
the stable ferromagnetic state as compared to DMFT
and it favors a first order transition (see Table 1). This
is because the slave boson approach overestimates the
paramagnetic kinetic energy as compared to the DMFT
approach (Fig. 10). The quasiparticle residue Z of the
DMFT approach is evaluated by (1 − dImΣ

dω |ω=0)
−1 on

the imaginary frequency axis while Z of the slave bo-
son approach is given by 2δ/(1 + δ). Fig. 11 shows that
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t′/t=-0.1 t′/t=0 t′/t=0.1

DMFT nc 0.705 0.815 N/A

(T = 0.01) order First Second N/A

Slave boson nc 0.53 0.67 0.83

(T = 0) order First First First

TABLE I: nc and the order of the ferromagnetism transi-
tion in a two-dimensional U = ∞ Hubbard model from both
the DMFT+CTQMC approach and the slave boson approach
with t′/t= -0.1, 0, and 0.1. N/A means no transition to FM
state occurs.
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FIG. 10: (Color online) Paramagnetic energy from both the
DMFT+CTQMC (T = 0.01) and the slave boson (T = 0)
approach vs n at t′/t=-0.1 (the top panel), 0 (the middle
panel), and 0.1 (the bottom panel).

Z of the slave boson study is overestimated as compared
to the DMFT+CTQMC case. The slave boson technique
used in this paper is based on the mean-field saddle-point
approximation and it does not treat the strong corre-
lation effect properly. Even though DMFT ignores the
spatial correlation effect beyond a single site, the tempo-
ral correlations are treated exactly by CTQMC. More-
over, the mean-field slave boson approach evaluates the
total energy as the sum of coherent quasiparticle energies
(Eq. 12) while the total energy of DMFT+CTQMC in-
cludes contributions from both the incoherent and coher-
ent effects. The over-estimated Z in the slave boson case

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.65  0.7  0.75  0.8

Z

n

slave boson

DMFT

FIG. 11: (Color online) The renormalization residue (Z) of
the slave boson method and the DMFT+CTQMC method
(t′ = 0).

underestimates the kinetic energy while the ignorance of
contribution from the incoherent part overestimates the
energy. As a result, the two errors of the slave boson ap-
proach cancel each other giving a slightly overestimated
energy as compared to the DMFT+CTQMC result.

Additionally, the χ−1 graph in the slave boson method
almost coincides with the DMFT+CTQMC result com-
paring Fig. 4 and Fig. 9 (b). It is not certain
how the renormalization residue Z affects χ−1 in the
DMFT+CTQMC case, and the contribution from the
incoherent part is also unclear. Therefore, further study
will be required to fully understand the positive agree-
ment of χ in the two methods.

VI. CONCLUSION

To summarize, we investigated Nagaoka ferromag-
netism in a two-dimensional U = ∞ Hubbard model in-
cluding n.n hopping t and n.n.n hopping t′. This model
was solved using DMFT with CTQMC , and the mean-
field slave boson approach. Even a small value of t′/t
gives a significant impact on the stability of Nagaoka
ferromagnetism. The DMFT result shows that the fer-
romagnetic state becomes more stable for negative t′/t,
and this is supported by a slave boson solution (see Table
1) and can also be understood from a diagonalization of a
4-site plaquette. The energy of the minimum spin state
(S = 1/2) depends weakly on t′/t, while the energy of
the maximum spin state (S = 3/2) depends linearly on
t′/t. Therefore, the maximum spin state becomes more
stable for negative t′/t.

In both slave boson and DMFT methods, paramag-
netic energy does not vary much as t′/t changes due to
the strong renormalization of the quasiparticle band (see
Fig. 10). However, fully polarized ferromagnetic energy
depends on t′/t because the spectral function becomes
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similar to the non-interacting one in a fully polarized
spin state. At t′/t < 0, the high spectral peak of the
non-interacting DOS in the low energy region makes the
FM energy more stable than a t′/t ≥ 0 case.

Within DMFT, the nature of the transition also varies
with t′/t. A first order transition accompanying the PS
of the FM and PM state occurs when t′/t = −0.1 while
a second order transition occurs when t′/t = 0. In the
slave boson approach, the transition is always first order
regardless of t′/t. This is because the slave boson method
overestimates the PM energy. The DMFT result shows
that when n → 1, the FM state becomes unstable as T
exceeds Tcoh. In other words, ferromagnetic state is only
stable within the coherent Fermi liquid regime.

The U = ∞ one band Hubbard model is a toy model
and does not describe any specific material.However it
is physically realizable in an optical lattice, due to the
recent developments in controlling cold atoms in optical
traps26,27. These systems are highly tunable, and the
hopping parameter t and the on-site interaction U can
be adjusted by varying the ratio of the potential depth of
the optical lattice to the recoil energy (V0/ER) or the ra-
tio of interatomic scattering length to the lattice spacing
(as/d). In order to realize the one-band Hubbard model
with a large U (U/t ≥ 100), V0/ER ≈ 30 and as/d ≤ 0.01
should be the range of parameters in the optical lattice
(See Fig. 4 of Ref. 27). The tuning of the next-nearest
neighbor hopping t′ can be achieved by engineering opti-
cal lattices with a non-separable laser potential over each

coordinate axis.

It will be very interesting to test these DMFT results
experimentally. Usually, the atomic trap potential is ap-
plied to confine atoms in the optical lattice, and the po-
tential varies smoothly having the minimum at the center
of the trap. The phase separation between the FM and
the PM phase at t′/t = −0.1 (taking place between the
densities n = 0.696 − 0.715) can be observed in the op-
tical lattice as three spatially separated distinct regions.
The atom-rich FM region will tend to move to the center
of the optical lattice to be energetically stabilized while
the hole-rich PM region will reside on the edge of the op-
tical lattice. Since the total spin is a conserved quantity,
the FM region which will be located at the center of the
trap, and will consist of two domains containing the up
or down species. Raising the temperature will destroy
the ferromagnetic magnetic state and consequently the
spatial patterns within the trap.
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