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Electronic structure of Pu and Am metals by self-consistent relativistic GW method
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We present the results of calculations for Pu and Am performed using an implementation of a self-consistent
fully relativistic GW method. The key feature of our scheme is to evaluate polarizability and self-energy in
real space and Matsubara’s time. We compare our GW results with the calculations using local density and
quasiparticle approximations and also with scalar-relativistic calculations. We highlight the importance of both
relativistic effects and effects of self-consistency in GW calculation for Am and Pu. We also have found that
GW enhances the hybridization between 5f and 6d states in Pu, suggesting that the physics of Pu should not be
understood based only on 5f electrons.
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During the last two decades we have been witnessing a surge
of activity in many-body-theory-based methodologies applied
to condensed-matter physics. Here we are concerned with one
of them, the Hedin GW method.1 This particular approach has
not only been applied to many different materials, it has also
been formally developed with an intent to enhance its own
applicability or to diagrammatically extend it.

First applications of GW were of “one-shot” type when
one starts with local density approximation (LDA) to get one-
electron eigenstates and construct the corresponding Green’s
function, which is then used as an input to perform only one
GW iteration. Commonly, such an approach is called G0W0. It
usually improves LDA band gaps in semiconductors2 but has
an obvious drawback because the absence of self-consistency
makes it dependent on input and not conserving.3,4

To make the approach independent of the input Green’s
function, a quasiparticle self-consistent GW method (we refer
to this approach as QP-I throughout the paper) was introduced
a few years ago.5,6 In this method the Green’s function is found
self-consistently with an approximate Hermitian form for the
self-energy which is constructed to minimize the perturbation
while keeping the quasiparticle picture. The approach was
successfully applied to a wide class of materials including
simple metals, semiconductors, wide-band-gap insulators,
transition metals, transition-metal oxides, magnetic insulators,
and rare-earth compounds. First calculations for actinide
metals using this approximation and neglecting spin-orbit
interaction have also been reported.7,8 Recently, a scheme
based on Löwdin’s orthogonalization was proposed9 which
removes an ambiguity in the construction of the effective
self-energy in QP-I. The method has also been extended to treat
finite temperatures10 and to calculate spin-wave dispersions.11

However, similar to the one-shot variants of GW , the QP-I
method is not � derivable3 and, as a consequence, it is
not conserving. This, for example, results in difficulties in
calculating total energy.

Applications of fully self-consistent GW schemes are not
numerous. They have been applied for weakly correlated
solids12–15 and for free atoms and molecules.16–18 The general
conclusion seems to be that for weakly correlated solids full
self-consistency deteriorates spectra as compared to one-shot
or QP-I approximations but improves total energies. For

free atoms the conclusion clearly favors fully self-consistent
calculations. Based on these facts one can expect that in solids
the spectra obtained by fully self-consistent GW might be
competitive with the spectra from QP-I if the corresponding
physics is local enough, that is, similar to free atoms. Besides,
the fully self-consistent GW is � derivable and so it is
conserving. Also, it is important to mention several works
aimed to enhance the accuracy of GW -based schemes, their
robustness, performance, and convergency issues.19–25

Another very active field related to the GW method
is its diagrammatic extensions. We mention here the ap-
proaches which use LDA-based vertex corrections,26–29 the
approaches which use direct diagrammatic representation for
the vertex,30–34 and the approach which combines GW and
dynamical mean-field theory (GW + DMFT).35,36 Hedin’s
equations and correspondingly the GW method have also been
formally extended to spin-dependent interactions,37,38 to treat
the electrons residing in a subspace of the full Hilbert space,39

and onto the Keldysh time-loop contour.40 Very recently, the
importance of spin-orbit interaction was highlighted for the
elements with large atomic numbers and it was perturbatively
included in one-shot GW calculations for Hg chalcogenides.41

In this work we generalize the GW method to solve
equations explicitly based on four-component Dirac’s theory,
which is important to get meaningful results for such elements
as actinides. This fact, together with uncertainty with respect
to what kind of self-consistency is better to use for actinides,
defines the scope of the present work, in which we apply the
self-consistent GW method based on Dirac’s equation to study
the electronic structure of plutonium and americium metals.

During the last two decades these two metals (especially Pu)
have been the subjects of intensive studies. From a theoretical
point of view, the best understanding42–47 was achieved using
a combination of LDA and dynamical mean-field theory48

known as the LDA + DMFT method. LDA + DMFT calcu-
lations have resolved the puzzle of false magnetism in Pu
and Am metals, which appears in density-functional-based
calculations49–52 but contradicts with the experiment.53,54

However, there is a problem with LDA + DMFT type of
calculations as the approach is not parameter-free and requires
the input matrix of on-site Hubbard interactions. On top of that
there is an uncertainty with double counting correlation effects
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that are present in both LDA and DMFT theories. Therefore,
there is a significant interest in developing diagrammatically
based approaches such as GW and its extensions that offer
a possibility of overcoming both problems. With respect to
plutonium, our study can be considered as an extension of
previous work by Chantis et al.,8 who have studied this
metal with the QP-I method without spin-orbit interaction
and concluded that correlation effects included in GW make
the f bands narrower and decrease the crystal-field splittings
as compared to the LDA results. We extend the work8 in
three ways: (i) include spin-orbit interaction by using Dirac’s
form for kinetic energy operator, (ii) perform fully self-
consistent GW calculation and compare it with self-consistent
quasiparticle and local density approximations, and (iii) apply
self-consistent GW method to Am metal.

This paper begins with formal presentation of Hedin’s
equations in relativistic form and with an introduction of GW

approximation. In Sec. II we give a detailed account of our self-
consistent GW method implementation. Section III introduces
a simplified self-consistent quasiparticle approximation (QP-
II), which we also use in the present work. In Sec. IV we present
our test calculations for simple materials to show that our
one-iteration (one-shot) GW starting from LDA reproduces
the results obtained earlier. We also compare our QP-II results
with the ones obtained previously using QP-I approximation.
In Sec. V we describe the calculational parameters which we
used for Am and Pu metals. Section VI deals with the results
obtained for these two elements. Finally, in the Appendixes
we give additional details of our τ ↔ ω(ν) transformations
and the formula for the total energy, and we discuss how to
represent single-particle densities of states (DOS).

I. RELATIVISTIC FOUR-COMPONENT HEDIN’S
EQUATIONS: GW APPROXIMATION

Although a truly relativistic treatment of the problem
would require the use of rather complicated equations of
quantum electrodynamics, we use a simplified approach.
Most important, we neglect relativistic retardation effects
in the Coulomb interaction and work with the following
Hamiltonian:

H ′ = H − μN̂

=
∑
ηη′

∫
�̂†(ηr)|cαp + (β − I )

c2

2
|ηη′�̂(η′r)dr

+ 1

2

∑
ηη′

∫
v(r,r′)�̂†(ηr)�̂†(η′r′)�̂(η′r′)�̂(ηr)drdr′

−μN̂, (1)

where �̂†,�̂ are field operators, η,η′ are bispinor arguments,
μ is a chemical potential, N̂ is a number of particles, α,β

are the (4 × 4) Dirac matrices in standard representation, I is
unit (4 × 4) matrix, c is the light velocity, and v(r − r′) is the
Coulomb interaction. We use Matsubara’s formalism for finite
temperatures so that a one-electron Green’s function is defined
as the following τ -ordered Gibbs ensemble average:

G(ηx; η′x ′) = −〈Tτ �̂(ηx)�̂†(η′x ′)〉, (2)

where x is joint index denoting the coordinate r and Matsub-
ara’s time τ .

Following closely the original Hedin derivation1 and cor-
respondingly considering only scalar potential as an external
perturbation in the functional derivative technique, one can
obtain the following set of equations relating noninteracting
Green’s function G0, interacting Green’s function G, polariz-
ability P , bare Coulomb interaction V , screened interaction W ,
self-energy 
, and three-point vertex � (here we understand
summation over repeated bispinor arguments and integration
over repeated space-time arguments):

P (x; x ′) = G(ηx; η′′x ′′)�(η′′x ′′; η′′′x ′′′; x ′)G(η′′′x ′′′; ηx),

(3)

W (x; x ′) = v(x; x ′) + v(x; x ′′)P (x ′′; x ′′′)W (x ′′′; x ′), (4)


(ηx; η′x ′) = −G(ηx; η′′x ′′)�(η′′x ′′; η′x ′; x ′′′)W (x ′′′; x),

(5)

G(ηx; η′x ′) = G0(ηx; η′x ′) + G0(ηx; η′′x ′′)
(η′′x ′′; η′′′x ′′′)
×G(η′′′x ′′′; η′x ′), (6)

�(ηx; η′x ′; x ′′) = δηη′δ(x; x ′′)δ(x ′; x ′′) + δ
(ηx; η′x ′)
δG(η′′′x ′′′; ηIV xIV )

×G(η′′′x ′′′; ηV xV )�(ηV xV ; ηV I xV I ; x ′′)
×G(ηV I xV I ; ηIV xIV ). (7)

Under the assumption about the nonrelativistic form of
Coulomb interaction made in Eq. (1), the system of Eqs. (3)–
(7) is exact. However, in order to practically solve it sim-
plifications are needed. In the popular GW approximation
one keeps only the first term on the right side of Eq. (7).
In this case the equations for the screened interaction (4)
and for the interacting Green’s function (6) are formally
unchanged, whereas the equations for the polarizability (3)
and the self-energy (5) are simplified considerably and are
written as follows:

P (x; x ′) = G(ηx; η′x ′)G(η′x ′; ηx), (8)


(ηx; η′x ′) = −G(ηx; η′x ′)W (x ′; x). (9)

II. RELATIVISTIC GW METHOD IN LAPW BASIS

In order to start GW calculation we need some initial
approximation for the Green’s function G0. We always begin
by performing a self-consistent LDA calculation. Having it
accomplished we perform (optionally) a given number of
Hartree-Fock iterations, then a given number of quasiparticle
GW iterations (QP-II, see Sec. III), and then GW iterations.
In any post-LDA approach we treat core levels in the Hartree-
Fock approximation but with exchange self-energy calculated
using a fully interacting Green’s function. We expand Green’s
function corresponding to valence states using LDA wave
functions as a basis. Technically (as it is explained below in
Sec. II I), we rotate the basis at every iteration in order to make
the exchange part of G diagonal, but it does not change the
result, because we do not reduce the variational space. So our
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results in quasiparticle or GW approximation do not depend
on whether we performed the Hartree-Fock iterations before
GW or started GW immediately after LDA. The presence
or absence of the Hartree-Fock step only affects the rate of
convergency of QP-II (GW ) iterations, which, of course, is a
material-dependent feature.

To solve LDA equations we use the full-potential linear aug-
mented plane waves (FLAPW) method as it was implemented
in Ref. 50 in its nonrelativistic or (scalar-) fully relativistic
form depending on the material under study. In the following
we are concerned mostly with fully relativistic formulation but
simplifications for the scalar-relativistic (nonrelativistic) case
are straightforward. As is well known, in the FLAPW method
the space is subdivided onto nonoverlapping muffin-tin (MT)
spheres and the interstitial region. In this work we use MT
spheres which are practically touching each other.

Inside the MT spheres we represent the Bloch states as
linear combinations of four-component solutions and their
energy derivatives ϕt

LE(αr) of the radial Dirac equation with
a spherical symmetric part of the Hamiltonian taken at some
energies at the center of interest

�k
λ (ηr)|t =

∑
LE

Zkλ
tLEϕt

LE(ηr), (10)

where k is the point in the Brillouin zone, λ is Bloch’s band
index, t is the specific atom in the unit cell, L combines
all relativistic spin-angular quantum numbers, and index E

runs over ϕ, ϕ̇, as well as over local orbitals. Coefficients
Zkλ

tLE ensure smooth mapping between the MT spheres and
the interstitial region as it is standardly done in the linear
augmented plane-wave method.

In the interstitial region we neglect by relativistic effects;
that is, we assume the small components to be zero and
represent the large components of the Bloch states as linear
combinations of two-component spinors,

�k
λ (ηr)|Int = 1√

�0

∑
Gs

Akλ
Gsus(η)ei(k+G)r, (11)

where G runs over reciprocal lattice vectors, s is the spin
index, �0 is the unit cell volume, us(η) is a two-component
spin function, and Akλ

Gs are the variational coefficients in
the effective Hartree-Fock eigenvalue problem. We keep the
same bispinor argument η here, understanding that two of
four components at every r point in the interstitial region
are approximated to zero. Such an approximation greatly
reduces computational time but is still well justified because
relativistic effects are mostly confined near the nuclei. We
have checked the quality of this approximation by performing
LDA calculations with and without relativistic treatment of the
interstitial region, and the differences appear to be very small.

We also need to specify the basis for representing bosonic
functions (the polarizability, the bare Coulomb and screened
interactions). As is becoming a common practice6,25,55 we use
a composite basis: numerical functions inside the MT spheres
and plane waves (plus dual plane waves) in the interstitial re-
gion. In the rest of this paper we use the notation with combined
index i: {Mq

i (r)} = {Mq
tLk(r); ei(q+G)r} for the product basis

set and the notation {M̃q
i (r)} = {Mq

tLk(r);
∑

G′ S
−1q
G′Gei(q+G′)r}

for dual product basis set, where q stands for the point in

the Brillouin zone (generally the meshes {q} for bosonic
functions and {k} for fermionic may be different but in
our present implementation they are the same), index k

distinguishes bosonic basis functions with the same angular
quantum numbers L, and G is the plane-wave index. We also
have introduced the overlap matrix between two plane waves
in the interstitial region S

q
GG′ = ∫

Int drei(G′−G)r.
Next, we introduce abbreviations for the R, k, or q

representations which are often used in the text. We use
the term k representation for the fermionic functions as the
coefficients in an expansion over band states. The term R
representation for the fermionic functions means either the
coefficients in the expansion over numerical functions inside
the MT spheres or the values of the function on a regular mesh
in coordinate space (if the argument belongs to the interstitial
region). For the bosonic functions, the term q representation
means that we consider the coefficients in the expansion over
q dependent product basis functions inside the MT spheres
or over plane waves (dual plane waves) if the argument is in
the interstitial region. The term R representation has the same
meaning as for the fermionic functions with the exception that
numerical functions inside the MT spheres now belong to the
product basis set.

Now we discuss the basis set representation of all the rel-
evant quantities. Because we are only interested in the energy
range much smaller than the electron rest energy we exclude
positron states and represent the coordinate dependence of
Green’s function in terms of the electron states only,

G(ηr,η′r′; τ ) = 1

Nk

∑
k

∑
λλ′

�k
λ (ηr)Gk

λλ′(τ )�†,k
λ′ (η′r′), (12)

where Nk is the number of k points and indexes (λ,λ′)
denote the electronic Bloch band states, as obtained from
the relativistic effective Hartree-Fock problem (see below for
the explanation). Thus, in the coordinate space representation,
Green’s function is generally a 4 × 4 matrix for every r,r′ pair.
We point out that we always keep the unitary transformation
matrices which relate effective Hartree-Fock wave functions to
the original LDA wave functions. So we can easily access any
fermionic function in the original LDA basis whenever needed.

In our implementation of the GW method we take advan-
tage of the well-known fact that the polarizability and the
self-energy in Hedin’s GW system of Eqs. (3)–(7) are most
easily evaluated in (R; τ ) representation while the equations
for the Green’s function and the screened Coulomb interaction
are most easily solved in (k/q; ω/ν) representation, where ω/ν

denote fermionic/bosonic Matsubara’s frequencies. So, in our
approach we always switch from one representation to another
in order to take advantage of the above feature.

As the real-space representation plays a very important role
in our implementation of the GW method, we should clarify a
few points about its use. Formally, we can write the following
representations for all the relevant functions in terms of the
corresponding basis functions [similar to the Green’s function
formula (12)]:

polarizability,

P (r,r′; τ ) = 1

Nk

∑
q

∑
ij

M
q
i (r)P q

ij (τ )M
∗q
j (r′); (13)
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effective interaction,

W (r,r′; τ ) = 1

Nk

∑
q

∑
ij

M̃
q
i (r)W q

ij (τ )M̃
∗q
j (r′); (14)

self-energy,


(ηr,η′r′; τ ) = 1

Nk

∑
k

∑
λλ′

�k
λ (ηr)
k

λλ′(τ )�†,k
λ′ (η′r′). (15)

The above formulas can be considered only as some
projections onto corresponding basis set space. Actually,
all representations eventually are defined by the number
Nk of points in the Brillouin zone and by the number of
band states included in the original representation for the
Green’s function (12). This is because our product basis set is
designed to reproduce with high accuracy all products formed
with our chosen band wave functions. However, there are
some differences in the meaning of the above formulas. For
example, the representation for the polarizability (13) follows
automatically from the relation P = GG and, in this sense,
is equivalent in its accuracy to the representation for the
Green’s function. However, the accuracy of representations
for the self-energy and W might be (and actually it is) quite
different. This is connected to the fact [which is obvious
from the Eqs. (5) and (6)] that in order to perform self-
consistent GW calculations we need to know only projections
(matrix elements) of the self-energy and the interaction. The
interaction and the self-energy considered in real space as
functions restored from the matrix elements following the
formulas (14) and (15) are usually rather far from reality.
The accuracy is poor because generally the interaction (which
enters also in the self-energy) requires a quite different basis
set to be represented exactly. The above reasoning is very easy
to understand with a simple example. Imagine we calculate
the ground-state wave function for a hydrogen atom. It is
known analytically as �(r) = 1√

π
e−r . The electron-nuclear

interaction is also known exactly as V (r) = 2/r . However,
if we project it onto the subspace we are interested in (and
all we need to exactly solve the hydrogen atom is just
this projection) we get V ′(r) = 〈�|V 〉�(r) = 8πe−r , which
is totally different from the original singular function. The
projection of the true interaction onto the basis set where we
are looking for the solutions of the Hamiltonian has nothing
to do with the real coordinate dependence of the interaction,
but it still can be quite sufficient for our purposes. We can
think about the interaction appearing in our formulas as
“pseudo”-interaction because it is designed to reproduce the
physics only inside a limited energy region.

The above discussion was intended to show that using real
space representations in our implementation does not mean
that we are trying to get the coordinate dependence of the
functions as accurately as possible but use them to perform the
calculation many times faster and without the loss of accuracy.

Another question may arise about the use of the real-space
representation: What happens if we, for example, calculate the
exchange part of the self-energy using the formula 
(r,r′) =
G(r,r′)V (r′,r), when r = r′ and they both belong to the
interstitial region? The answer is closely related to the above
discussion. We originally define the Coulomb interaction in
reciprocal space using some mesh in the Brillouin zone and for

 0
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FIG. 1. (Color online) Coordinate dependence of the exact and
effective bare Coulomb interaction.

each point of this mesh we use a finite number of plane waves to
represent the coordinate dependence of the interaction. Then
we use Fourier transform to get the projection onto the real
space. That is, we do not use the exact form of V (r,r′) in the
formula for the self-energy, we need only its projection, which
always has a smooth behavior. As an illustration, we show
in Fig. 1 the effective (i.e., projected) Coulomb interaction
V (r,r′) for sodium. The point r is taken at (1/2a; 0; 0) (a
is the lattice constant), which for bcc structure corresponds
to the interstitial region, and the position of r′ is varied
along the direction from (0.45a; 0; 0) to (0.55a; 0; 0). The
product basis set which is used to get these data corresponds
to a well-converged GW calculation. As is seen, the true
interaction has singularity, but the projected one is a very
smooth function of r. Further increase in the size of the product
basis will gradually reduce the difference between the exact
and the effective interactions but will not change the results in
the energy region we are interested in.

In the following, we give the most important formulas as
they appear in the course of one loop of the self-consistency.
We separate the description into subsections such that each
subsection deals with the specific step of a GW iteration. As
a guide, below we list these steps as follows:

(1) self-consistent LDA calculation (the basis of band states
is obtained here);

(2) construction of the product basis set, similar to Ref. 55;
(3) calculation of the matrix elements of the bare Coulomb

interaction in q space using the product basis (Sec. II A);
(4) calculation of the effective (or pseudo) bare Coulomb

interaction in R space (Sec. II G);
(5) initial approximation for the Green’s function (using

LDA or Hartree-Fock one-electron energies) in (k; τ ) repre-
sentation [Eq. (17)];

(6) transformation of the Green’s function from (k; τ ) to
(R; τ ) representation (Sec. II C);

(7) calculation of the polarizability in (R; τ ) variables
(Sec. II D);

(8) transformation of the polarizability from (R; τ ) to (q; ν)
representation (Sec. II E);

(9) calculation of the screened interaction W in (q; ν)
representation (Sec. II F);
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(10) transformation of the screened interaction from (q; ν) to
(R; τ ) representation (Sec. II G);
(11) calculation of the exchange (static) part of the self-

energy in (R) representation (Sec. II H);
(12) transformation of the exchange part of the self-energy

from (R) to (k) representation (Sec. II H);
(13) solution of the effective Hartree-Fock eigenvalue prob-

lem including the core levels and obtaining the exchange part
of the Green’s function in (k; τ ) representation (Sec. II I);
(14) calculation of the correlation (dynamic) part of the self-

energy in (R; τ ) representation (Sec. II H);
(15) transformation of the correlation part of the self-energy

from (R; τ ) to (k; ω) representation (Sec. II H and Appendix
A);
(16) calculation of the correlation part of the Green’s function

in (k; ω) representation (Sec. II J);
(17) transformation of the correlation part of the Green’s

function from (k; ω) to (k; τ ) representation (Appendix B);
(18) addition of the exchange and correlation parts of the

Green’s function to obtain full Green’s function in (k; τ )
representation;
(19) GO TO step (6).

A. Bare Coulomb interaction in q space

We calculate the matrix elements of the bare Coulomb
interaction in q space following the procedure of Ref. 55.
However, we always work in the original mixed product basis
without its conversion to the basis which diagonalizes the
Coulomb interaction. A few words should be said about q = 0
divergency in V q. It enters both the exchange self-energy
(symbolically 
x,k = ∑

q Gk−qV q) and the dielectric matrix
(εq = 1 − V qP q). As is seen, this divergency is integrated out
in the exchange self-energy, whereas it defies the definition of
εq=0. In the self-consistent GW calculation, the polarizability
does not possess the property of the exact polarizability
[P q=0

G=G′=0 = 0 for ν �= 0 (for nonmetals also at ν = 0)], so
we have to avoid the calculation of the dielectric function
at q = 0 in the self-consistent calculation. We explain how
to do it in Sec. II F. For the exchange self-energy, however,
the 1

q2 divergency poses no problem. All we have to do is
introduce some effective matrix for q = 0 following the well-
known prescription.25,56 Schematically, it can be represented
as follows:

V q=0 =
∫

dqF (q) −
∑
q �=0

F q, (16)

where F (q) is an auxiliary function which has the same
divergency as V q at q = 0 (i.e., ∼ 1

q2 ) but can be integrated
analytically. We use the procedure similar to the one proposed
in Ref. 56.

B. Noninteracting Green’s function

Given the one-electron energies εk
λ , we can construct the

noninteracting Green’s function in (k; τ ) representation (0 �
τ � β),

G
0k
λλ′(τ ) = −δλλ′

e(εk
λ−μ)(β−τ )

1 + e(εk
λ−μ)β

, (17)

or in (k; ω) representation,

G
0k
λλ′(ω) = −δλλ′

1

iω + μ − εk
λ

. (18)

C. Green’s function in (R; τ ) representation

The expressions (10) and (12) allow us to express
G(ηr,η′r′; τ ) for both r and r′ being inside the MT spheres
as (due to the symmetry of the solid we can restrict r′ to be
inside the unit cell with R′ = 0, whereas r may be inside the
unit cell with R �= 0)

GR
tηr;t′η′r′(τ ) =

∑
EL;E′L′

ϕt
EL(ηr)GR

tEL;t′E′L′ (τ )ϕ†,t′
E′L′(η′r′),

(19)

where the coefficients are given by the following expression:

GR
tEL;t′E′L′(τ ) = 1

Nk

∑
k

eikR
∑
λλ′

Zkλ
tLEGk

λλ′(τ )Z
∗kλ′
t′L′E′ . (20)

In the case where both r and r′ are in the interstitial
region we operate with three different representations for
Green’s function: (i) numerical values on a regular mesh
GR(ηr,η′r′; τ ), (ii) band states representation Gk

λλ′(τ ) which
follows from Eq. (12), and (iii) representation in terms of
plane waves with coefficients Gk

Gs;G′s ′ (τ ) [three subsequent
fast Fourier transforms (FFT) are involved here],

GR(ηr,η′r′; τ ) = 1

Nk

∑
k

eikR
∑

sG;s ′G′
ei(k+G)rus(η)

×Gk
Gs;G′s ′ (τ )u†

s ′(η′)e−i(k+G′)r′
. (21)

So, in order to transform the Green’s function from (k; τ ) to
(R; τ ) representation we first get the coefficients Gk

Gs;G′s ′ (τ )
using the formula [which is obtained from Eq. (11)]

Gk
Gs;G′s ′ (τ ) = 1

�0

∑
λλ′

Akλ
GsG

k
λλ′(τ )A

∗kλ′
G′s ′ (22)

and, second, apply Eq. (21) to get the values on the mesh in
coordinate space.

Finally, when one of the arguments (say r) is inside the
MT sphere and another one belongs to the interstitial region,
the representations for the Green’s function are obtained as
obvious combinations of the formulas above. The required
representation GR

tEL
(η′r′; τ ) is obtained in two steps:

Gk
tEL;G′s ′ (τ ) = 1√

�0

∑
λλ′

Zkλ
tELGk

λλ′(τ )A
∗kλ′
G′s ′ , (23)

and

GR
tEL(η′r′; τ ) = 1

Nk

∑
k

eikR

×
∑
G′s ′

e−i(k+G′)r′
u
†
s ′ (η′)Gk

tEL;G′s ′ (τ ). (24)

As can be understood, if one uses both the consistent mesh
of unit cells R and mesh of k points in the Brillouin zone (the
number of divisions along every equivalent direction is similar
in both meshes), as well as the consistent mesh of r points in
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the unit cell and the mesh of G vectors in reciprocal space, the
above transformations involve no approximations.

D. Polarizability calculation

The standard way to calculate polarizability is to use k
space representation for the Green’s function in the product
P = GG. In this case, the following expression is obtained:

P
q
ij (τ ) = −

∑
k

∑
λλ′

∑
λ′′λ′′′

∑
ηη′

〈
M̃

q
i �

k−q
λ′′′ (η)

∣∣�k
λ (η)

〉
×Gk

λλ′ (τ )Gk−q
λ′′λ′′′ (β − τ )

〈
�k

λ′(η′)
∣∣�k−q

λ′′ (η′)M̃q
j

〉
,

(25)

which is, however, rather time consuming.
We instead calculate the polarizability in (r,τ ) variables.

For the r,r′ pair of indexes within the MT spheres we express
it in terms of the MT part of the product basis functions
M t

Lk(r). Using the expression (19) for the Green’s function
in the formula (8), we get the polarizability

P R
tLk;t′L′k′(τ )

= −
∑
E1L1

∑
E4L4

∑
η

〈
M t

Lkϕ
t
E4L4

(η)
∣∣ϕt

E1L1
(η)

〉
×

∑
E2L2

GR
tE1L1;t′E2L2

(τ )
∑
E3L3

G−R
tE3L3;t′E4L4

(β − τ )

×
∑
η′

〈
ϕt′

E2L2
(η′)

∣∣ϕt′
E3L3

(η′)M t′
L′k′

〉
, (26)

where we have omitted argument r of all functions in the
integrands. For the MT-interstitial and interstitial-interstitial
combinations of r,r′ we obtain correspondingly the following
expressions:

P R
tLk(r′; τ ) = −

∑
E1L1

∑
E2L2

∑
η

〈
M t

Lkϕ
t
E2L2

(η)
∣∣ϕt

E1L1
(η)

〉
×

∑
η′

GR
tE1L1

(η′r′; τ )G−R
tE2L2

(η′r′; β − τ ) (27)

and

P R(r,r′; τ ) = −
∑
ηη′

GR(ηr,η′r′; τ )G−R(η′r′,ηr; β − τ ).

(28)

The advantage of using the R space is that the number of
arithmetical operations grows linearly with the number of unit
cells R (or equivalently with the number of k points in the
Brillouin zone), whereas in the k-space-based formula (25) it
grows quadratically. So, for example, if we work with the mesh
10 × 10 × 10 we get roughly a factor of 1000 of acceleration.

E. Transformation of polarizability from (Rτ )
to (qν) representation

Having calculated the polarizability, we transform it to the
reciprocal q space and bosonic frequency ν representation.
When both coordinate arguments belong to the MT spheres,
the transformation is just a single FFT:

P
q
tLk;t′L′k′(τ ) =

∑
R

e−iqRP R
tLk;t′L′k′(τ ). (29)

When one argument is in the interstitial (say r′) we perform
two subsequent FFTs,

P
q
tLk;G(τ ) =

∑
r

ei(q+G)r
∑

R

e−iqRP R
tLk(r; τ ), (30)

and when both coordinate arguments are in the interstitial
region we perform three subsequent FFTs:

P
q
GG′(τ ) =

∑
r

ei(q+G)r
∑

r′
e−i(q+G′)r′

×
∑

R

e−iqRP R(r,r′; τ ). (31)

As was mentioned earlier, we combine product basis
indices stemming from inside MT and from the interstitial
region into one combined index, so at this stage we have a
matrix for every q point P

q
ij (τ ). We transform it into bosonic

frequency representation P
q
ij (ν) following the description

given in Appendix A.

F. Screened interaction W

It is convenient to divide W into the bare Coulomb
interaction V and the screening part W̃ [because eventually
we will transform W (ν) → W (τ ) and the bare Coulomb
interaction has a δ-function prefactor in τ representation]:

W
q
ij (ν) = V

q
ij + W̃

q
ij (ν), (32)

where indexes i,j stand for the product basis functions. As
follows from Eq. (4), in the (q,ν) representation we have to
solve the following linear system of equations for W̃ :∑

k

{
δik −

∑
l

V
q
il P

q
lk(ν)

}
W̃

q
kj (ν) =

∑
k

V
q
ik

∑
l

P
q
kl(ν)V q

lj .

(33)

In this equation the matrix elements of the bare Coulomb
interaction are precalculated before the GW iterational cycle.

We solve Eq. (33) for all q �= 0. For the q = 0 point,
however, the dielectric matrix ε = 1 − V P is singular in the
self-consistent GW method. This is because we neglect by
vertex corrections when we calculate the polarizability. In this
sense we should refer to the polarizability which enters the self-
consistent GW cycle as auxiliary (or pseudopolarizability)
to distinguish it from the true one which is defined as an
exact functional derivative of the electronic density with
respect to the external scalar potential. As a result, the
auxiliary polarizability does not vanish exactly in the limit
q = 0, which makes the dielectric function singular. The
above reasoning means that the inverse dielectric matrix in
the self-consistent GW method is always zero at q = 0 and
we have an uncertainty 0 · ∞ for the screened interaction
Wq=0(ν) = ε−1

q=0(ν)V q=0. However, similar to the exchange
self-energy, all we need to do is to pick some effective W eff

q=0
matrix because it enters only under the integral when we
calculate the dynamical self-energy 
 = GW . The simplest
way is to put Wq=0 = 0. Actually, it is not such a bad
approximation if we do only one GW iteration. However, in
the self-consistent calculation the high-frequency components
of W which practically correspond to the bare Coulomb
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interaction are very important and neglecting them strongly
deteriorates the convergency of the results with respect to the
number of k points. We have found another simple solution
which works remarkably well in all cases that we tried. We
calculate an “effective” W at q = 0 as follows:

W eff
q=0(ν) = ε−1

eff (q = 0; ν)V eff
q=0, (34)

where V eff
q=0 has been introduced earlier, whereas ε−1

eff (q = 0; ν)
is obtained by simple extrapolation of ε−1(q; ν) calculated at
a few neighboring points near q = 0. This is done separately
for each frequency. With this procedure, the convergency with
respect to the density of the q mesh is similar to the one
obtained within the Hartree-Fock approximation.

G. Transformation W (q; ν) → W (R; τ )

Having calculated the screening part of the interaction W̃ ,
we first transform it from ν representation to τ representation
following the prescription given in Appendix B. As a second
step, we transform it from q space to R space. This second
step includes three different possibilities:

W̃R
tLk;t′L′k′(τ ) = 1

Nk

∑
q

eiqRW̃
q
tLk;t′L′k′(τ ), (35)

W̃R
tLk(r; τ ) = 1

Nk

∑
q

eiqR
∑

G

e−i(q+G)r

×
∑
G′

W̃
q
tLk;G′(τ )S

∗−1
GG′ , (36)

W̃R(r,r′; τ ) = 1

Nk

∑
q

eiqR
∑

G

e−i(q+G)r
∑
G′

ei(q+G′)r′

×
∑

G′′G′′′
S−1

GG′′W̃
q
G′′G′′′ (τ )S

∗−1
G′G′′′ , (37)

where an inverse of the overlap matrix S enters the above
equations because the interaction in the interstitial region
is represented by a dual basis. The same formulas are
applied to transform the bare Coulomb interaction from the
q representation (where it is originally calculated) to the R
representation.

H. Self-energy calculation

In our approach the correlation (frequency-dependent) part
of the self-energy has only valence-valence contribution,
whereas the exchange (static) part of the self-energy has
core-core, core-valence, valence-core, and valence-valence
contributions.

1. Valence-valence contribution to the self-energy

Consider for brevity only the correlation part of the self-
energy, which is a function of τ . In order to obtain a formula for
the valence-valence contribution to the exchange self-energy
we omit τ dependence, replace the screening interaction W̃

with the bare V , and replace the τ -dependent Green’s function
with its value at τ = β taken with the minus sign.

The self-energy matrix elements in the basis of band states
are given by



c,k
λλ′ (τ ) =

∑
R

e−ikR
∑
ηη′

∫
�0

dr
∫

�0

dr′

×�
†k
λ (ηr)
c,R(ηr,η′r′; τ )�k

λ′(η′r′). (38)

Using the k-space representation for both the Green’s function
and the interaction in the definition for 
 = −GW , the
following expression is obtained:



c,k
λλ′ (τ ) = −

∑
q

∑
λ′′λ′′′

∑
ij

∑
ηη′

〈
�k

λ (η)
∣∣�k−q

λ′′ (η)M̃q
i

〉
×G

k−q
λ′′λ′′′ (τ )W̃ij (q; τ )

〈
M̃

q
j �

k−q
λ′′′ (η′)

∣∣�k
λ′(η′)

〉
. (39)

The calculations after Eq. (39) are extremely time con-
suming, mainly because the number of arithmetical operations
depends quadratically on the number of points in the Brillouin
zone (similar to the polarizability, Sec. II D). However, we can
make the dependence linear if we use the following procedure.

We divide the integration in Eq. (38) into the sum over
the MT spheres and over the interstitial region. Then, the full
matrix element can be written as a sum of three different
contributions [with the use of (10) and (11)]:



c,k
λλ′ (τ )|Mt

Mt =
∑
tEL

∑
t′E′L′

Z
∗kλ
tEL


c,k
tEL;t′E′L′(τ )Zkλ′

t′E′L′ , (40)



c,k
λλ′ (τ )|Mt

Int =
∑
tEL

∑
G′s ′

Z
∗kλ
tEL


c,k
tEL;G′s ′ (τ )Akλ′

G′s ′ + H.c., (41)



c,k
λλ′ (τ )|Int

Int =
∑
ss ′

∑
GG′

A
∗kλ
Gs 


c,k
Gs;G′s ′ (τ )Akλ′

G′s ′ . (42)

‘
In order to calculate the quantity 


c,k
tEL;t′E′L′ (τ ) entering

Eq. (40) we evaluate the corresponding real-space function,



c,R
tEL;t′E′L′ (τ ) = −

∑
E′′L′′

∑
E′′′L′′′

∑
kL1k′L2

×
∑

η

〈
ϕt

EL(η)
∣∣ϕt

E′′L′′ (η)M t
kL1

〉
×GR

tE′′L′′;t′E′′′L′′′ (τ )W̃−R
tkL1;t′k′L2

(β − τ )

×
∑
η′

〈
M t′

k′L2
ϕt′

E′′′L′′′ (η′)
∣∣ϕt′

E′L′ (η′)
〉
, (43)

and then apply FFT,



c,k
tEL;t′E′L′ (τ ) =

∑
R

e−ikR

c,R
tEL;t′E′L′(τ ). (44)

In order to calculate the quantity 

c,k
tEL;G′s ′ (τ ) entering

Eq. (41) we also evaluate the corresponding real-space
function



c,R
tEL

(η′r′; τ ) = −
∑
E′L′

∑
kL1

∑
α

〈
ϕt

EL(η)
∣∣ϕt

E′L′ (η)M t
kL1

〉
×GR

tE′L′(η′r′; τ )W̃−R
tkL1

(r′; β − τ ) (45)

and apply FFT,



c,k
tEL

(η′r′; τ ) =
∑

R

e−ikR

c,R
tEL

(η′r′; τ ). (46)
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At this point the function is represented by its values at the
homogeneous r′ mesh in the whole unit cell. In order to
perform integration over the interstitial region we again apply
FFT to transform it into equivalent linear combination of plane
waves,



c,k
tEL

(η′r′; τ ) =
∑
G′s ′


̃
c,k
tEL;G′s ′ (τ )u†

s ′ (η′)e−i(k+G′)r′
, (47)

with the coefficients


̃
c,k
tEL;G′s ′ (τ ) = 1

Nr

∑
r′

ei(k+G′)r′ ∑
η′

us ′ (η′)
c,k
tEL

(η′r′; τ ).

(48)

Finally, the form (47) allows us to integrate over the interstitial
region analytically and we obtain



c,k
tEL;G′s ′ (τ ) = 1√

�0

∑
G′′


̃
c,k
tEL;G′′s ′ (τ )Sk

G′′G′ . (49)

In order to calculate the quantity 

c,k
Gs;G′s ′ (τ ) entering

Eq. (42) we again evaluate the corresponding real-space
function,


c,R(ηr,η′r′; τ ) = −GR(ηr,η′r′; τ )W̃−R(r′r; β − τ ), (50)

and apply FFT,


c,k(ηr,η′r′; τ ) =
∑

R

e−ikR
c,R(ηr,η′r′; τ ). (51)

Similar to the previous case, we use FFT to transform it into
equivalent linear combination of plane waves,


c,k(ηr,η′r′; τ ) =
∑
Gs

∑
G′s ′

us(η)ei(k+G)r

× 
̃
c,k
Gs;G′s ′ (τ )u†

s ′ (η′)e−i(k+G′)r′
, (52)

with the coefficients


̃
c,k
Gs;G′s ′ (τ ) = 1

N2
r

∑
rr′

e−i(k+G)rei(k+G′)r′

×
∑
ηη′

u†
s(η)us ′(η′)
c,k(ηr,η′r′; τ ). (53)

The form (52) allows us to integrate over the interstitial region
analytically and we obtain



c,k
Gs;G′s ′ (τ ) = 1

�0

∑
G′′G′′′

Sk
GG′′
̃

c,k
G′′s;G′′′s ′ (τ )Sk

G′′′G′ . (54)

2. Core contribution to the exchange self-energy
for valence electrons

This is a part of the exchange self-energy 
x = G(β)V
with core-core sub-block of G. The core Green’s function has
by construction a simple structure, which is obvious from the
relation

G(ηr + R; η′r′; β)

= 1

Nk

∑
k

∑
λ

�k
λ (ηr + R)

−1

1 + e(εk
λ−μ)β

�
†k
λ (η′r′)

= − 1

Nk

∑
k

∑
t

∑
n∈t

�t
n(ηr)eikR�†t

n (η′r′)

= −δR0

∑
t

∑
n∈t

�t
n(ηr)�†t

n (η′r′), (55)

where we first represented the core Green’s function as a sum
over band states (for the core levels λ ≡ tn), and second took
into account that the core band states have only a trivial k
dependence, �k

λ (ηr + R) = �t
n(ηr)eikR, with t running over

the atoms in the unit cell and n running over the core states for
a single atom. Then we accounted for the fact that for the core
levels εk

λ � μ. The identity (55) means that G(ηr; η′r′; β) for
the core levels is not zero only if both r and r′ belong to the
same MT sphere, which makes the calculations much easier.

Now we can write the corresponding contribution to the
valence exchange self-energy as follows:



x,k
λλ′ = −

∑
t

∑
n∈t

∑
ηη′

〈
�k

λ (ηr)
∣∣�t

n(ηr)�†t
n (η′r′)

|r − r′|
∣∣�k

λ′(η′r′)
〉
�t

= −
∑

t

∑
n∈t

∑
EL

∑
E′L′

Z
∗kλ
ELZkλ′

E′L′
∑
ηη′

× 〈
ϕt

EL(ηr)
∣∣�t

n(ηr)�†t
n (η′r′)

|r − r′|
∣∣ϕt

E′L′ (η′r′)
〉
�t

, (56)

where indexes λ,λ′ belong to the valence states and the
integrations are performed over the corresponding MT spheres.

Integrals in Eq. (56) can easily be calculated using the
expansion of 1

|r−r′| in spherical harmonics. Functions ϕt
EL

(ηr)
for the valence electrons do not change during the GW

iterations (we keep them intact after they were obtained in the
self-consistent LDA calculation) but the core orbitals �t

c(ηr)
do change. So we still have to calculate the integrals in Eq. (56)
at every GW iteration.

I. Effective Hartree-Fock problem

1. Valence electrons

As we have stated before, each post-LDA iteration includes
the solution of the effective Hartree-Fock problem. In fact, it
is just a rotation,

�k
λ =

∑
λ′

aλ′λ�
old,k
λ′ , (57)

where we express new wave functions as linear combinations
of the wave functions from the previous iteration. The
corresponding equation for the coefficients is the following:∑

λ′

{
ε

old,k
λ δλλ′ + V

H,k
λλ′ − V

old,H,k
λλ′

+

x,k
λλ′ − 


old,x,k
λλ′

(
V

old,xc,k
λλ′

)}
aλ′λ′′ = εk

λ′′aλλ′′ , (58)

where V
H,k
λλ′ is the matrix of the Hartree interaction and we

have indicated in round brackets that if the previous iteration
was LDA one, we subtract old exchange-correlation potential
instead of old exchange self-energy.

The solution of the effective Hartree-Fock problem gives
us a new exchange part of the Green’s function Gx [Eqs. (17)
and (18)], which is a diagonal matrix in band representation.
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2. Core electrons

Effective Hartree-Fock equations for the core levels are
obtained by variation of the total energy with respect to the
corresponding core orbitals. Formally, it is equivalent to the
standard Hartree-Fock method with the only exception that in
the total energy expression the full Green’s function enters and
not only its exchange part. We give the expression for the total
internal energy in Appendix C. The variation of Eq. (C1) with
respect to the core orbital �t

n together with orthonormalization
constraint leads to the following inhomogeneous equation:∑

η′

[
cαp + (β − I )

c2

2

]
ηη′

�t
n(η′r)

+ [VNucl(r) + VH (r)]�t
n(ηr)

−
∑
η′

∑
n′∈t

�t
n′ (ηr)

∫
dr′〈�t

n′ (η′r′)
∣∣ 2

|r − r′|
∣∣�t

n(η′r′)
〉
�t

+
∑
η′

∑
EL;E′L′

ϕt
EL(ηr)Gt

EL;E′L′ (β)

×
∫

dr′〈ϕt
E′L′ (η′r′)

∣∣ 2

|r − r′| |�
t
n(η′r′)〉�t

= εt
n�

t
n(ηr), (59)

where atomic units with e2 = 2 are used and the local Green’s
function Gt

EL;E′L′(β) corresponds to the definition (20) with
R = 0 and t′ = t.

Subsequent projection of Eq. (59) onto specific spin-
angular state gives us a system of integro-differential equa-
tions, which we solve iteratively.

J. Dyson’s equation

The last part is to solve Dyson’s equation in order to find a
new correlation part of the Green’s function, Gc. We perform
this step using band representation in k space:∑

λ′′
{δλλ′′ − Gx

λ(k; ω)
c
λλ′′(k; ω)}Gc

λ′′λ′(k; ω)

= Gx
λ(k; ω)
c

λλ′(k; ω)Gx
λ′ (k; ω). (60)

This is accompanied by finding a new chemical potential μ,
with the total-electron-number-conservation condition. Then,
we transform the Green function back from (k,ω) to (k,τ )
representation (Appendix B) and use it to calculate a new
electronic density and a new Hartree potential, which are
needed for the next iteration. This closes our iteration.

III. QUASIPARTICLE APPROXIMATION

We can also perform self-consistent calculations using
quasiparticle approximation. Different from the QPscGW

method by Kotani et al.,6 our method is based exclusively on
imaginary axis data. In this paper we use abbreviation QP-I for
the original QPscGW method6 and we introduce abbreviation
QP-II and QP-III for the approaches described below.

We proceed as follows. In Dyson’s equation for the Green
function,

G−1
λλ′(k; ω) = (

iω + μ − εk
λ

)
δλλ′ − 
c

λλ′(k; ω), (61)

where band indices (λ,λ′) correspond to the effective exchange
Hamiltonian introduced earlier, we approximate frequency
dependence of the self-energy by a linear function:


c
λλ′(k; ω) = 
c

λλ′(k; ω = 0) + ∂
c
λλ′(k; ω)

∂(iω)
|ω=0(iω). (62)

With this approximation the Dyson equation is simplified,

G−1
λλ′(k; ω) = Z−1

λλ′(k)(iω) + (μ − εk
λ)δλλ′ − 
c

λλ′(k; 0),

(63)

where we have introduced a renormalization factor Z:

Z−1
λλ′ (k) = δλλ′ − ∂
c

λλ′(k; ω)

∂(iω)
|ω=0. (64)

Representing Z factor as a symmetrical product,

Z−1
λλ′(k) =

∑
λ′′

Z
−1/2
λλ′′ (k)Z−1/2

λ′′λ′ (k), (65)

we reduce the Dyson equation to the following form:∑
λ′′λ′′′

Z
1/2
λλ′′ (k)G−1

λ′′λ′′′ (k; ω)Z1/2
λ′′′λ′(k) = iωδλλ′

+
∑
λ′′λ′′′

Z
1/2
λλ′′(k)

[(
μ − εk

λ′′
)
δλ′′λ′′′ − 
c

λ′′λ′′′ (k; 0)
]
Z

1/2
λ′′′λ′(k).

(66)

The second term on the right-hand side of this equation is a
Hermitian matrix. We denote it as an effective Hamiltonian
matrix and diagonalize it:

μδλλ′ − H k
λλ′

=
∑
λ′′λ′′′

Z
1/2
λλ′′ (k)

[(
μ − εk

λ′′
)
δλ′′λ′′′ − 
c

λ′′λ′′′ (k; 0)
]
Z

1/2
λ′′′λ′(k)

=
∑

i

Qk
λiE

k
i Q

†k
iλ′ , (67)

where Ek
i are the effective eigenvalues. After that, we can

rewrite Eq. (66) as follows:∑
λ′′λ′′′

Z
1/2
λλ′′ (k)G−1

λ′′λ′′′(k; ω)Z1/2
λ′′′λ′(k)

=
∑

i

Qk
λi

[
iω + μ − Ek

i

]
Q

†k
iλ′ , (68)

TABLE I. Band gaps (eV) of selected semiconductors and
insulators. Previous results and experimental data have been taken
from Refs. 5, 6, and 57. GW -1 stands for one-shot GW calculation
starting from LDA. GW means self-consistent GW calculation.
QP-I and QP-II are the self-consistent quasiparticle calculations (see
Sec. III for details).

Old results Present work

GW -1 QP-I GW -1 QP-II GW Experiment

Si 0.97 1.23 0.98 1.41 1.58 1.24
C 5.48 5.94 5.52 6.21 6.15 5.87
SiC 2.14 2.52 2.19 2.91 3.27 2.39
GaAs 1.41 1.93 1.48 2.24 2.45 1.69
ZnS 3.21 4.04 3.03 3.95 4.25 3.94
ZnSe 2.28 3.08 2.55 3.46 3.91 3.00
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TABLE II. Bandwidths of selected metals. Previous results and
experimental data have been taken from Refs. 5 and 6. Notations are
the same as in Table I.

Old results Present work

GW -1 QP-I GW -1 QP-II GW Experiment

Na 3.1 3.0 3.2 3.1 3.8 2.65-3.0
Ti 5.7 6.9 6.6 9.1
Ni 4.0 4.5 4.1 5.8 4.0
Fe 4.6 5.7 4.4 7.0 4.6

or, for the Green function,

Gk
λλ′ (ω) =

∑
i

(Z1/2Q)k
λi(Q

†Z1/2)k
iλ′

iω + μ − Ek
i

. (69)

We call such approximation for the Green function QP-III.
It differs from the full GW calculation only by a linear
approximation for the frequency-dependent self-energy.

At this point, we can set Zk
λλ′ = δλλ′ in the above equation

and obtain

Gk
λλ′(ω) =

∑
i

Qk
λiQ

†k
iλ′

iω + μ − Ek
i

. (70)

We call it QP-II approximation. It physically represents the
quasiparticle contributions to the Green function weighted by
the quasiparticle residue Z. The self-consistent QP-II scheme
is identical to a general GW scheme (Sec. II), but instead
of steps (16)–(18) we calculate quasiparticle one-electron
energies and construct the corresponding quasiparticle Green’s
function in k; τ [representation following Eq. (17)].

We can use the above two approximations to represent
spectral functions on a real energy axis at the end of the
self-consistent cycle. We can also consider them as different
variants of the self-consistent calculations in addition to the
full GW algorithm. However, we have found that only QP-II
produces meaningful results when done self-consistently. So,
in the following we consider only QP-II approximation when
we discuss self-consistent calculations.

If we compare our QP-II approach to the original QP-I
method we see that the main difference is that within QP-I
the effective exchange-correlation potential is constructed by
evaluating the self-energy directly on the real energy axis. In
this sense it takes into account full frequency dependence of
the self-energy. In our case we use only terms linear in ω. So,
by construction, our approach is valid only in the low-energy
region. However, for many purposes it is sufficiently accurate,
as is be seen from our test calculations and Tables I–III below.

TABLE III. Magnetic moments (in Bohr magnetons) for selected
materials. Previous results and experimental data have been taken
from Refs. 5, 6, and 57. Notations are the same as in Table I.

Old results Present work

QP-I GW -1 QP-II GW Experiment

Ni 0.7 0.68 0.64 0.66 0.6
Fe 2.2 2.25 2.4 2.9 2.2
Gd 7.8 7.55 7.81 7.87 7.6
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FIG. 2. (Color online) Dependence of DOS for δ-plutonium on
Lmax used in LAPW (first number) and in the product basis functions
(second number) as obtained in fully relativistic GW calculations
with 6 × 6 × 6 k mesh in the Brillouin zone.

IV. TEST CALCULATIONS

In this section we present our test calculations performed
for several selected materials and compare them with the
published data. Table I contains band gaps for Si, C (diamond),
SiC, GaAs, ZnS, and ZnSe. In Table II we compare bandwidths
for selected metals (Na, Ti, Ni, Fe), and in Table III we compare
magnetic moments for some magnetically ordered materials
(Ni, Fe, Gd).

The direct test of our implementation is to compare our
one-shot (GW–1) result with the previous one obtained using
the same approximation. We conclude that we reproduce
published data rather well. Small remaining discrepancies may
be attributed to the differences in the basis sets (LAPW vs
LMTO).

The comparison between our QP-II and the original QP-
I approximations shows how the linear approximation for
the self-energy works in practice. We can see systematic
differences with a tendency to increase band gaps, bandwidths,
and magnetic moments as compared to the QP-I. However,
these differences are not very large and may be acceptable in
many cases.
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FIG. 3. (Color online) Dependence of DOS for δ-plutonium on
the size of LAPW basis (maximal value among all k points) as
obtained in fully relativistic GW calculations.
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FIG. 4. (Color online) Dependence of DOS for δ-plutonium on
the k mesh in the Brillouin zone as obtained in fully relativistic GW

calculations.

In these tables also included are the self-consistent GW

results. As it is seen in all cases we get larger band gaps,
widths, and magnetic moments when using the self-consistent
GW method. So, it is quite clear that for the listed materials,
the fully self-consistent calculation is worse than the one-
shot calculation or the quasiparticle approximation. This result
has already been known from the past literature. The point,
however, is that there may be a class of materials where both
one-shot GW and QP-GW give too-narrow spectral features
as compared to experiment. In such circumstances the self-
consistent GW may be more appropriate. In the rest of this
paper we argue that Pu and especially Am belong to this class
of materials.

V. DETAILS OF CALCULATIONS FOR PLUTONIUM
AND AMERICIUM

Parameters of our calculations are as follows. Inside the
MT spheres we expand the functions of fermionic type
(Green’s function and the self-energy) in spherical harmonics
up to lmax = 5. Bosonic functions (the polarizability and the
interaction) are expanded up to lmax = 6. As follows from
Fig. 2 the convergency of DOS with respect to these two
parameters is rather good.
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FIG. 5. (Color online) DOS of δ-plutonium as obtained in a fully
relativistic GW calculation for two different temperatures.

TABLE IV. 5f occupation numbers for fcc Pu (taken at the
volume of its δ phase) obtained within the scalar relativistic (SR)
and fully relativstic (FR) approaches.

Method 5f5/2 5f7/2 5f5/2 + 5f7/2

LDA, SR 5.07
GW -1, SR 4.46
QP-II, SR 4.98
GW , SR 4.81
LDA, FR 4.15 0.92 5.07
GW -1, FR 3.57 0.84 4.41
QP-II, FR 4.39 0.45 4.84
GW , FR 4.73 0.25 4.97

The number of bands in the Green function expansion over
Bloch states is about 180 depending on the k point in the
Brillouin zone. Figure 3 shows that the convergency with
respect to the LAPW basis poses no problem in our study.
Note that the inclusion of such a relatively large number of
states is possible only when using a real-space implementation
of the GW method while using reciprocal space, it is very
hard to handle more than 40–50 bands in the LAPW-based
self-consistent GW method.

In Fig. 4 we can monitor the dependence of DOS on the
k mesh. While small features are not totally convergent, the
positions of most peaks (both occupied and unoccupied) are
already well stabilized for the 7 × 7 × 7 mesh, which we use
in the majority of our calculations.

In the interstitial region we use more plane waves for the
bosonic functions (∼350) than for the fermionic ones. Our
full basis size to expand bosonic functions both inside the MT
spheres and in the interstitials is about 600 depending on a
particular k point.

Most of our calculations are performed for the temperature
1000 K. Figure 5 shows that DOS actually is only a weakly
temperature-dependent function.

The LDA calculations use exchange-correlation
parametrization after Perdew and Wang.58

VI. RESULTS

We first discuss our results obtained by various methods for
the number of 5f electrons, n5f , as given in Tables IV and V,
and VI. As follows from experiment,59–62 the 5f occupation
in Pu is close to 5, and the corresponding occupation in Am
is close to 6. Our scalar-relativistic GW result (4.81) is very
close to the value 4.85 obtained in the calculation performed
by Chantis et al.8 As is seen from the calculated data, our GW

results are consistently less than the experimental ones, which

TABLE V. 5f occupation numbers for fcc Pu (taken at the volume
of its α phase) obtained using the fully relativistic (FR) approach.

Method 5f5/2 5f7/2 5f5/2 + 5f7/2

LDA, FR 3.71 1.38 5.09
GW -1, FR 3.30 1.24 4.54
QP-II, FR 3.98 0.90 4.88
GW , FR 4.46 0.46 4.92
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TABLE VI. 5f occupation numbers for fcc americium obtained
using the fully relativistic (FR) approach.

Method 5f5/2 5f7/2 5f5/2 + 5f7/2

LDA, FR 5.36 0.84 6.20
GW -1, FR 4.65 0.68 5.33
QP-II, FR 5.76 0.13 5.89
GW , FR 5.82 0.13 5.95

may be attributed in part to the fact that we count 5f electrons
only inside the MT spheres. There is a noticeable difference
between LDA and GW in the separation of n5f onto 5f5/2 and
5f7/2 contributions, where the GW approximation produces
more 5f5/2 electrons and fewer 5f7/2 electrons. An interesting
trend is seen when one looks at the volume dependence of 5f

counts for plutonium (Tables IV and V). Full 5f occupation is
amazingly unchanged but the distribution between 5f5/2 and
5f7/2 states changes a lot.

We next discuss our calculated DOS for plutonium. Pre-
vious theoretical calculations for this material have been a
subject of great debate in the literature (for a review, see, e.g.,
Ref. 63). On the level of LDA, one usually sees a two-peak
structure of the DOS in Pu which corresponds to 5f5/2 and
5f7/2 states separated by spin-orbit coupling which is here of
the order of 1.5 eV. Since the 5f5/2 peak is occupied only
partially by about 4.15 electrons (see Table IV), it therefore
is natural that it appears right below the Fermi level. The
situation gets more complicated when dynamical self-energy
effects are added on top of a static mean-field approach
such as LDA. In the weak-coupling scenario, the self-energy
behaves linearly as a function of frequency on the scale of the
bandwidth, and one therefore expects a band narrowing due
to quasiparticle mass renormalization as given by the slope
of the self-energy at zero frequency. This type of narrowing
was previously seen in the scalar-relativistic quasiparticle GW

calculation for Pu.8 A different, more correlated picture was
obtained from the self-consistent LDA + DMFT calculation,44

where a mixed valence behavior between f 5 and f 6 (together
with a small admixture of f 4) states was found to exist. It
has recently received a strong experimental support.64 Here a
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FIG. 6. (Color online) Total DOS of δ-plutonium as obtained in
fully relativistic calculations. Comparison is made between LDA,
GW -1, QP-II, and GW approaches.
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FIG. 7. (Color online) Total DOS of plutonium taken at the
volume of its α phase as obtained in fully relativistic calculations.
Comparison is made between LDA, GW -1, QP-II, and GW ap-
proaches.

strong frequency variation of the self-energy produces famous
Hubbard bands representing atomiclike multiplets separated
by the screened value of the Coulomb interaction U as
well as a strongly renormalized quasiparticle band which in
heavy-fermion physics is usually referred as the Kondo peak.
From the experiment65–67 we know only about the occupied
part of the spectrum. α-Pu and δ-Pu share the same qualitative
features in the photoemission: a peak is seen immediately
below the Fermi level and a smaller feature at about –0.9eV;
the quasiparticle peak has less weight in δ-Pu than in α-Pu in
both theory and experiment.

Calculated DOS for δ-Pu using LDA, GW , GW -1, and
QP-II approximations is shown onin Fig. 6. The details of how
we compute spectral functions are given in Appendix D. One
clearly distinguishes a two-peak structure corresponding to the
5f5/2 and 5f7/2 states within all calculational schemes. The
position of the lower 5f5/2 peak right below the Fermi level
is similar in LDA, GW , and QP-II, while it moves closer to
the Fermi level when using a one-shot GW -1 approximation.
For the unoccupied part, different approaches give different
spectra. Here, LDA, GW -1, and QP-II methods give very
similar results with the position of the 5f7/2 peak at 1.0–1.4 eV
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FIG. 8. (Color online) Total DOS of americium as obtained in
fully relativistic calculations. Comparison is made between LDA,
GW -1, QP-II, and GW approaches.
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FIG. 9. (Color online) Total DOS of δ-plutonium as obtained in
scalar-relativistic calculations. Comparison is made between LDA,
GW -1, QP-II, and GW approaches.

while the self-consistent GW moves it toward 3.5 eV above
the Fermi level. Calculated electronic structure of fcc Pu at
a reduced volume, corresponding to the volume of the α

phase (Fig. 7), in general shows broader features than the
one obtained for the δ-Pu volume, which is consistent with the
experimental findings.65 There are no qualitative differences
from δ-Pu.

In order to understand these results we recall that in GW (as
opposite to LDA + DMFT) the self-energy has both frequency
and wave-vector dependence. There can be two competing
tendencies, with the ω dependence decreasing the bandwidth
and the k dependence increasing the bandwidth. Their net
effect requires explicit calculation. We find that in a one-shot
GW -1 calculation, the self-energy calculated using a LDA
Green’s function has relatively large mass renormalization
and thus a narrowing effect. This results in shrinking the
entire f band a little bit, which effectively acts as a reduction
of the spin-orbit splitting. In QP-II approximation a linear
dependence of the self-energy is assumed for all frequencies
with its slope determined self-consistently. It converges to
relatively small mass renormalizations on top of the LDA
and keeps the narrowing effect intact. In a self-consistent
GW method the k dependence and high-frequency behavior
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FIG. 10. (Color online) Total DOS of americium as obtained in
scalar-relativistic calculations. Comparison is made between LDA,
GW -1, QP-II, and GW approaches.
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FIG. 11. (Color online) Partial DOS for plutonium (taken at the
volume of its δ phase) as obtained in a self-consistent relativstic GW

calculation.

of the self-energy change the picture qualitatively. It results
in a different renormalization of the spin-orbit coupling and
developing the Hubbard bands which are now separated by
the screened value of the Coulomb interaction U. While GW

misses an important physics of the Kondo effect, we see
that it tries to reproduce the atomic limit via imposing the
self-consistency condition. As we stated already, there is an
indication that the self-consistent GW works better for small
systems such as atoms and molecules;16–18 we are reaching a
similar conclusion for plutonium where local Hubbard physics
dominates.

We now turn our discussion to americium metal, where
the occupancy of the f shell is close to 6 (see Table VI).
As a result, Am represents a filled shell material with
the nonmagnetic ground-state singlet J = 0. This can, in
principle, be described by a static mean-field approach such as,
for example, the Hartree-Fock theory. Indeed, using a simple
atomiclike diagonalization procedure one can verify that
the single-particle f 6 → f 5 electron removal and f 6 → f 7

electron addition spectrum is made of the two-peak structure
essentially separated by the value of the Coulomb interaction
U. Within the Hartree-Fock approximation, this is interpreted
as the 5f5/2 and 5f7/2 states that were originally split by a small
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FIG. 12. (Color online) Partial DOS for plutonium (taken at the
volume of its δ phase) as obtained in a self-consistent relativstic LDA
calculation.
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FIG. 13. (Color online) Partial DOS for plutonium (taken at the
volume of its α phase) as obtained in a self-consistent relativstic GW

calculation.

spin-orbit effect which now gets renormalized by the Coulomb
correlations. We have recently explored the electronic structure
of the Am metal using the LDA + DMFT method46,68 and
confirmed this intuitive physical picture.

Our calculated DOS for Am using LDA, GW , GW -1, and
QP-II approximations are shown in Fig. 8. They exhibit trends
somewhat similar to plutonium. In particular, LDA produces
two peaks corresponding to the 5f5/2 and 5f7/2 states split
by spin-orbit interaction, which is about 1.5 eV as in Pu.
Since both states acquire a significant dispersion and overlap
strongly in the vicinity of the Fermi energy, this results in
a large density of states at EF and false instability toward
magnetism. Here we can see again that the one-shot GW -1
method results in band narrowing, which acts as a reduction of
the spin-orbit splitting. The self-consistent calculations give
a better description of the atomiclike f states in Am. First,
the quasiparticle QP-II approach predicts a large separation of
the two peaks (5.5 eV) as compared to LDA. This was not
seen in Pu calculation and can be understood as a significant
correction due to Coulomb correlations on top of the LDA.
Second, as one sees, the splitting is largest in the self-consitent
GW calculation, where the peak separation is now 7.5 eV.
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FIG. 14. (Color online) Partial DOS for plutonium (taken at the
volume of its α phase) as obtained in a self-consistent relativstic LDA
calculation.
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FIG. 15. (Color online) Partial DOS for americium as obtained
in a self-consistent relativstic GW calculation.

Note that the position of the lower peak at −3 eV is in a good
agreement with the experimental value69 (−2.8 eV).

The DOS for δ-Pu and Am as obtained in scalar-relativistic
calculation (Figs. 9 and 10) differs qualitatively from the
relativistic one. Therefore, it is clear that an accurate treatment
for these two elements should take into account the spin-orbit
interaction. However, here we point out that we reproduce the
band narrowing (as compared with LDA DOS) obtained for Pu
in Ref. 8 when we perform the calculation in GW -1 or QP-II
approximations.

5f states in Pu and Am play a key role in the energy
region close to the Fermi level, as is seen from our f

partial DOS calculations (Figs. 11–16). We see the increase
in hybridization between 5f5/2 and 5f7/2 states when we go
from δ-Pu (Fig. 11) to α-Pu (Fig. 13), and we see practically
perfect separation between these states in americium metal
(Fig. 15). If we compare GW partial DOSs for Pu with the
corresponding results from LDA calculations (Figs. 12 and 14)
we can notice an interesting feature that the relative strength
of the hybridization between 5f and 6d near the Fermi level
increases when we go from LDA to GW and it becomes more
important than the hybridization between 5f5/2 and 5f7/2.

The difference between QP-II (or GW -1) and self-
consistent GW electronic structures becomes more clear
when we consider the quasiparticle renormalization factor Z
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FIG. 16. (Color online) Partial DOS for americium as obtained
in a self-consistent relativstic LDA calculation.

155129-14



ELECTRONIC STRUCTURE OF Pu AND Am METALS BY ... PHYSICAL REVIEW B 85, 155129 (2012)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60  70  80

Z
 f

ac
to

r

Band index

alpha-Pu
delta-Pu

Am

FIG. 17. (Color online) Band renormalization factor Z as a
function of band index for fcc-plutonium (taken at volumes of α

and δphases) and for fcc americium as obtained in a self-consistent
relativistic GW calculations for k = (0,0,0).

(Figs. 17 and 18). We calculate Z factor in band representation
according to

Zk
λλ′ =

(
1 − ∂
k(ω)

∂ω

)−1

λλ′

∣∣∣∣
ω→0

. (71)

In Figs. 17 and 18 we plot the diagonal components of
Z factor as functions of the band index for 80 lowest bands
for the k = (0,0,0) point of the Brillouin zone correspondingly
obtained from self-consistent GW calculations and from QP-II
(in GW -1 we obtained a Z factor similar to QP-II). In all cases
the position of the Fermi level is between bands 16 and 17.
Actually, there are six distinguishable bands (5f5/2) below
Ef and eight bands (5f7/2) above Ef , which have noticeably
smaller Z’s than the rest of the spectrum. It is also clearly seen
that Z’s for the f bands in the QP-II calculation (0.55–0.6)
are smaller than those obtained in the self-consistent GW

calculation (0.65–0.75). This explains why we see a band
narrowing in the QP (or GW -1) electronic structure while
we do not see it in self-consistent GW .
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FIG. 18. (Color online) Band renormalization factor Z as a
function of band index for fcc-plutonium (taken at volume of the
δ phase) and for fcc-americium as obtained in a self-consistent
relativistic QP-II calculations for k = (0,0,0).

VII. CONCLUSION

In conclusion, we have described our implementation of the
relativistic self-consistent GW method and its application to
the electronic structure for plutonium and americium metals.
We have found that inclusion of the relativistic effects in GW

is extremely important for proper treatment of the actinides.
We also discussed the differences in spectral functions ob-
tained using the self-consistent GW approach with LDA and
quasiparticle GW approximations. We have found that the GW

renormalizes the original spin-orbit split 5f5/2 and 5f7/2 states
due to Coulomb correlations and enhances the hybridization
between 5f and 6d states in Pu, which is very weak in LDA.
For Am the hybridization is practically absent. Overall, we
conclude that the self-consistent GW calculations give a better
description of the materials with localized electrons.
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APPENDIX A: TRANSFORMATION FROM MATSUBARA’S
TIME TO FREQUENCY

We omit matrix indexes here for simplicity. Consider
first fermionic functions such as self-energy. We begin by
transforming the integration limits from [0; β] to [0; β/2] as
follows:


(ω) =
∫ β

0
dτeiωτ
(τ )

=
∫ β/2

0
dτ {cos(ωτ )[
(τ ) − 
(β − τ )]

+ i sin(ωτ )[
(τ ) + 
(β − τ )]}. (A1)

Then we introduce for convenience two functions:

AF (τ ) = 
(τ ) − 
(β − τ ), (A2)

and

BF (τ ) = 
(τ ) + 
(β − τ ), (A3)

where we use index F to remind the reader we are dealing
with the fermionic functions.

Actual transformation is performed as follows:

AF (ω) =
∫ β/2

0
dτ cos(ωτ )AF (τ ), (A4)

and

BF (ω) =
∫ β/2

0
dτ sin(ωτ )BF (τ ), (A5)

which gives us the final answer for 
(ω) = AF (ω) + iBF (ω).
In order to perform transforms (A4) and (A5) we first introduce
a new variable x making the substitution τ = β

2 (1 + x)3, which
maps the τ interval [0; β/2] onto the x interval [−1; 0]. Then
we define nτ x points (xk,k = 1,nτ ) on the interval [−1; 0]

155129-15



KUTEPOV, HAULE, SAVRASOV, AND KOTLIAR PHYSICAL REVIEW B 85, 155129 (2012)

to be zeros of the Chebyshev polynomial of order 2nτ − 1:
xk = cos π(2nτ −k−1/2)

2nτ −1 . Due to the above substitution of vari-
ables the corresponding τk points have high density near τ = 0
where often our functions have a strong τ dependence. Now
we approximate the functions in terms of Chebyshev’s series
and perform corresponding integrations. The final formulas
are given by

AF (τ ) ≈
nτ −1∑
k=1

AF (τk)
nτ −2∑
l=0

Codd
lk T2l+1[x(τ )], (A6)

BF (τ ) ≈
nτ∑

k=1

BF (τk)
nτ −1∑
l=0

Ceven
lk T2l[x(τ )], (A7)

where we have defined

Ceven
lk = 2

2 − δl0

2nτ − 1
(−1)l

{
cos

[
nτ −k

2nτ −1 2lπ
]
, k < nτ ;

1/2, k = nτ

}
,

(A8)

and

Codd
lk = 4

2nτ − 1
(−1)l+1 sin

[
nτ − k

2nτ − 1
(2l + 1)π

]
, (A9)

and T [x] are Chebyshev’s polynomials.
Representations (A6) and (A7) allow us to perform τ → ω

transformations as simple matrix products

AF (ω) =
nτ −1∑
k=1

AF (τk)CF
k (ω), (A10)

and

BF (ω) =
nτ∑

k=1

BF (τk)SF
k (ω), (A11)

with precalculated transformation matrices CF
k (ω) and SF

k (ω):

CF
k (ω) =

nτ −2∑
l=0

Codd
lk

∫ β/2

0
cos(ωτ )T2l+1[x(τ )]dτ, (A12)

SF
k (ω) =

nτ −1∑
l=0

Ceven
lk

∫ β/2

0
sin(ωτ )T2l[x(τ )]dτ. (A13)

For the bosonic case the auxiliary functions are defined
slightly differently:

AB(τ ) = P (τ ) + P (β − τ ), (A14)

and

BB(τ ) = P (τ ) − P (β − τ ), (A15)

where we use index B to distinguish the bosonic case.
The required transformations are

AB(ν) =
∫ β/2

0
dτ cos(ντ )AB(τ ) (A16)

and

BB(ν) =
∫ β/2

0
dτ sin(ντ )BB(τ ), (A17)

for which we use the scheme of precalculation similar to
the fermionic case. Finally, we have P (ν) = AB(ν) + iBB(ν).
Here we point out that for many bosonic functions (for

example, the polarizability P or the screened interaction
W ) function BB is identically equal to zero because of
the symmetry, but there are functions like a transverse spin
susceptibility for which BB is not zero. We consider a general
case below. The detailed formulas are

AB(ν) =
nτ∑

k=1

AB(τk)CB
k (ν) (A18)

and

BB(ω) =
nτ −1∑
k=1

BB(τk)SB
k (ν), (A19)

where the precalculated transformation matrices CB
k (ν) and

SB
k (ν) are

CB
k (ν) =

nτ −1∑
l=0

Ceven
lk

∫ β/2

0
cos(ντ )T2l[x(τ )]dτ (A20)

and

SB
k (ν) =

nτ −2∑
l=0

Codd
lk

∫ β/2

0
sin(ντ )T2l+1[x(τ )]dτ. (A21)

APPENDIX B: TRANSFORMATION FROM MATSUBARA’S
FREQUENCY TO τ

Beginning with the fermionic case we notice that we have
to do the following transformation:

G(τ ) = 1

β

∑
ω

e−iωτG(ω). (B1)

It is more convenient to work with auxiliary functions AF and
BF introduced in Appendix A:

AF (τ ) = 1

β

∞∑
ω=−∞

{e−iωτG(ω) − e−iω(β−τ )G(ω)}

= 1

β

∞∑
ω=−∞

{e−iωτG(ω) + eiωτG(ω)}

= 2

β

∞∑
ω=−∞

cos(ωτ )G(ω)

= 2

β

∑
ω>0

cos(ωτ ){G(ω) + G+(ω)]

= 4

β

∑
ω>0

cos(ωτ )AF (ω), (B2)

and similarly

BF (τ ) = 4

β

∑
ω>0

sin(ωτ )BF (ω). (B3)

Having found A and B we can obtain the original functions
G(τ ) = 1/2[AF (τ ) + BF (τ )] and G(β − τ ) = 1/2[BF (τ ) −
AF (τ )].

Transformations (B2) and (B3) contain infinite summa-
tions. In order to perform them we divide all positive
Matsubara’s frequencies into three intervals. For the first
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interval we use 20–50 smallest Matsubara’s frequencies. Their
contribution in the above sums (B2) and (B3) is calculated
directly. For the second interval, with the upper limit generally
taken to be about 10000 eV, we use Chebyshev’s interpolation
for the ω dependence, as specified below. There may be as
many as 105 or 106 Matsubara’s frequencies inside the interval
(depending on the temperature). However, we use only 30–60
ω points where we actually calculate and store the functions. In
the asymptotic part, all Matsubara’s frequencies are larger than
the upper limit of the second interval. Here we use asymptotic
forms for the ω dependence with the coefficients based on the
last two ω points of the second interval.

Now we specify Chebyshev’s approximation for interval
(ii). We introduce x variable in accordance with the relation
ω = ( 2

√
ω1ω2√

ω1+√
ω2−(

√
ω2−√

ω1)x )2, where ω1 and ω2 are the last
frequencies for the first and the second intervals, respectively.
This substitution of variables allows us to map the second
interval of frequencies [ω1; ω2] onto the x interval [−1; 1].
If we are to use nω points inside the second interval, we
define them as zeros of Chebyshev’s polynomial of order
nω: xk = cos π(nω−k+1/2)

nω
. The above substitution of variables

increases the density of the corresponding ωk points at smaller
frequencies. Again, omitting details of the derivation we
present the final formulas which are useful for the frequency
interpolations (the formulas for AF and BF are identical):

AF (ω) ≈
nω∑

k=1

AF (ωk)
nω−1∑
l=0

ClkTl[x(ω)], (B4)

where we have defined

Clk = 2 − δl0

nω

cos

[
nω − k + 1/2

nω

lπ

]
. (B5)

Representation (B4) allows us to represent the contribution
to the ω → τ transformation from the second interval as simple
matrix products,

AF (τ ) =
nω∑

k=1

AF (ωk)CF
k (τ ) (B6)

and

BF (τ ) =
nω∑

k=1

BF (ωk)SF
k (τ ), (B7)

with precalculated transformation matrices CF
k (τ ) and SF

k (τ )
given by

CF
k (τ ) = 4

β

nω−1∑
l=0

Clk

�ω2∑
ω>ω1

cos(ωτ )Tl[x(ω)], (B8)

SF
k (τ ) = 4

β

nω−1∑
l=0

Clk

�ω2∑
ω>ω1

sin(ωτ )Tl[x(ω)]. (B9)

In the asymptotic interval (iii) we use specific information
about the functions under study. In particular, for the corre-
lation part of Green’s function its asymptotic expansion in
powers of 1/ω starts with 1/ω3 because 1/ω and 1/ω2 are
accounted for in the exchange part of G. Furthermore, from
the definitions (A4) and (A5) it follows that AF (ω) is an even

function of frequency AF (−ω) = AF (ω) and BF (ω) is an
odd function BF (−ω) = −BF (ω). So we represent them as
follows:

AF (ω) = a

ω4
+ b

ω6
(B10)

and

BF (ω) = c

ω3
+ d

ω5
. (B11)

We find the coefficients in the above representations from
the values of AF and BF at ω2 and at a previous ω point, which
is actually the last point of the second interval (let it be ω2).
Simple calculation gives

a = − ω6
2

ω2
2 − ω2

2

AF (ω2) + ω6
2

ω2
2 − ω2

2

AF (ω2), (B12)

b = ω6
2ω

2
2

ω2
2 − ω2

2

AF (ω2) − ω2
2ω

6
2

ω2
2 − ω2

2

AF (ω2), (B13)

c = − ω5
2

ω2
2 − ω2

2

BF (ω2) + ω5
2

ω2
2 − ω2

2

BF (ω2), (B14)

d = ω5
2ω

2
2

ω2
2 − ω2

2

BF (ω2) − ω2
2ω

5
2

ω2
2 − ω2

2

BF (ω2). (B15)

Now we can represent the contribution to the ω → τ

transform from the third interval as follows:

AF (τ ) = AF (ω2)CF
ω2

(τ ) + AF (ω2)CF
ω2

(τ ) (B16)

and

BF (τ ) = BF (ω2)SF
ω2

(τ ) + BF (ω2)SF
ω2

(τ ), (B17)

with

CF
ω2

(τ ) = 4

β

{
− ω6

2

ω2
2 − ω2

2

∑
ω>ω2

cos(ωτ )

ω4

+ ω6
2ω

2
2

ω2
2 − ω2

2

∑
ω>ω2

cos(ωτ )

ω6

}
, (B18)

CF
ω2

(τ ) = 4

β

{
ω6

2

ω2
2 − ω2

2

∑
ω>ω2

cos(ωτ )

ω4

− ω2
2ω

6
2

ω2
2 − ω2

2

∑
ω>ω2

cos(ωτ )

ω6

}
, (B19)

SF
ω2

(τ ) = 4

β

{
− ω5

2

ω2
2 − ω2

2

∑
ω>ω2

sin(ωτ )

ω3

+ ω5
2ω

2
2

ω2
2 − ω2

2

∑
ω>ω2

sin(ωτ )

ω5

}
, (B20)

SF
ω2

(τ ) = 4

β

{
ω5

2

ω2
2 − ω2

2

∑
ω>ω2

sin(ωτ )

ω3

− ω2
2ω

5
2

ω2
2 − ω2

2

∑
ω>ω2

sin(ωτ )

ω5

}
. (B21)
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The infinite summations in the above formulas can con-
veniently be handled with the use of Bernoulli polynomials
Bn(x) and the known identities

∞∑
k=1

cos(kx)

k2n
= (−1)n−1 (2π )2n

2(2n)!
B2n

(
x

2π

)
, (B22)

which holds for n = 1,2,3, . . . ; 0 � x � 2π , and
∞∑

k=1

sin(kx)

k2n−1
= (−1)n

(2π )2n−1

2(2n − 1)!
B2n−1

(
x

2π

)
, (B23)

which holds for 0 < x < 2π , if n = 1 and for 0 � x � 2π if
n > 1.

For our immediate purposes, we apply Eqs. (B22) and (B23)
in the following way. First, we obtain the auxiliary identity

∞∑
ω>0

cos(ωτ )

ω2n

=
∞∑

k=0

cos[(2k + 1)πτ/β]

[(2k + 1)π/β]2n

=
(

β

π

)2n
{ ∞∑

k=1

cos(kπτ/β)

k2n
−

∞∑
k=1

cos(2kπτ/β)

(2k)2n

}

=
(

β

π

)2n

(−1)n−1 (2π )2n

2(2n)!

{
B2n

(
τ

2β

)
− 1

22n
B2n

(
τ

β

)}
,

(B24)

and similarly,
∞∑

ω>0

sin(ωτ )

ω2n−1
=

(
β

π

)2n−1

(−1)n
(2π )2n−1

2(2n − 1)!

×
{
B2n−1

(
τ

2β

)
− 1

22n−1
B2n−1

(
τ

β

)}
.

(B25)

Second, to get our asymptotic summations in formulas
(B18)–(B21) we precalculate the sums

∑�ω2
ω>0

cos(ωτ )
ω2n and∑�ω2

ω>0
sin(ωτ )
ω2n−1 and subtract them from Eqs. (B24) and (B25),

correspondingly. However, we should point out that the
subtraction often involves two almost identical numbers which
potentially can deteriorate the accuracy, especially for large
n. So we use quadruple arithmetical accuracy (Real*16) to
perform these particular sums.

In practical calculations we combine the contributions from
intervals (i), (ii), and (iii) into one matrix multiplication, as can
be understood from the formulas (B2) and (B3), (B6) and (B7),
and (B16) and (B17).

For the case of bosons the corresponding formulas can be
written as follows (all notations are introduced in complete
analogy to the fermionic case).

For the first interval,

AB(τ ) = 4

β

{
1

2
AB(ν = 0) +

�ν1∑
ν>0

cos(ντ )AB(ν)

}
, (B26)

BB(τ ) = 4

β

�ν1∑
ν>0

sin(ντ )BB(ν). (B27)

For the second interval,

AB(τ ) =
nν∑

k=1

AB(νk)CB
k (τ ) (B28)

and

BB(τ ) =
nν∑

k=1

BB(νk)SB
k (τ ), (B29)

with precalculated transformation matrices CB
k (τ ) and SB

k (τ ):

CB
k (τ ) = 4

β

nν−1∑
l=0

Clk

�ν2∑
ν>ν1

cos(ντ )Tl[x(ν)], (B30)

SB
k (τ ) = 4

β

nν−1∑
l=0

Clk

�ν2∑
ν>ν1

sin(ντ )Tl[x(ν)]. (B31)

For the third interval (here we consider the function with
asymptotic behavior AB(ν) = a

ν2 + b
ν4 and BB(ν) = c

ν3 + d
ν5 ),

the corresponding contribution is

AB(τ ) = AB(ν2)CB
ν2

(τ ) + AB(ν2)CB
ν2

(τ ) (B32)

and

BB(τ ) = BB(ν2)SB
ν2

(τ ) + BB(ν2)SB
ν2

(τ ), (B33)

where

CB
ν2

(τ ) = 4

β

{
− ν4

2

ν2
2 − ν2

2

∑
ν>ν2

cos(ντ )

ν2

+ ν4
2ν

2
2

ν2
2 − ν2

2

∑
ν>ν2

cos(ντ )

ν4

}
, (B34)

CB
ν2

(τ ) = 4

β

{
ν4

2

ν2
2 − ν2

2

∑
ν>ν2

cos(ντ )

ν2

− ν2
2ν

4
2

ν2
2 − ν2

2

∑
ν>ν2

cos(ντ )

ν4

}
, (B35)

SB
ν2

(τ ) = 4

β

{
− ν5

2

ν2
2 − ν2

2

∑
ν>ν2

sin(ντ )

ν3

+ ν5
2ν

2
2

ν2
2 − ν2

2

∑
ν>ν2

sin(ντ )

ν5

}
, (B36)

SB
ν2

(τ ) = 4

β

{
ν5

2

ν2
2 − ν2

2

∑
ν>ν2

sin(ντ )

ν3

− ν2
2ν

5
2

ν2
2 − ν2

2

∑
ν>ν2

sin(ντ )

ν5

}
. (B37)

The asymptotic summations for bosons are performed with
slightly different formulas, which can be written as follows:

∞∑
ν>ν2

cos(ντ )

ν2n
=

(
β

2π

)2n
{

(−1)n−1 (2π )2n

2(2n)!
B2n

(
τ

β

)

−
k2∑

k=1

cos(2kπτ/β)

k2n

}
(B38)
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and

∞∑
ν>ν2

sin(ντ )

ν2n−1
=

(
β

2π

)2n−1
{

(−1)n
(2π )2n−1

2(2n − 1)!
B2n−1

(
τ

β

)

−
k2∑

k=1

sin(2kπτ/β)

k2n−1

}
, (B39)

with ν2 = 2πk2/β.
At this point we have to make one important comment

about τ → ω(ν) transformations and vice versa. In order to
utilize the full power of Chebyshev’s interpolation we must
use special nodes (zeroes of Chebyshev’s polynomial of a
certain degree) where we keep the original information. These
points are generally located between the actual Matsubara’s
frequencies. This fact poses no problem when we interpolate
functions or transform them from frequency to Matsubara’s
time. However, the reverse transformation [τ → ω(ν)] as
described in the previous section is valid only for exact
Matsubara’s frequencies. We perform it in two steps. First, we
use the formulas of the previous section to get the functions
on a special set of auxiliary Matsubara’s frequencies. Second,
we use six-point Lagrange’s interpolation to get the functions
at our special interpolation nodes. The number of auxiliary
Matsubara’s frequencies is usually only twice larger than
the number of the frequencies where we actually store the
information. This is because at lower frequencies the same set
of auxiliary points can be used to interpolate the function at
a few nodes. Only at large ω(ν) values every node requires
six independent auxiliary Matsubara’s frequencies for an
interpolation.

APPENDIX C: TOTAL (INTERNAL) ENERGY
CALCULATION

We express the internal energy as a sum of a few
contributions,

Etot = Tcore + Tval + Enn + Een + EH
ee + Ex

core

+Ex
val + Ec

val, (C1)

where we have introduced the kinetic energy of core elec-
trons Tcore, the kinetic energy of valence electrons Tval, the
nuclear-nuclear energy Enn, the electron-nuclear energy Een,
the electron-electron electrostatic (Hartree) energy EH

ee , the
exchange energy of core electrons Ex

core, the exchange energy
of valence electrons Ex

val, and correlation energy which in our
approximation comes only from valence electrons Ec

val.

For the kinetic energy terms we begin with a standard
expression

T =
∫

dr lim
r′→r

∑
ss ′

[
cαp + (β − I )

c2

2

]
s ′s

×Gval(sr,s ′r′; 0−). (C2)

Expanding the valence Green’s function into the band states,
Eq. (C2) for the valence contribution can be transformed into
the corresponding sum over the one-electron band states,

Tval = −
∑

k

∑
λ

εk
λG

k
λλ(β)

+
∑

k

∑
λλ′

Gk
λλ′(β)

{
V

H,k
λ′λ + 


x,k
λ′λ

}
, (C3)

where V
H,k
λλ′ and 


x,k
λλ′ are the matrix elements of the Hartree

potential and the exchange energy with respect to the band
states.

The core kinetic energy is obtained after replacing Gk
λλ′(β)

with −δλλ′ and representing the band index as a composite
index tn

Tcore =
∑

t

∑
n∈t

{
εt
n − V H,t

n − 
x,t
n

}
, (C4)

where V H,t
n and 
x,t

n are the matrix elements of the Hartree
potential and the exchange energy with respect to the core
orbitals (only diagonal elements contribute because the core
Green’s function is diagonal in our implementation).

We have three divergent terms in Eq. (C1): the electron-
nuclear energy, the nuclear-nuclear, and the Hartree part of the
electron-electron energy. Their sum, however, is convergent
and reads as follows:

Enn + Een + EH
ee = 1

2

∫
ρ(r)[VNucl(r) + VH (r)]dr

− 1

2

∑
t

Zt [V
′

Nucl(r = t) + VH (r = t)],

(C5)

where VH (r) is the Hartree potential, VNucl(r) is the electro-
static nuclear potential, and V ′

Nucl(r = t) is the electrostatic
nuclear potential measured at t excluding nuclear-nuclear
self-interaction.

The core exchange energy in Eq. (C1) can be represented
as a sum over individual core levels,

Ex
core = 1

2

∑
t

∑
n∈t


x,t
n , (C6)

with


x,t
n = 2

∑
ηη′

{
−

∑
n′∈t

〈
�t

n(ηr)
∣∣�t

n′ (ηr)�
†,t
n′ (η′r′)

|r − r′|
∣∣�t

n(η′r′)
〉
�t

+
∑

k

∑
λλ′

Gk
λλ′(β)

〈
�t

n(ηr)
∣∣�k

λ (ηr)�
†,k
λ′ (η′r′)

|r − r′|
∣∣�t

n(η′r′)
〉
�t

}
. (C7)

The valence exchange energy in Eq. (C1) can be represented as the following convolution of valence exchange self-energy and
full Green’s function:

Ex
val = −1

2

∑
k

∑
λλ′



x,k
λλ′ G

k
λ′λ(β), (C8)

with Eq. (56) showing how to calculate 

x,k
λλ′ .
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The valence correlation energy in Eq. (C1) can be repre-
sented as a convolution of the valence correlation self-energy
and the full Green’s function:

Ec
val = −1

2

∑
k

∑
λλ′

∫



c,k
λλ′ (β − τ )Gk

λ′λ(τ )dτ. (C9)

APPENDIX D: CALCULATIONS OF
SPECTRAL FUNCTIONS

We will use the term DOS and spectral function in-
terchangeably for both single-particle and many-body ap-
proaches. The standard definition for this function (resolved
in kλ representation) is given by

Ak
λ(ω) = − 1

π
ImG

R,k
λλ (ω), (D1)

where ω is a real frequency and GR is the retarded Green’s
function. An integrated and summed-up function can also be
defined

A(ω) =
∑

λ

∫
dkAk

λ(ω). (D2)

There are two issues that we address below. First, we
perform our GW calculations on an imaginary axis and have to
analytically continue the Green function to a real axis. Second,
it is very time consuming to use a large number of k points. As
a result, there is a dependency on how accurately we perform k
integration in Eq. (D2). We have implemented several schemes
for analytical continuation and k integration in order to assess
the accuracy of the calculated DOS.

In DFT or the Hartree–Fock calculation we can write

A(ω) = − 1

π

∑
λ

∫
dkIm

1

ω + iδ + μ − εk
λ

, (D3)

where εk
λ are LDA(HF) one-electron energies and we have

added a small smearing parameter δ. In this case we can apply
the tetrahedron method for the k integration in Eq. (D3) or
replace it with a simple summation,

A(ω) = − 1

πNk

∑
λ

∑
k

Im
1

ω + iδ + μ − εk
λ

, (D4)

where Nk is the number of points in the Brillouin zone.
In the QP-II or QP-III calculations we have access to the

quasiparticle energies Ek
i . We again can apply the tetrahedron

method or simple summation. Within QP-III, the correspond-
ing formula for the summation is given by

A(ω) = − 1

πNk

∑
i

∑
k

Im

∑
λ(Z1/2Q)k

λi(Q
†Z1/2)k

iλ

ω + iδ + μ − Ek
i

(D5)

and

A(ω) = − 1

πNk

∑
i

∑
k

Im

∑
λ Qk

λiQ
†k
iλ

ω + iδ + μ − Ek
i

, (D6)

for QP-II.
When we perform full GW calculation we have to analyti-

cally continue the correlated part of the self-energy 
c
λλ′(k; ω)
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FIG. 19. (Color online) Comparison of LDA DOS of Am calcu-
lated with tetrahedron’s method and with simple k point summation
for different choices of imaginary shift δ (on the figure they marked
by numbers in Ry).

in order to reconstruct retarded Green’s function on the real
axis,

G
R,−1
λλ′ (k; ω) = (

ω + iδ + μ − εk
λ

)
δλλ′ − 


R,c
λλ′ (k; ω). (D7)

For the analytical continuation we can use three different
algorithms. First, we apply the QP-III approximation with-
out self-consistency. In this case the effective one-electron
energies become available and the tetrahedron method or the
summation can be sued to calculated DOS. Second, we use
rational approximation for the self-energy on the imaginary
axis (we omit indexes here for simplicity),


(iω) =
∑N

n=0 an(iω)n∑N
n=0 bn(iω)n + (iω)N+1

, (D8)

which can be used to reconstruct the function at real frequen-
cies. In Eq. (D8) N is usually taken to be 4–8 and we use
all Matsubara’s frequencies where the self-energy is known.
In this way, we get a proper asymptotic behavior at large
frequencies but a low-frequency behavior is often not well
reproduced.
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FIG. 20. (Color online) Comparison of DOS of Am calculated
with three different variants of analytical continuation: Rational
approximation (RA), continued fractions (CF), and linear approxi-
mation (QP-III). In all cases δ = 0.005 Ry.
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Third, the analytical continuation is based on continued
fraction expansion,70 where the self-energy is approximated
by the following expression:


(ω) = a0

1+
a1(ω − iω0)

1+ · · · aM (ω − iωM )

1
, (D9)

where the coefficients an are found by recurrent relations
based on the values of the self-energy at M + 1 imaginary
frequencies. We use the 40–80 lowest Matsubara’s frequencies
for this purpose. By construction this approach allows us to get
an accurate representation at low energies but poor asymptotic
behavior. However, we consider it as the most reliable.

After we obtain the self-energy on the real axis we calculate
retarded Green’s function (D7) and DOS by the following
formula:

A(ω) = − 1

πNk

∑
kλ

ImG
R,k
λλ (ω). (D10)

In Fig. 19 we have plotted the DOS of Am obtained in LDA
using the tetrahedron method and the summation method (D4)
with different values of smearing parameter δ. As is seen, using
δ = 0.005 Ry we are able to reproduce the most important
features sufficiently well. We therefore used this δ to calculate
all DOS in the main text.

In Fig. 20 we show GW DOS for Am calculated with
Eq. (D10) but using three different choices for the analyt-
ical continuation: QP-III, rational approximation (D8), and
continued fraction expansion after Eq. (D9). We can see
that all three methods give a similar result, but we prefer
continued fractions because it looks smoother and generally
better justified for low energies. Therefore, in the main text we
always use the summation (D4) for LDA and QP-II, as well
as Eq. (D10) for the GW method. For all GW calculations
we use continued fractions as the analytical continuation
method.
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