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Interpolative approach for solving the Anderson impurity model
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A rational representation for the self-energy is explored to interpolate the solution of the Anderson impurity
model in the general orbitally degenerate case. Several constraints such as Friedel’'s sum rule and the positions
of the Hubbard bands, as well as the value of the quasiparticle residue, are used to establish the equations for
the coefficients of the interpolation. We employ two fast techniques, the slave-boson mean-field and the
Hubbard | approximations, to determine the functional dependence of the coefficients on doping, degeneracy,
and the strength of the interaction. The obtained spectral functions and self-energies are in good agreement
with the results of the numerically exact quantum Monte Carlo method.
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I. INTRODUCTION not with multiplet interactions. Also its applicability so far
There has been recent progress in understanding the phy22S been limited either to a small number of orbitals or to
ics of strongly correlated electronic systems and their elecunPhysically large temperatures due to its computational
tronic structure near a localization-delocalization transitionC,OSt' Recently Some progress has been_«’ilg:hleved using Impu-
through the development of dynamical mean-field theory/ty SOIVers that improve upon the NCA*but it has not
(DMFT).1 Merging this computationally tractable many- been possible to retrieve Fermi I|q.U|d beha\{|or at very low
body technique with electronic structure calculations oftemperatures with these methods in the orbitally degenerate

strongly correlated solids based on the Iocal-densitfai\e' . li itv sol h t vet being desianed
approximatiod (LDA) is promising due to its simplicity and S universal impurity SOlvers have not yet being designe

: o e need to explore other possibilities, and this paper pro-
g?fgﬁingtsjnm rt:ggeb%n?hgngigg&'ﬁ :Ir\nczllhsdlﬁt Ft)rr]eesggt/’er:;ucfpgoses an interpolative approach for the self-energy in the
ment of a L%A+DMFT method the LDA++gapproacH P general multiorbital situation. We stress that this is not an

. ' . ' attempt to develop an alternative method for solving the im-
combinedGW and DMFT theory, and spectral density func- P P g

. o X purity problem, but a follow-up of the ideology of LDA
tional theory as well as applications to various systems Sucrlheory where approximations were designed by analytical

as La ,SKTiOs," V,05,° Fe and Nit Cel? Put2transition  fits20tg the quantum Monte Carlo simulations for a homoge-
metal OXide§,3 and many others. For a reVieW, see Ref. 14. neous electron ggé_Numerica"y very expensive QMC cal-

Such ab initio DMFT-based self-consistent electronic culations for the impurity model display smooth self-
structure algorithms should be able to explore the wholenergies at imaginary frequencies for a wide range of
space of parameters where neither doping nor even the diteractions and dopings, and it is therefore tempting to de-
generacy itself is kept fixed, as different states may appeagign such an interpolation. We also keep in mind that for
close to the Fermi level during iterations toward self-many applications a high precision in reproducing the self-
consistency. This is crucial if one would like to calculate energies may not be required. One such application is, for
properties of realistic solid state systems where the bandexample, the calculation of the total enet§y:3which, as is
width and the strength of the interaction are not known at thevell known from LDA-based experience, may not be so sen-
beginning. It is very different from the ideology of model sitive to the details of the one-electron spectra. As a result,
Hamiltonians where the input set of parameters defines thee expect that even crude evaluations of the self-energy
regime of correlations, and the corresponding many-bodghapes on the imaginary axis may be sufficient for solving
techniques may be applied afterward. Realistic DMFT simumany realistic total energy problems, some of which have
lations of material properties require fast scans of the entirappeared already-*3Another point is the computational ef-
parameter space to determine the interaction for a given dogiciency and numerical stability. Obtaining fully self-
ing, degeneracy, and bandwidth via the solution of the geneonsistent loops with respect to charge densitiaad other
eral multiorbital Anderson impurity modé€AIM ).*®> Unfor-  spectral functions requires many iterations toward conver-
tunately, present approaches based on either the noncrossiggncy, which may not need very accurate frequency resolu-
approximation(NCA) or iterative perturbation theorffPT)  tion at every step. However, the procedure that solves the
are unable to provide the solution to that problem due to thémpurity model should smoothly connect various regions of
limited number of regimes where these methods can béhe parameter space. This is a crucial point if one would like
applied! The quantum Monte CarlQMC) techniqué'®is  to have a numerically stable algorithm and our interpola-
very accurate and can cope with multiorbital situations butional approach ideally solves this problem.
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In calculations of properties such as the low-energy spec- Il INTERPOLATIVE APPROACH
troscopy and especially transport, a more delicate distribu- . i )
tion of spectral weight takes place at low energies, and the 10 be specific, we concentrate on the Anderson impurity
imaginary part of the analytically continued self-energy Hamiltonian
needs to be computed with greater precision. Here we expect
that our obtained spectral functions should be used with care. N 1 N
Also, in a few clearly distinct regimes, such as, e.g., very H=eX fif,+ EU > nLnfB+ > ExaChoCha
near the Mott transition, the behavior may be much more a=1 a#p ka
complicated and more difficult to interpolate. For the cases * + +
mentioned above, extensions of the interpolative method * ?‘ [Valk)faChatt + Va(K)Ciafal, @)
should be implemented, and this is beyond the scope of the ¢
pre\fv?ané;;/]();léhieve a fast interpolative algorithm for the Self_descnbmg_the Interaction OT the Impurity levalwith t_)ands
energy by utilizing a rational representation. The coefficientsOf conduction eIt_actronEka via h_ybr|d|zat|0|jva(k_). U's the
in this interpolation can be found by forcing the self-energycomofnb repulsion between different orbitals in theand,
to obey several limits and constraints. For example, if thetNd« is the orbital-spin index running from 1 . Inspired
infinite-frequency(Hartree-Fock limit, the positions of the DY the success of the iterative perturbation thédryorder
Hubbard bandS, the |0W_frequency mass renorma”z{ﬂjon to solve the Anderson Impurlty model in the general multi-
the mean number of particles as well as the value of the orbital case, we use a rational interpolative formula for the
self-energy at zero frequen&(0) are known from indepen- self-energy. This can be encoded into the form
dent calculation, the set of interpolating coefficients is well

defined. In this work, we explore the slave-boson mean-field M M

(SBMF) approacf?-25and the Hubbard | approximatighto > ane™ [M[ew-2817
determine the functional dependence of these coefficients S(w) = m=0 :E(Oo)mﬂ 2
upon doping, degeneracy, and the strength of the interaction M M '

U. We verify all trends produced by this interpolative proce- > byo™ [T[w-P3

dure in the regimes of weak, intermediate, and strong inter- m=0 m=1

actions and at various doping conditions. These trends are
compared with known analytical limits as well as againstThe coefficients,, b, or, alternatively, the po|e|§(nf), zeros

calculations using the quantum Monte Carlo method. Alsozg[ and 3(«) in this equation are to be determined. The

compared with QMC results are the self-energies and spegsym () can be also viewed as a continued fraction expan-
tral functions on both imaginary and real axes for selecte

. . ion but this representation will not be necessary for the de-
values of the doping. The results indicate that the SBM ioti fth P thod y
approach can predict such parameters of interpolation asscnp ion of the method. -
Our basic assumption is that only a clearly distinct set of

n, 2(0), andz with a good accuracy while the Hubbard | . . S
method fails in a number of regimes. However, the func_poles in the rational representati(®) is necessary to repro-
tional form of the atomic Green’s function which appearsduce the overal! frequen_cy dependenqe of the self-energy.
within the Hubbard | approximation can be used to de’ter-lz)(tfer“c."\’e experience gameq ffom solving thg Hubba_rd and
mine the positions of atomic satellites, which helps to im_perlodlc.Anderson mpdels W,'th'n DMFT at various ratios of
pose additional constraints on our procedure. the on-site Coulomb interactids to the bandwidtiww shows
Given the extraordinary computational speed of this apihe appearance of lower and upper Hubbard bands as well as
proach we generally find a very satisfactory accuracy ir® renormalized quasiparticle peak in the spectrum of one-
comparisons with the numerically more accurate QMC cal€lectron excitations.
culations. If an increased accuracy is desired our method can It is clear that the Hubbard bands are damped atomic ex-
be naturally extended by imposing more constraints and bgitations and to the lowest-order approximation appear as the
imp|emen[ing more refined impurity solvers other than thepOSitionS of the poIeS of the atomic Green’s function. In the
ones explored in this work. SU(N) symmetry case which is described by the Hamiltonian
The paper is organized as follows. In Sec. Il we discus$l), these energies are denoted by the number of electrons
rational interpolation for the self-energy and list the con-occupying impurity level, i.e.En:efn+%Un(n—1), and the
straints. In Sec. lll we discuss methods for solving theatomic Green’s function takes the simple functional form
Anderson impurity model such as the slave-boson mean-field

and Hubbard | approximations, which can be used to find N-1 CNYUX, + Xy)
these constraints. A brief survey of the QMC method used to Gayl(w) = > ﬁ (3)
benchmark our algorithm is also given. We present numerical n=0 @M T En1 T En

comparisons of the SBMF and Hubbard | techniques against

the QMC simulations for such quantities as the quasiparticldvhereX;, are the probabilities to find an atom in a configu-
residue and multiple occupancies. In Sec. IV we report théation with n electrons while the combinatorial facta@)™
results of the interpolative method and compare the obtained(N-1)!/n!(N-n-1)! appears due to the equivalence of all
spectral functions with the QMC results. In Sec. V we dis-states withn electrons in SUN).

cuss possible improvements of the algorithm. Section VI is We can represent the atomic Green’s functi@h using
the conclusion. the rational representatidi), i.e.,
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N-1 We are now ready to list all constraints of our interpola-
[M[w-2©] tive scheme. To fix the unknown coefficients
_ X, P&, p® PO andz® in Eq.(6) and to write down the
Gallw) = : (4 M1 t2 0 Tn o - :
© linear set of equations for the coefficierds,b,, in Eq. (2)
[T[w-PP] we use the following set of conditions.
n=1 (a) Hartree-Fock valueX(«). In the limit w— o the

where P'® are allN atomic poles, whilez® denoteN-1  Self-energy takes its Hartree-Fock form

zeros withN being the total degeneracy. The centers of the () = U(N - 1)(n). 7)
Hubbard bands are thus located at the atomic excitations _ _
PEG):En_En—l_szf_:U/—U(n_1)- Using the standard ex- The mean level occgpan«iyl) is defined as thg sum over all
pression for the atomic Green’s functi@®,(w)=1/[w+x  Matsubara frequencies for the Green’s function, i.e.,
-&-24(w)], we arrive at the desired representation for the

— H j w0t

atomic self-energy, (m = T% Grliw)e™ , (8)

N
where
IT[w-P) .
n=1
Sw)=wtu-e-yg (5) Gi(w) = ——— ) S (9)

H (- Z(G)] W+ U= € w w
n=1 " defines the impurity Green function andA(w)

. . . . . =3V, (K)|?/ (w—Ey,) is the hybridization functiofiwhich is
Using this functional form for finiteA(w) modifies the the same for allx within SU(N)].

positions of poles and zeros via recalculating the probabili- .
ties X, which is equivalent to the famous Hubbard | approxi- (b) Zero-frgquency vaIuQ(O). The so-called Friedel .
sum rule establishes the relation between the total density

mation (discussed in more detail in the next secjion d th | fth I f
We now concentrate on the description of the quasipartif’ln the real part of the self-energy at zero frequency,

cle peak which is present in the metallic state of the system. 1 1 €+ Re3(i0") + ReA(i0%)

For this an extra pole and zero have to be added in(&qg. (ny=—+ —arctar( — )

To see this, let us consider the Hubbard model for theéNgU 2 ImA(i0")

case where the local Green’s function can be written by the +ie gz IA(2)

Hilbert transformGy(w) =H[w+ u— & —2(w)]. If self-energy +f —Gy(2) " (10)
lifetime effects are ignored, the local spectral function be- “iee 27T J

comesN;(w)=D[w+ u—€—-ReX(w)] whereD is the nonin-
teracting density of states. The peaks of the spectral fun
tions thus appear as zeros in Ef) and in order to add the
guasiparticle peak, one needs to add one extra (@&Emoted
hereafter asX) to the numerator in Eq(5). To make the
self-energy finite ato— o one has to also add one more pole JReX
(denoted hereafter al?,(lz)) which should appear in the de- o
nominator of Eq.(5). Furthermore, frequently the Hartree-

Fock value for the self-energy can be computed separatelyormally, constraintgb) and (c) hold for zero temperature
and it is desirable to have a parameter in the functional forn®nly but we expect no significant deviations in many regions
(5) which will allow us to fix 3 (). An obvious candidate to Of parameters as long as we stay at low e_nough_te_mperatures.
be changed is the self-energy pole in E5).that is closest to The behavior may be more complicated in the vicinity of the

zero frequency. Let us denote this parameterﬂg) and Mot transitio.n.?7 _ ,
rewrite the denominator of Eq.5) as (a)—P(f))(w (d) Positions of Hubbard band#\s we discussed, in

-P‘f))H#;f w—ZE]G)] where the product is now extended over order that the self-energy obeys the atomic limit and places

. . ) the centers of the Hubbard bands at the positions of the
all zeros of the atomic Green’s functions except the one clos;

) =) atomic excitations, we demand that
est to zero, and two extra pollé’é2 andP;™ can control the
width of the quasiparticle peak ark{«). Thus, we arrive at PO+ u-=3(P9). (12)
the functional form for the self-energy,

. (c) Quasiparticle mass renormalization value
dReX/dw|,-o. The slope of the self-energy at zero fre-
quency controls the quasiparticle residuasing the follow-
ing relationship:

=1-71 (12)
w=0

This condition fixes almost all self-energy zerZS%) in EqQ.

N (2) to the poIesPEG). However, it alone does not ensure that
(@=X)]][w- P the weight is correctly distributed among the Hubbard bands
S(w)= 0+ u-€- n=1 and that the very distant Hubbard bands disappear. For this
N-2 ’ to occur, distant poles of the Green’s function have to be
(=P (=P [w-2°] canceled out by nearby zeros of the Green’s function. It is
n=1 clear that each pol@ff) far from the Fermi level has to be

(6) accompanied by a nearby zeZﬁ” in order for the weight of
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the pole to be small. Thus, the self-energy has poles at thepectral weight over all existing Hubbard bands.

positions of Green’s function zeros which can be encoded In the limit whenU—0 the self-energy automatically
into the constraint translates to the noninteracting one. The atomic poles get
close to each other but, most importantly, their spectral

(GH1-1 =
[2(Za)]=0. (13) weight goes rapidly to zero as it gets accumulated within the
We want to keep this property of the self-energy for finite quasiparticle band. _ N
A(w) and thus demand that the self-energy divergyelsen In the Mott insulating regime, the conditior) and (c)

lifetime effects are kept, it only reaches a local maximyan ~ drop out while all polesP!® and zeroz® can be used to
the zeros of the functional forit8) of G,(w). Note that the determine the interpolatiorc; However, in this regime it does
relationship(13) holds (approximately for frequencyw  not matter whether one dl‘n closest taw=0 is dropped out
larger than the renormalized bandwidtW. Therefore the or kept, since we can always replace this information by
information about on@ff‘) that lies close tan=0 is omit-  information abou®(«). Therefore the Mott transition can be
ted and replaced by the information abai(t<), (0), and  studied without changing the constraints.
zas is done by separatinﬂf) and P in the denominator We thus see that in the insulating case the self-energy
of Eq. (6). z correctly reproduces the well-known result of the Hubbard |
We can now write down a set of linear equations for allMethod where the Green's function is computed after(E.
unknown coefficients in the expressit#h. There is a total of ~With the atomic self-energy. If the lifetime effects are com-
2M+2 of parameters,, and b,,, m=0, M, where we can Puted, the parameteﬁél ) andZE] ) become complex and the

always seb,=1. The conditionga), (b), and(c) give Hubbard bands will acquire an additional bandwidth. This
effect is evident from the simulations using various pertur-
ay=2(0), (14) bative or QMC impurity solvers and can be naturally incor-
porated into the interpolative formuldg) or (6). However,
bp=1, (15 in the practical implementation below we will omit it for
illustrative purposes.
a,->(0)b;=1-71, (16) Let us now discuss the quality of interpolation from the
perspective of the high-frequency behavior for the self-
ay — by2(e)=0. (17) energy. The latter can be viewddas an expansion in terms

. . of the moment™, i.e.,
According to condition(d) we can use alN poles P;G) and

N-2 zerosz®. The zeraz'® closest taw=0 is dropped out. ©osm

(There are small discontinuities that arise when the closest (w— )= o

and next-closest zeros to the origin change their role. How- m=0

ever, we found this effect to be very small, which will be  Most important for us is to look at the highest moments
evident from our plots presented in Sec. IV) Ahis brings  which are given by the Hartree-Fock value Ef). involving

additionally N-2 equations for the coefficients and makesthe single-occupancy matrix), as well as the first moment
M=N as the degree of the rational interpolation, which is

written below: S =[(N=1)(N-2)(nn) + (N = 1)(n) = (N - D)Xn)*]U?,
N N (20)
G)m _ (p(G) _ (G)m —
mE:O 8l Py 1™ = (PR + Ef)mzzo bl Pr1"=0 containing a double-occupancy matfpm). We see that the
interpolation in part relies on the accuracy in computing mul-
forn=1,...,N, (18 tiple occupancies which are functionals of both the atomic

excitations and the hybridization function. In this regard, us-
ing the exact atomic Green’s function to find the deéﬁg)
and zerossz) as part of the constrained procedure may not
be as accurate since it would assume the ussarhicmul-
Note that whileM may be rather large, the actual numbertiple occupancies which dmot carry information about
of poles contributing to the self-energy behavior is indeedA(w). On the other hand, we can also use only a functional
very small. We can directly see this from H§) which uses form of the atomic Green’s function where the multiple oc-
all N poIengG) satisfying Eq.(12) and useN-2 zerossz) cupancies are computed in a more rigorous manner. In the
directly related taN—-2 poIesPﬁf). Clearly, when the spectral next section we will show how this can be implemented
weight of the atomic excitation becomes small, the correusing the SBMF multiple occupancies which will be found to
spondingPﬁG) becomes close tﬁff) and cancellation occurs. be in better agreement with the quantum Monte Carlo data.
Therefore in realistic situations when only the upper and Note that the moment&™ themselves can be used in
lower Hubbard bands have significant spectral weight alongstablishing the constraints for interpolation coefficients.
with the quasiparticle peak, the actual degree of the polynoThis would involve independent evaluations of
mial expansion is either 2 or 3. However, it is advantageousn, (nm, (nNnn), etc., as well as various integrals involving
numerically and cheap computationally to keep all poles andhe hybridization functiom\(w). However, we may run into
zeros in Eq(6) because the formula automatically distributesan ill-defined numerical problem since high-frequency infor-

N
> b [Z2®1"=0 forn=1,..N-2. (19)

m=0
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mation will be used to extract the low-frequency behavior.However, it is improvable by performing fluctuations around
Therefore, it is more advantageous numerically to use soméne saddle point. This approach is accurate as it has been
poles and zeros d&?(w) as given by conditiorid) above. shown recently to give the exact critical value Wfin the

We thus see that the interpolational scheme is definetirge-degeneracy limit at half filling
completely once a prescription for obtaining parameters such The main idea is to rewrite atomic states consisting of
as3(0), z and(n) as well as the poleB'® and zerog'® is  electrons|yy,..., y), 0=n<N, with the help of a set of
given. For this purpose we will test two commonly usedslave bosongy* . In the following, we assume the
methods: the SBMF method due to Gutzwifeas described SU(N) symmetric case, i.e., equivalence between different
by Kotliar and Ruckenstefd and the well-known Hubbard | statesyi, ..., y,) for fixed n. The formulas corresponding to
approximatior?® We compare these results against more acthe more general crystal-field case are given in the Appendix.
curate but computationally demanding quantum Monte Carldhe creation operator of the physical electron is expressed
calculations and establish the procedure to extract all necedia slave particles in the standard mantfein order to re-
sary parameters. cover the correct noninteracting limit at the mean-field level,

Note that once the constraints such mare computed the Bose fieldsy;, can be considered as classical values
from a given approximate method, some of the quantitie§ound from minimizing a Lagrangiab{,} corresponding to
such as the total number of partickes and the value of the the Hamiltonian(1). Two Lagrange multipliers\ and A
self-energy at zero frequency,(0), can be computed fully shouI(_i be introduced_ in this way, which correspond to the
self-consistently. They can be compared with their non-selffollowing two constraints:
consistent values. If the approximate scheme already pro- N
vides a good approximation f@n) and satisfies the Friedel > Cwﬁ: 1, (21)
sum rule, the self-consistency check can be avoided, hence n=0
accelerating the calculation. Indeed we found that inclusion

of the self-consistency requirement improves the results only N L
marginally except when we are in close vicinity to the Mott > nCYyZ=TNY, Gyliw)e*® =T, (22)
transition, but here we do not expect that our simple interpo- n=0 iw

lative algorithm is;]vedry ac_cu_rate.f h . hod The numberswzn are similar to the probabilitieX,, dis-
We now give the description of the approximate methods, sseq in connection with the formula for the atomic Green’s
for solving the impurity model and then present the COMParix,nction (3). We thus see the physical meaning of the first

sons of our interpolative procedure with the QMC calcula-¢qnsiraint, which is that the sum of probabilities of finding

tions. the atom in any state is equal to 1, and the second constraint
gives the mean number of electrons coinciding with that
lll. METHODS FOR SOLVING IMPURITY MODEL found from Gy(w)=[w-\-b?A(iw)]"%. The combinatorial
A. Quantum Monte Carlo method factor CY=N!/n!(N-n)! comes due to the assumed equiva-

. lence of all states witim electrons.
maznisgyirgtu pr::arm(;;;(taivg Zg%r(r:;itﬁ?: elifh:r Fhoewi(ral?;url(':\?t?odq Minimization of L{yn} with respect toyy leads us to the
s . ollowing set of equations to determine the quantities
U or the bandwidtiW. In the QMC method one introduces a g d q e

Hubbard-Stratonovich field and averages over it using Monte [E_ + A — n\]¢, + nbT>, Aiw)Gy(i )[LRff-1 + bL?]

Carlo sampling. This is a controlled approximation using a i

different expansion parameter, the size of the mesh for the ) i 5

imaginary time discretization. Unfortunately it is computa- +(N- n)bTZ Aiw)Gy(i )[R + LR.1] =0,
tionally very expensive as the number of time slices and the e

number of Hubbard-Stratonovich fields increases. Also the (23)
method works only on the imaginary axis while analytical hereb:RLE,ﬁLle_'llt/xnzpn_l determines the mass renormal-

continuation is less accurate and has to be done with gre ation, and the coefficientsz(l—E,ﬁ‘_lcﬁ_‘llwzn)‘l/z, R=(1

care. An extensive description of this method can be found in 1 v o .
Ref. 1. We will use this method to benchmark our calcula—_EE:OCE ") 12 are normal!zanon constants as in Refs. 23
tions using approximate algorithms described later in thi n(:] 24-'|5n:ff”+9n(2—1)/2 is the total energy of the atom
section. The parameté&rr=0.25 is used in all QMC simula- with n e gctrons In the S,LN) apprOX|ma.1t|on. .
tions. For the calculations requiring a fixed mean number of Eguation(23) along with the constraint&21),(22) consti-

electronsn, the values of the chemical potental are adjustedUt® @ Set of nonlinear equations which have to be solved
to reach the desired numbarwith an accuracy not worse 'teratively. In practice, we consider E@3) as an eigenvalue
than 0.3%. problem withA being the eigenvalue an#4, being the eigen-

vectors of the matrix. The physical root corresponds to the
lowest eigenvalue oA which gives a set off;, determining
the mass renormalizatiofi=b?. Since the matrix to be di-

A fast approach to solve the general impurity problem isagonalized depends nonlinearly af, via the parameters
the slave-boson methd&:2°At the mean-field level, it gives L, R, andb and also on\, the solution of the whole problem
results similar to the famous Gutzwiller approximatidn. assumes self-consistendy) we build an initial approxima-

B. Slave-boson mean field method

115117-5



SAVRASOV et al. PHYSICAL REVIEW B 71, 115117(2005

tion to ¢, (for example the Hartree-Fock solutjoand fix
some\; (ii) we solve the eigenvalue problem and find new
normalized,; (iii) we mix the new, with the old ones
using the Broyden methé¥ and build newlL, R, and b.
Steps(ii) and (iii) are repeated until self-consistency with
respect taj, is reached. During the iterations we also vary s ,
to obey the constraints. The described procedure provides a (b) ! '

stable computational algorithm for solving the AIM and o P, o000 ]
gives us access to the low-frequency Green’s function and N '%& S "“‘%,\\
the self-energy of the problem via knowledge of the slope of 04 > g o |
Im X (iw) and the value R&(0) at zero frequency. I \ W4 3
The described slave-boson method gives the following 0 © g 'o—eQIMC '

expression for the self-energy: L 0.002560 SB

A o

S0.1 i"?& .

S(w)=(1-b?)w-e+\b2 (24) vV | 0608 1

The impurity Green’s functio®(w) in this limit is given by 4% — 15 2
the expression n

FIG. 1. (Color online Comparison between the slave-boson
Gi(w) = bng(w)- (25) mean-field and the QMC calculations f@) concentration versus
chemical potentialu=u—-e—(N-1)U/2, (b) dependence of the
spectral weighZ on concentration, angt) density-density correla-
tion function({nn) versus fillingn, in the two-band Hubbard model
in SU4) andU=4=2W.

As an illustration, we now give the solution of E®J)
for the nondegenerate cas=2) and at the particle-hole
symmetry point withe;—u=-(U/2)(N-1). Consider the dy-
namical mean-field theory for the Hubbard model which re-
duces the problem to solving the impurity model subject to )
the self-consistency condition with respectAtw). Starting Alw) = (V_V> Gl(w). (26)
with the semicircular density of statg®O0S), the self- 4
consistency condition is given by E@3). We obtain the
following  simplifications: L=R= V2, 1=0, Yo=1, b
=4y, and Gyw)=[w—(W/4)°Gy(w)]™*. The sum
T2, Aliw)Gy(iw) appearing in Eq(23) scales a¥Wa/2 with
the constantr being the characteristic of a particular density
of states and approximately equal to —0.2 in the semicircul
DOS case. A self-consistent solution of ER3) is therefore
possible and simply givesl/%:UISZ\Na+ 1/4. The Mott
transition occurs when no sites with double occupancies ¢
be found, i.e., whenyy=¢»=0. The critical value ofU,
=8W|al|. For a=-0.2, this givesU.~ 1.6W and reproduces
the result forU,=1.49V known from the QMC calculation
within a few percent accuracy. As the degeneracy increase
the criticalU is shifted toward higher valueég From numeri-
cal calculations we obtained the following values of the criti-
cal interactions in the half-filled casél.~3W for N=6 (p
level), U,~4.5W for N=10 (d level), and U.~6W for N

The Coulomb interaction is chosen to khke=2W which is
sufficiently large to open the Mott gap at integer fillings. All
calculations are done for the temperattire\W/32.

We first compare the average number of electrons vs
chemical potential determined from the slave bosons, which
As plotted in Fig. 1a). This quantity is sensitive to the low-

frequency part of the Green’s function which should be de-

scribed well by the present method. We see that it reproduces
afhe QMC data with a very high accuracy and only differs by
20% very near the jump ok at n=1.

The quasiparticle residue versus fillingn is plotted in
Fig. 1(b). The slave-boson method gives a Fermi liquid and
Brovides estimates for the quasiparticle residue with an over-
all discrepancy of the order of 30%. Here we would like to
point out that(i) the extraction of zero-frequency self-energy
slopes from the high-temperature QMC calculation is by it-
= self numerically not a well-grounded procedure, as informa-
=14 (f Ievel).. . . . tion for the self-energy is known at the Matsubara points

The density-density correlation functiofmn) for local only, which is then extrapolated ©=0: (ii) other methods
states withn electrons is pr%portional to the number of pairs ¢, solving the impurity model, such as the NCA or IPT,
formed by n particlesC3/C;. Since the prObab'“t% fom  gisplay similar discrepancies; afiil) recent finding® sug-
electron orbitals to be occupied is given By= yaCq, the gest that at least at half filling quasiparticle residues deduced
physical density-density correlator can be deduced frond,om siave bosons become exact wHens . Most impor-
(nm)=3,C3/CyPy. Similarly, the triple occupancy can be tant for our interpolative method is that the entire functional
calculated from(nnr)=3,C5/C5P,,. dependence of vs filling, interaction, and degeneracy is

Let us now check the accuracy of this method by comparcorrectly captured. Its overall accuracy is acceptable as is
ing its results with the QMC data. We consider the two-bandevident from our comparisons of the spectral functions pre-
Hubbard model in the SW=4) orbitally degenerate case. sented in the next section and well within the main goal of
The hybridizationA(w) satisfies the DMFT self-consistency our work to provide fast scans of the entire parameter space
condition of the Hubbard model on a Bethe lattice necessary for simulating real materials.
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Figure Xc) shows the density-density correlation function
(nn) as a function of average occupationThe discrepancy
is most pronounced for filings~ 1 [see the inset of Fig.
1(c)] where the absolute values @fn) are rather small. Al-

PHYSICAL REVIEW B 71, 115117(2005

probabilities of finding an atom witim electrons and were
already discussed in connection with the form(8afor the
atomic Green’s function. They are similar to the coefficients
yZ introduced within the SBMF method but now found from

though our slave-boson technique captures on|y the quasip@_different set of equations. These numbers are normalized to

N

ticle peak, it gives a correlation function in reasonable agreeunity, Er’;lz_ocwxnzznz_&cr’:‘_l(xn'F Xn+1)=1, and are expressed
ment with the QMC result for dopings not too close to thevia the diagonal elements @,.{(iw) as follows:

Mott transition.

C. Hubbard | approximation

Now we turn to the Hubbard | approximat#rwhich is
closely related to the moments expansion metfa@onsider
many-body atomic statd@f(m) which in SUN) are all de-
generate with index denoting these states for a given num-
ber of electrons. The impurity Green’s functions is defined
as the average

G(7) = ~(Tf(DF(0)) (27)

and becomes diagonal with all equal elements iriN§UIt is
convenient to introduce the Hubbard operators

XM = | pM @) (29)

Xn==T, Gunliw)e @0 /CN 2,

iw

(35

Their determination in principle assumes solving a nonlinear
set of equations while determinir@(w). The mean number
of electrons can be measured as=N.,nCNX, or asn
:TNEinf(iw)e‘“’°+. The numbers,, can also be used to find
the averagegnn), (nnn) in a way similar to what has been
done in the SBMF approach.

If we neglect the hybridizatioA(w) in Eq. (33), the prob-
abilities X, become simply statistical weights:

e—(En—,u.n)/T

N
E Cme_(Em_Mm)/T

m=0

Xn (36)

and represent the one-electron creation and destruction opVe thus see that in principle there are several different ways

erators as follows:

fo= 2 2 (@O X, (29
n KK,
f1 = 2 (@D pMyxn, (30)
n KK,
The impurity Green'’s functioii27) is given by
(31)

Gi(7) = E Gom(7),

where the matrixG,(7) is defined as

Gor(D == 2 (@0 O I NTXI L (HXIIM0))
K1K2K3K4

XD D). (32)
Establishing the equations f@,,(7) can be performed

using the method of equations of motion for tk@perators.

Performing their decoupling due to Hubba&fd! carrying

to determine the coefficientX,, either via self-consistent
determination(35), or using the statistical formulé36), or
taking them from the SBMF equatiof23), i.e., settingX,
:z/f2n while still utilizing the functional dependence provided
by the Hubbard | method. To determine the best procedure
let us first consider the limits of large and smidls. When
A(w)=0, G{(w) is reduced t,,,G® (w), i.e., the Hubbard

I method reproduces the atomic limit. Settikg=0 gives
Gi(w)=[w+u-&—A(w)]™, which is the correct band limit.
Unfortunately, at half filling this limit has a pathology con-
nected to the instability toward the Mott transition at any
interaction strengthJ. To see this, we consider the dynami-
cal mean-field theory for the Hubbard model. Using a semi-
circular density of states, we obtainG;(w)=[1
—(W/4)°G{(0)G(w)]'G,(w) and conclude that for any
smallU the system opens a pathological gap in the spectrum.
Clearly, using the Hubbard | method only, the behavior of the
Green’s function atw— 0 cannot be reproduced and the
quality of the numbers{,, is in question. This already em-
phasizes the importance of using the slave-boson treatment
at small frequencies.

out the Fourier transformation and analytical continuation to  Ultimately, making the comparisons with the QMC calcu-

the real frequency axis, and summing oweandm after Eq.
(31), we arrive at the net result

Gil(w) =G5 (w) - A(w). (33
The G (w) can be viewed in the matrix forr81) with the
following definition of the diagonal atomic Green'’s function:

Gh(@) = §
(@) nm pw—Eny+E,

(34)

with E,=&n+Un(n-1)/2 being the total energies of the
atom withn electrons in SN). The coefficientsX,, are the

lations is the best option in picking the most accurate proce-
dure to compute the probabilitie,. To check the accuracy
against the QMC result we again consider the two-band Hub-
bard model in SU(4) symmetry as above. The chemical
potential, mass renormalization, and double occupancy are
plotted versus filling in Fig. 2. All quantities here were com-
puted with the self-consistent determinationXgf after Eq.
(35). We first see that the Hubbard | approximation does not
give satisfactory agreement with the QMC datari6i) be-
cause it misses the correct behavior at low frequencies.
The comparisons faz(n) plotted in Fig. 2Zb) surprisingly
show a relatively good behavior. However, since the Hub-
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1=3.-20T7
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=057

& 0.0 TG N S———
o OMC 5 4 -3 -2 41 3) 1 2 3 4 5
N, A . =—o Hubbard
%'5 : = 1.5 2 FIG. 3. (Color onlineg Calculated density of states using the

interpolative method as a function of chemical potenfia u— €;

FIG. 2. (Color onling Comparison between the Hubbard | and ~(N-1)U/2 and frequency for the two-band Hubbard model in
the QMC calculations fofa) concentration versus chemical poten- SU(4) and atU=W=2.
tial w=u—€&-(N-1)U/2, (b) dependence of the spectral weight
on concentration, andc) density-density correlation function IV. RESULTS OF THE INTERPOLATIVE SCHEME
{nyn,) versus fillingn, in the two-band Hubbard model in 4

and forU=2W=4. By now the procedure to determine the coefficients is well

established. We use the SBMF method to determine

n, 3(), 2(0), andz as well as the poles and zeros of the
bard | approximation is never a Fermi liquid, it is not fair to 210Mic Green’s function provided by the SBMF probabilities
talk aboutz in our context because there are no quasiparticle% and by the bare atomic energy levét (we omit the
there. Figure &) shows(nn) as a function of average occu- Ilfet|m.e effects for §|mpI|C|ty. Thls gener.ates a set of Imear
pation n. As this quantity is directly related to the high- equations for coefficientay,, by, in the rational interpolation
frequency expansion one may expect a better accuracy heggrmula (2.)' In the.preser)t section we show the trepds our
However, comparing Fig. () and Fig. 1c), it is clear that m’[e_rpolatlve_ algorithm gives for the spectral fu_nctlons in
the slave-boson method gives more accurate double occf2'OUS regions of parameters as well as provide detailed
pancy. This is due to the fact that the density matrix obtained@MpParisons for some values of doping for both the imagi-
by the slave-boson method is of higher quality than the ond@"Y and. real ax!s.spectral fun_ctlons. The two-band Hubbard
obtained from the Hubbard | approximation. modgl with semw_nrcular denslty QT states and DMFT self-

The results of these comparisons suggest that the protg_onsstency condition aftéee) is utilized in SUN=4) sym-

abilities y2 provided by the slave-boson method are a bettefelry in all cases using the bandwidt¥=2 and temperature

way of determining the coefficiends, in the metallic region T=1/16.

of parameters. Therefore it is preferable to use these numbers

while establishing the equations for the unknown coefficients A. Trends

in the interpolational forn{2). However, the functional form Figure 3 shows the behavior of the density of states

(34) of the Hubbard | approximation witK,=¢# can still be  N(w)=-Im Gi(w)/ 7 for U=W as a function of the chemical

used as it provides the positions of the pdlé1 ) and zeros potentialx computed with respect to the particle-hole sym-

ZE]G) of the atomic Green’s function necessary for the condi-metry point(N-1)U/2 and as a function of frequenay.

tion (d) in the previous section. This also ensures accuratdhe semicircular quasiparticle band is seen at the central part

high-frequency behavior of the interpolated self-energy sincef the figure. Its bandwidth is only weakly renormalized by

its moments expressed via multiple occupancies are directlhe interactions in this regime. It is half filled f@=0 [i.e.,

related to%. when u=¢-(N-1)U/2] and gets fully emptied when the
Interestingly, while the more sophisticated QMC approachchemical potential is shifted to negative values. Several weak

captures both the quasiparticle peak and the Hubbard bandatellites can also be seen on this figure, which are due to

this is not the case for the slave-boson mean-field method. Tatomic poles. Their spectral weight is extremely small in this

obtain the Hubbard bands in this method fluctuations need toase and any sizable lifetime effdethich was not included

be computed, which would be very tedious in the generalhile plotting this figure will smear these satellites out al-

multiorbital situation. However the slave-boson method de-most completely. When approaching the fully emptied

livers many parameters in good agreement with the QMQully filled) situation the spectral weight of the Hubbard

results, and, hence, it can be used to give the functionddands disappears completely and only the unrenormalized

dependence of the coefficients of the rational approximationquasiparticle band remains. It is clear that even without shift-
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FIG. 4. (Color onling Calculated density of states using the  F|G. 5. (Color onling Calculated density of states using the
QMC method as a function of chemical potentjakFu—€~(N interpolative method as a function of chemical poterfia - e
~1U/2 and frequency for the two-band Hubbard model iN(@U - (N-1)U/2 and frequency for the two-band Hubbard model in
and atU=W=2. SU(4) and atU=2W=4.

ing the atomic poles to the complex axis, the numerical prorespectively, against the predictions of the quantum Monte
cedure of generating the self-energy is absolutely stable. Carlo method. We will report our comparisons for the two-

This trend can be directly compared with the simulationsband Hubbard model and sets of dopings corresponding to
using a more accurate QMC impurity solver. We present this1=0.5, 0.8, 0.95, 1.2, 1.5, 1.8 using the valuelsf2W=4.
in Fig. 4 for U=W, which shows the calculated density of Other tests for different degeneracies, doping levels, and in-
states in the same region of parameters. Remarkably, agaieractions have been performed and display similar accuracy.
we can distinguish the renormalized quasiparticle band and Figure 7 shows the comparison between the real and
very weak Hubbard satellites. The Hubbard bands appear tnaginary parts of the Green’s function obtained by the in-
be much more diffuse in this figure mainly due to the life- terpolative method with the results of the QMC calculations.
time effects and partially due to the maximum entropyAs one can see, almost complete agreement has been ob-
method used for analytical continuation from the imaginarytained for a wide regime of dopings. The agreement gets less
to the real axis. Otherwise the entire picture looks very muclaccurate once half filling is approached, but is still very good
like the one on Fig. 3, generated with much less computagiven the extraordinary computational speed of the interpo-
tional effort. lative method compared to QMC simulations.

Figure 5 gives the same behavior of the density of states
for the strongly correlated regimd=2W. In this case the
situation at integer filling is totally different as the system
undergoes the metal-insulator transition. This is seen around
the dopings levels witfu between 0 and -1 and between -3
and -5 where the width of the quasiparticle band collapses
while lower and upper Hubbard bands acquire all the spectral
weight. In the remaining region of parameters both the
strongly renormalized quasiparticle band and Hubbard satel-
lites remain. Again, once full filling or full emptying is ap-
proached the quasiparticle band has its original bandwidth
restored while the Hubbard bands disappear. The QMC result
for the same region of parameters is given in Fig. 6. Again
we can distinguish the renormalized quasiparticle band and
Hubbard satellites as well as the areas of Mott insulator and
of strongly correlated metal. The Hubbard bands appear to be
sharper in this figure, which signals the approach to the
atomic limit.

FIG. 6. (Color onling Calculated density of states using the
QMC method as a function of chemical potentjak u—e—(N

We now turn to the comparison of the Green’s functions-1)U/2 and frequency for the two-band Hubbard model in(@U
and the self-energies obtained using the form(@and(2), and atU=2w=4.

B. Comparison for spectral functions on imaginary axis
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FIG. 7. (Color onling Comparison between real and imaginary  FIG. 8. (Color onling Comparison between real and imaginary
parts of the Green's function obtained from the interpolativeparts of the self-energies obtained from the interpolative method
method and the quantum Monte Carlo calculation for the two-banthnd the quantum Monte Carlo calculation for the two-band Hubbard

Hubbard model at a set of fillings=0.5, 0.8, 0.95, 1.2, 1.5, 1.8 and mqodel at a set of filingm=0.5, 0.8, 0.95, 1.2, 1.5, 1.8 arld
U=2w=4. =2W=4.

Figure 8 shows similar comparison between the real angiensities of states require an analytical continuation from the
imaginary parts of the self-energies obtained by the interpomaginary to the real axis and were generated using the
lative and the QMC methods. We can see that the selfmaximum entropy method. By itself this procedure intro-
energies exhibit some noise which is intrinsic to the stochasguces some errors within the QMC calculation especially at
tic QMC procedure. The values of the self-energies n@ar higher frequencies. In Fig. 9, we show our results for the
=0 andx are correctly captured with some residual discrep+illings corresponding tm=0.5, 0.8, 0.95, 1.2, 1.5, 1.8 using
ancies, attributed to slightly different chemical potentialsthe value ofU=2W=4. One can see the appearance of the
used to reproduce the given filling within each method. Theyuasiparticle band and two Hubbard bands distanced by the
results on the imaginary axis show slightly underestimatedajue ofU. It can be seen that the interpolative method re-
slopes of the self-energies within the interpolative algorithmmarkably reproduces the trend in shifting of the Hubbard
which is attributed to the underestimated valueg olbtained bands upon Changing the dop|ng It automa’[ica”y holds the
from the SBMF calculation. Ultimately, improving these distance between them to the valuelf while this is not
numbers by inclusions of fluctuations beyond the mean fielyways true in the quantum Monte Carlo method. Despite

will further improve the comparisons. However, even at thethjs result, the overall agreement between both methods is
present stage of accuracy, all the functional dependencgery satisfactory.
given by the SBMF method quantitatively captures the be-

havior _of the_ self-energy seen from the time-consuming V. DISCUSSION
QMC simulation.

Here we would like to discuss possible ways to further
improve the accuracy of the method. The inaccuracies are
mainly seen in three different quantiti€s) the width of the

We also made detailed comparisons between the calcldubbard bands(ii) the mass renormalizatiar{) which is
lated densities of states obtained on the real axis using theorrowed from the SBMF method, aridi) the number of
interpolative method and the QMC algorithm. The QMC electrons n(w) extracted from the interpolated impurity

C. Comparison for spectral functions on real axis
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vicinity of =0, and changing(u«) does not affect the band-

0.6 (a) ; i i >
1 width. To gain control in those cases it is better to replace the
0.4 constraints>(0), d3/dw|,- by the constraints of fixing the
02— avc self-energies at two frequencies, S8§0) andX(iwp), where
0.0 1— INT wp is a frequency of order of the renormalized bandwidth.
0.6 (b) We have found that this scheme gives mass renormalizations
. which are about 30% smaller than the SBMF ones, and the
0.4 agreement with the QMC result is significantly improved.
0.2 - Thus, inaccuracie®i) and(iii) can be avoided with this very
0.0 1 cheap trick. However, we also would like to point out that
064 the conditionn(w)=nggue(1) is essentially nonlinear as the
=10 solution may not exist for all regions of parameters. It is, for
0.4 example, evident that at such points wha(g) is given by
£ 02— a symmetry(such as, e.g., the particle-hole symmetry point
3 § n=2 in the case considered abgt¥lee mass renormalization
(g gg & does not affect the number of electrons.

i As the philosophy of our approach is to get the best pos-
0.4 sible fit we are also open to implementing any kindsadf
] hocrenormalization constants. One such possibility could be

e the use of a quasiparticle residue 30% smaller thagu).
0.0 = As z(u) should go to unity whenU=0, the correction
0.6 () n=1.5 can, for example, be encoded into the formutéuw)
0.4 =Zsgme w)[0.7+0.Zspw 1) .
0.2 We finally would like to remark that the scheme defined
- by the set of linear equations for the coefficie(itd)—(19) is
0.0 = absolutely robust as solutions exist for all regimes of param-
0.6 n=1.8 eters such as the strength of the interaction, doping, and de-
0.4 generacy. In general, including any information on the self-
0] energy>(w,) at some frequency poinb, or its derivative
T dE/dw|w:wX would generate a linear relationship between the
e o | i o o B B B interpolation coefficients, thus keeping the robustness of the
-8 6 4 -2 0 2 4 6 8 method. On the other hand, fixing such relationships as the
0} numbers of electrons brings nonlinearity to the problem,

) ) which could lead to multiplicity or nonexistence of solutions.
FIG. 9. (COlOI’ Onllné Comparlson between the one-electron It |S also Clear that by narrow|ng the reglme of parametersy

densities of states obtained from the interpolative formula and th?he accuracy of the interpolative algorithm can be systemati-
quantum Monte Carlo calculation for the two-band Hubbard model(:a”y increased.

at fillings n=0.5, 0.8, 0.95, 1.2, 1.5, 1.8 ani=2W=4.
VI. CONCLUSION

Green's function(9). The inaccuracy in the width of the 14 symmarize, this paper shows the possibility of interpo-
Hubbard band is mainly connected to neglecting the lifetimqaying the self-energies for a whole range of dopings, degen-
effect. Provided it is computed, this will shift the positions of g4cjes, and interactions using a computationally efficient al-

atomic poles onto the complex plane, which is in principlegrithm. The parameters of the interpolation are obtained
trivial to account for within our interpolative algorithm. To tom a set of constraints in the slave-boson mean-field

improve the accuracy afx) one can, for example, work out ethod combined with the functional form of the atomic
a modified slave-boson scheme which will account for thégreen's function. The interpolative method reproduces all
fluctuations around the mean-field solution. The inaccuracyrends in remarkable agreement with such a sophisticated
in n(w) is small in many regions of parameters and typically 5 numerically accurate impurity solver as the QMC
amounts to 5-10 %. We can try to improve this agreement bynethod. We also obtain a very good quantitative agreement
the requirement thai(u) obtained via interpolation matches iy a whole range of parameters for such quantities as mean
with nsgme(n) obtained by the SBMF method. The latter |evel occupancies, spectral functions, and self-energies.
agrees very well with the QMC result for a wide region of Some residual discrepancies remain, which can be corrected
parameters as is evident from Figall In reality, our analy-  provided better algorithms delivering the constraints are uti-

sis shows that in many cases the discrepanay(in) is con-  lized. Nevertheless, given the superior speed of the present
nected with the overestimation ofsgyew). Therefore, approach, we have obtained a truly exceptional accuracy and
points (ii) and (iii) mentioned above are interrelated. efficiency of the proposed procedure.

The requirement thai(u) =nggme 1) can be enforced by
adjusting the width of the quasiparticle band, and in many ACKNOWLEDGMENTS
regions of parameters this is controlled by). However, The work was supported by NSF-DMR Grants No.
there are situations when the Hubbard band appears in tf#96462, No. 02382188, No. 0312478, and No. 0342290 and
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APPENDIX @ -
In the crystal-field case we assume that tkéold degen- The total mean number of electrons is thus=,jn,. The

erate impurity level; is split by a crystal field intds sub- hybridization functiom (i w) is a matrix that is assumed to be
levelS e, ..., €, ..., €. We assume that for each sublevel diagonal, and it has diagonal elements enumerated as fol-

there is still some partial degenerady so thats%_,d,=N.  [OWS: Al(wz),--- Ay(®),...,Ag(w). The mass renormaliza-

in the nondegenerate ca@sN, d;=d,=ds=1. We need to The diagonal elements for the self-energy are
discuss how a number of electron_scan be accommodated S (@)= 0+ pu— €~ Ay(0) - G )

over different sublevels;,. Introducing the numbers of elec-

trons in each subleveh,, we obtainEszlnazn. Note the :w(l—i) e - Ay (A6)
restrictions: B<n<N, and 0<n,=<d,. In the SUN) case, b2 fa b2’

G=1, n;=n, and in the nondegenerate ca€e;N, andn, is

either 0 or 1. The total energy for the shell withelectrons Here,
depends on the particular configuratiom,}, dy dy dg
G L ba:RaLaz E Cgix...xcgzzix...
n,=0 n,=1 ng=0
Enl ..... nG = E efana + EU(Eana)[(Eana) - 1] (Al) d ' N
a=1 X Cng¢nl ..... Nyreees ne%1 ..... n,1..Nng? (A7)

. d d d
of numbers{n,}, i.e., [ny,...,ng). The energyg, . re- S 4 S 41

1 G = — e e 1 cen o e
mains degenerate, and can be calculated as the product of theLa 1-2 > 20 Cnl X X Cna—l X

. . .. n,=0 n,~1 ng=
number of combinations existing to accommodate the elec- ! “ ©

trons in each sublevel, i.eGH X -+ X Clax -+ x Cle. et e
_ n N, "o X Cley? (A8)
us further introduce the probability amplitudes, .. to NG " Ny M- ’
find a shell in a given state with energy,  n.. The sum of
all probabilities should be equal to 1, i.e., dy d,~1 dg
dy d, dg Ra: 1—2 E Ecgixxcgz'lx
2 E ...Ecglx...xcgax... =0 ne=0 ng=0
= - — 1 @ -1/2
n;=0 n,=0 ng=0 g
X C.¢ .
X nglfnl _____ N =1. (AZ) Cnewﬁl ..... Ngpees ”G) (A9)

There are two Green’s functions in the Gutzwiller The generalization of the nonlinear equati¢®3) has the
method: the impurity Green’s functid®(iw) and the quasi- form

particle Green’s functionég(w):B‘léf(w)f)‘l, where the . G _
matrix coefficientsb represent generalized mass renormal- 0 :[Enl ----- ”e+A_(Ea)‘ana)]¢n1---ne+ glna[-rziwAa('w)
ization parameters. All matrices are assumed to be diagonal

and have diagonal elements enumerated as follows: XGg,(iw)]b[Ralath, ., na—l,...,nG+baLi¢nl _____ NN
Gi(w),...,Gy(w),...,Gg(w). Each element in the Green's

G
function is represented as follows: + E (d, — [T A (16)Ge(io)]
a fo2 lo=«a Ja
1 a=1

G =, A3
()= Aw) (B3) XBRLath, ns1, ne* DRt o ol (AL0)
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