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Abstract – We present a new method to compute the electronic structure of correlated materials
combining the hybrid functional method with the dynamical mean-field theory. As a test example
of the method we study cerium sesquioxide, a strongly correlated Mott band insulator. The
hybrid functional part improves the magnitude of the pd-band gap which is underestimated in
the standard approximations to density functional theory while the dynamical mean-field theory
part splits the 4f -electron spectra into a lower and an upper Hubbard band.
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Introduction. – Recently, there has been considerable
progress in the realistic description of strongly correlated
materials by combining the density functional theory [1]
(DFT) with the dynamical mean-field theory (DMFT)
[2–5]. In this DFT+DMFT approach [6,7], DFT is
employed to obtain an effective mean-field description of
the weakly correlated bands while the local correlations
in the more strongly correlated bands (i.e. the d -bands
of transition metals and the f -bands of lanthanides
and actinides) are treated exactly. The DFT+DMFT
method allows to predict spectra and energies of strongly
correlated materials.
The DFT+DMFT method has been successfully

applied to a variety of interesting materials that the
conventional band structure theory is unable to deal
with. For example, using the DFT+DMFT method
the 25% of volume increase in the transition from the
α- to the δ-phase of Pu could be explained by the
presence of strong correlations in δ-Pu [8]. However, by
construction the DFT+DMFT approach, does not work
so well in situations where the one-electron spectra of the
weakly correlated bands are not well approximated by
the Kohn-Sham (KS) spectra of DFT. For example, the
local density approximation (LDA) and the generalized
gradient approximation (GGA) notoriously underestimate
the magnitudes of band gaps of insulating materials. On
the other hand, within the chemistry community, very
accurate functionals called hybrid functionals [9], have
been constructed by mixing LDA/GGA functionals with
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Hartree-Fock. The hybrid functional (HYF) approach
has been tremendously successful in providing very
accurate energies for molecules. Moreover, one-electron
spectra computed with HYFs give fairly accurate gaps
for semiconducting materials [10].
In this work we propose a new method that combines

the HYF approach with DMFT (HYF+DMFT) to yield
a quantitatively and qualitatively correct description of
combined band and Mott-Hubbard insulators. The HYF
part improves the effective static mean-field description of
the uncorrelated electrons while the DMFT part describes
the dynamical local electronic correlations of the strongly
localized electrons that can lead to Mott insulating behav-
iour. Although the HYF approach introduces a new para-
meter, α, that determines the amount of Hartree-Fock
exchange, we show that this α can actually be linked
to the Coulomb repulsion parameter U of the DMFT
calculation.
An important example which illustrates the need for

the HYF+DMFT method is provided by the rare-earth
sesquioxides [11] series which are insulators. In addition
to the Mott-Hubbard gap between the occupied and the
unoccupied 4f -bands, a band gap between the uncorre-
lated O 2p- and 5d-bands opens. One thus has to deal
with the two-fold problem of finding an accurate descrip-
tion for the pd-band gap and the 4f Hubbard bands in the
same material.
DFT and related static mean-field methods fail to

describe the splitting of the 4f Hubbard band, without
invoking some form of magnetic long-range order. For
example, HYFs give the correct magnitude for the band
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gap of antiferromagnetic (AF) Ce2O3 [12,13]. However, the
symmetry breaking is essential to obtain the correct insu-
lating behaviour although it is clear that the magnetism
should not be the driving mechanism behind the insu-
lating behaviour since the Néel temperature is only 9K
and thus much smaller than the measured gap of about
2.5 eV. Similarly, symmetry breaking is crucial in order to
capture the insulating behaviour of Ce2O3 and of Ce2S3
with the DFT+U method [14–17]. However, a satisfac-
tory description of Ce2O3 should also yield the correct
insulating behaviour in the paramagnetic phase.
Correlations on top of DFT, can be added within the

DFT+DMFT method. Indeed recent studies of the rare-
earth oxides have been carried out within this approach.
The DFT+DMFT [18] approach, succesfully describes
the opening of the Hubbard band in the 4f -shell of these
materials. However, they underestimate the pd-band gap.
It is natural then to combine the virtues of the HYF and
the DMFT method, in a HYF+DMFT approach, which
is the subject of this paper.

Method. – The HYF+DMFT method follows the
well-established DFT+DMFT methodology. We focus on
the one-particle Green’s function:

Ĝ(k, ω) = (ω+µ− Ĥ(k)− Σ̂(ω))−1 (1)

which is expressed in terms of a one-body Hamiltonian
Ĥ(k) and a local self-energy Σ̂(ω). The self-energy
describes the dynamic electron correlations of the
strongly localized electrons and thus has non-zero
elements only in the block of correlated bands. The
correlations are captured by a Hubbard-like term which is
added to the one-body Hamiltonian Ĥ(k) in the strongly
correlated subspace:

ĤU = 1
2

∑

a1,b1,σ1
a2,b2,σ2

Ua1a2b1b2 ĉ
†
a1σ1
ĉ†a2σ2 ĉb2σ2 ĉb1σ1 , (2)

where the indices a1, a2, b1, b2 denote orbitals of the
correlated subspace in a local basis set.
Within DFT+DMFT the one-body Hamiltonian Ĥ(k)

is given by the effective KS Hamiltonian Ĥks =− �22m∇2+
vext(r)+ vh(r)+ vxc(r). The KS Hamiltonian gives an
effective one-body description of the electronic structure
taking into account the Coulomb interaction on a mean-
field level by the Hartree potential vh and the exchange
correlation (XC) potential vxc.
One of the main shortcomings of the standard approx-

imations to DFT like LDA and GGA is their difficulty
to describe insulating materials. On the one hand, the
insufficient cancellation of the self-interaction error by
the approximate LDA and GGA XC functionals results
in band gaps that are generally too small compared to
the measured band gaps in semiconductors and insula-
tors [10]. On the other hand, DFT is strictly speaking
only a ground-state theory. Thus it does not necessarily

give a correct description of excited-state properties like
the band gap of insulating materials.
The HYF method [9] improves on LDA/GGA by intro-

ducing a fraction α of exact Hartree-Fock exchange into
the XC potential:

v̂hyfxc = αv̂
hf
x +(1−α)v̂ggax + v̂ggac , (3)

where v̂ggax is the LDA/GGA exchange potential and v̂ggac
is the LDA/GGA correlation potential. v̂hfx is the Hartree-
Fock exchange potential which is a non-local (i.e. non-
diagonal in real space) effective one-body potential:

vhfx (r, r
′) = 〈r|v̂hfx |r′〉=−

1

2
ρ(r, r′)Vee(r− r′), (4)

where ρ(r, r′) is the density matrix and Vee(r− r′) =
〈r, r′|V̂ee|r, r′〉= 1/ ‖r− r′‖ is the bare Coulomb interac-
tion between two electrons.
One can think loosely of the HYF approach as a first-

order correction of the KS Hamiltonian in a fraction α of
the bare Coulomb interaction V̂ee. This αV̂ee can be inter-
preted as a “screened Coulomb interaction” in a similar
way as the U-parameter in the LDA+U method [14,19].
But in contrast to the LDA+U method, HYFs make
the correction in the screenend Coulomb interaction on
the entire LDA/GGA Hamiltonian and not only within a
small subspace of atomic orbitals. Also note that the XC
potential of the HYF method is non-local (i.e. dependent
on both r and r′ instead of r alone) due to the contribution
of exact Hartree-Fock exchange to the HYF. This shows
that the HYF approach really falls outside the framework
of conventional DFT where the XC potential is required
to be local.
It turns out that the optimal amount α of Hartree-Fock

exchange is almost universally of 20%–25% which has been
rationalized by perturbation theory [20]. In the following
we employ a functional similar to the popular B3LYP and
B3PW functionals of quantum chemistry [21] that mix
20% of Hartree-Fock exchange with 80% of GGA exchange
functionals but instead of GGA we employ plain LDA here
and refer to this HYF as LDA20.
By adding the Hubbard term (2) to the KS band

structure some of the Coulomb interaction within the
correlated subspace is double-counted since it has already
been taken into account on a static mean-field level by the
KS Hamiltonian Ĥks. Thus, the KS Hamiltonian has to be
corrected by a double-counting correction (DCC) term:

Ĥ(k) = Ĥks(k)− ĥdc. (5)

In the case of LDA/GGA an exact expression for this

DCC term ĥdc is not known, and several forms of the DCC
have been suggested [22]. In the case of HYFs, however,
at least the DCC for the Hartree-Fock contribution to
the HYF is known exactly: it is the Hartree potential v̂h
plus the Hartree-Fock exchange potential v̂hfx projected
onto the correlated subspace. Below we argue that this
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is the only relevant contribution to the DCC term of the
HYF+DMFT approach. However, we cannot proof this
conjecture strictly so that ultimately it must be justified
by its success in the application to different materials.
Our argument goes as follows: bearing in mind that

the HYF approach corresponds to a first-order correction
of the effective LDA Hamiltonian in a fraction α of the
bare Coulomb interaction V̂ee, one first has to remove
entirely this perturbation correction in αV̂ee in the corre-
lated subspace since the DMFT calculation will treat the
Coulomb interaction (locally) exact in that subspace. Thus
if we take αVabcd = α〈ab|V̂ee|cd〉 as the screened Coulomb
interaction Uabcd in the correlated subspace we obtain for
the DCC of the HYF approach:

〈aσ|ĥhyfdc |bσ〉= α〈aσ|v̂h+ v̂hfx |bσ〉+ 〈aσ|ĥldacdc |bσ〉, (6)

where the last term 〈aσ|ĥldacdc |b, σ〉 corrects the double-
counting in the LDA correlation potential v̂ldac within the
correlated subspace. This term is not known exactly since
the contribution of a subspace to the total LDA correlation
potential cannot be calculated exactly. However, the corre-
lation potential is usually much smaller than the exchange
potential, and we will thus neglect this contribution here.
Assuming that only the direct Coulomb interactions
U =Uabab and the exchange Coulomb interactions J =
Uabba are important, we find the following simplified term
for the on-site HYF DCC which allows us to predict the
positions of the strongly correlated orbitals for the DMFT
calculation:

〈aσ|ĥhyfdc |aσ〉 ≈U(Nf −nσa)−J(Nσf −nσa), (7)

where Nf is the total number of correlated electrons per
atom and nσa is the number of electrons in atomic orbital
a with spin σ. Equation (7) is different from the usual
expression for the LDA DCC in that the HYF DCC
term becomes now orbital dependent so that unoccupied
orbitals experience a larger shift than occupied ones. Also
note that since the Hartree-Fock potential is non-local (i.e.
non-diagonal in real space) the DCC term is also non-
local. But by construction the DCC term only acts on the
correlated subspace.
Within DMFT the self-energy is determined self-

consistently by mapping the original problem onto an
Anderson impurity problem. To this end the local Green’s
function,

Ĝloc(ω) =
∑

k

(ω+µ− Ĥ(k)− Σ̂(ω))−1 (8)

projected onto the correlated subspace is equated to the
Green’s function of the equivalent impurity problem:

Ĝ0(ω) = (ω+µ− Ĥ0− ∆̂(ω)− Σ̂f(ω))−1 (9)

Here Ĥ0 is the (single-particle) Hamiltonian of the impu-
rity site, ∆̂(ω) is the hybridization function with the

conduction bath electrons, and Σ̂f = P̂fΣ̂P̂f is the full self-
energy projected onto the correlated subspace where P̂f
is the projection operator for the correlated subspace.
The mapping Ĝ0(ω)≡ P̂fĜloc(ω)P̂f defines the so-called
self-consistency condition which is central to the DMFT
method. The mapping yields the hybridzation function,

∆̂(ω) = ω+µ− Ĥ0− Σ̂f(ω)− (P̂fĜloc(ω)P̂f)−1 (10)

with Ĥ0 ≡
∑
k P̂fĤ(k)P̂f . These are the relevant quantities

for solving the impurity problem. By solving the impurity
problem, one obtains in turn the self-energy Σ̂(ω). Equa-
tions (8)–(10) define the self-consistent DMFT procedure
for computing the self-energy Σ̂(ω).
Solving the impurity problem given by (9) is

the computationally most demanding step in most
DMFT calculations. A variety of solvers —each suitable
for a certain region of parameters— is available to deal
with the impurity problem. An overview over the different
techniques can be found in, e.g., ref. [5]. Since we are
interested in describing a Mott insulator a suitable
method for solving the impurity problem is an expansion
in the hybridization strength in the so-called non-crossing
approximation (NCA) [23].

Results. – In order to show how the HYF method effi-
ciently improves the gap of band insulators in compar-
ison with conventional DFT methods we first perform
LDA and HYF calculations of La2O3 which is simi-
lar to Ce2O3 but does not have the strongly correlated
4f -electrons. It is a typical band insulator with a reported
band gap of about 5.5 eV between the O 2p valence band
and the La 5d conduction band [11]. For the LDA and
HYF calculations we employ here and in the following
LDA+DMFT and HYF+DMFT calculations of Ce2O3
the CRYSTAL06 ab initio electronic structure program for
crystalline solids [24] together with a Gaussian basis set
and pseudo potential by Cundari and Stevens tailored for
the rare-earth series elements [25]. The basis set retains
the 4f , 5s, 5p, 5d, 6s and 6p shells for the electronic-
structure calculations while the inner shells are described
by an effective core pseudo potential. In the self-consistent
LDA and HYF calculations the irreducible Brillouin zone
is sampled by 193 k -points while in the DMFT calculations
the entire Brillouin zone is sampled by 1000 k -points. The
DMFT calculations are performed at a finite temperature
of kBT = 0.2 eV. The LDA+DMFT and HYF+DMFT
calculations are not fully self-consistent in the charge
density [18].
Figure 1 shows a comparison between the density of

states (DOS) calculated with a pure LDA functional, on
the one hand, and the LDA20 HYF, on the other hand.
While in the LDA calculation the magnitude of the band
gap is underestimated as expected by more than 1.5 eV,
the HYF calculation does indeed give the experimental
value of the band gap of about 5.5 eV.
We would like to stress here that changing the LDA

or GGA functional part of the HYF does not alter the
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Fig. 1: (Color online) DOS of La2O3 calculated with an
LDA functional (dashed red line) and with the LDA20 HYF
(continuous blue line).

results significantly. In fact, we have obtained very similar
results and the correct magnitude of the band gap also
with the popular B3LYP or B3PW functionals. In contrast
the results depend quite strongly on the exact amount
of Hartree-Fock exchange. Thus increasing the amount
of Hartree-Fock exchange to 25% already increases the
magnitude of the band gap to about 6 eV.
To demonstrate the above-developed HYF+DMFT

method we apply it now to the exemplary case of Ce2O3.
As before we employ the LDA20 HYF which reproduces
correctly the band gap of La2O3. The starting point is
a HYF calculation of the paramagnetic phase of Ce2O3
which results in a metallic state with the Fermi level in the
4f -band. In order to prevent excessive symmetry breaking
of the Ce 4f -orbitals prior to the DMFT calculations, the
calculation is done at a finite temperature of kBT ≈ 0.5 eV.
In spite of the quite high temperature and although

the crystal field splitting is actually quite weak (of order
0.1 eV), the orbital symmetry of the 4f -orbitals has been
broken: the energy difference between the lowest and the
highest 4f -orbital is about 1.2 eV. The reason for the
symmetry breaking is the Hartree-Fock contribution to
the HYF which tends to break symmetries to lower
the energy of the system so that those 4f -orbitals that
are slightly favored by the weak crystal field splitting
become more occupied during the self-consistent solu-
tion of the KS equations while those unfavored by the
crystal field splitting become less occupied. Therefore
the splitting is strongly enhanced by the Hartree-Fock
term. Since the Hartree-Fock term is the principal respon-
sible for the symmetry breaking the energy difference
between the lowest and the highest 4f -orbital is reduced
to 0.4 eV when applying the HYF DCC scheme outlined
above, partially restoring the symmetry. This can be
understood by considering the orbital dependence of the
HYF DCC (7) which shifts occupied orbitals less than
unoccupied orbitals decreasing the symmetry breaking.
At lower temperatures the symmetry breaking becomes
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Fig. 2: (Color online) Total DOS (dashed red line) and
partial Ce 4f DOS (continuous blue line) of Ce2O3 calculated
with LDA+DMFT (a) and compared to the HYF+DMFT
approach (b) as explained in the text. The on-site Coulomb
repulsion for the DMFT calculation is U = 5 eV and J = 0.2 eV
in both cases.

even stronger: e.g. for kBT ≈ 0.2 eV the splitting of the
4f -orbitals is still of about 2.3 eV after applying the DCC.
We note that the on-site Coulomb repulsion αVaaaa

corresponding to the Hartree-Fock contribution is about
5 eV. This value is only slightly smaller than the U usually
employed for the Ce 4f -orbitals in actual LDA+U and
DMFT calculations [15,16,18] which is between 5.5 eV
and 6.5 eV. This again points to the correctness of the
interpretation of αVaaaa as a screened Coulomb interaction
similar to the U of the LDA+U method [14].
In fig. 2 we compare DMFT calculations (a) on top

of the plain LDA calculation and (b) on top of the
LDA20 HYF calculations. In both cases the 4f -band
splits into a lower Hubbard band filled with one elec-
tron per Ce atom and an upper unoccupied Hubbard
band. We take αVaaaa = 5 eV as an estimate for U
and similarly αVabba = 0.2 eV as an estimate for J. The
resulting band gap between the occupied 4f Hubbard
band and the empty 5d conduction band is about 2.3 eV
in both cases, which is in very good agreement with the
measured band gap of 2.5 eV [11]. The agreement can
be improved by slightly increasing U to about 5.5 eV.
Most importantly, the pd-gap between the occupied O
2p-bands and the unoccupied Ce 5d-bands is 5.5 eV in
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the HYF+DMFT calculation and is thus exactly the
experimentally measured pd-gap of about 5.5 eV. This
is a considerable improvement over the LDA+DMFT
where the pd-gap is only of about 4 eV. The occupancy
Nf of the Ce 4f -shell is very similar in both methods: we
find Nf = 1.00 for the LDA+DMFT, and Nf = 0.98 for
the HYF+DMFT calculation. Finally, we mention that
we have also obtained satisfactory results (not shown) for
the Nd2O3 compound using the same methodology.

Conclusions. – In conclusion, we have proposed a new
method that combines the HYF approach with DMFT.
We have shown that this HYF+DMFT method gives a
qualitatively and quantitatively correct description of the
electronic structure of Ce2O3 as a prototypical example of
the strongly correlated insulating rare-earth compounds.
While the HYF part fixes the magnitude of the pd-band
gap which is underestimated in the LDA+DMFT
approach, the DMFT part takes care of the strongly
localized 4f -electrons which are not properly taken into
account within conventional KS band theory. It thus
predicts correctly the opening of the Mott-Hubbard gap in
the Ce 4f -band in addition to the band gap between the
O 2p valence band and the Ce 5d conduction band. While
the HYF is computationally slightly more expensive than
the LDA, its cost is either comparable or less than that
of the DMFT calculation. It is also computationally
considerably less demanding than the GW approximation
which gives an accurate description of the quasi-particle
spectra of weakly correlated materials [26,27] and can
be combined with DMFT in a natural way [28]. Hence,
the HYF+DMFT approach is an attractive avenue for
improving the overall accuracy of spectra in materials
containing both correlated and uncorrelated electrons at
reasonable computational cost.
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