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Pseudogaps in the-J model: An extended dynamical mean-field theory study
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We investigate the highly incoherent regime of hole-doped two-dimensional Mott-Hubbard insulators at
moderately small doping and temperatures 0.1J, whereJ is the exchange coupling. Within an extended
dynamical mean-field theory of thteJ model and a generalized noncrossing approximation we calculate the
single-particle spectral function, the dynamical susceptibility, and thermodynamic and transport quantities.
Short-ranged antiferromagnetic fluctuations lead to strongly incoherent single-particle dynamics, large entropy,
and large electrical resistivity. At low doping a pseudogap is found to open up in both the single-particle and
spin excitation spectra, leading to a decrease in entropy and resistivity. The Hall coefficient changes sign to
positive values upon lowering the doping level and increases inversely proportiofial to

DOI: 10.1103/PhysRevB.68.155119 PACS nunt®er71.30:+h, 74.72—h, 71.10.Hf

[. INTRODUCTION mionic excitations. This temperature regime is bounded from
below by possible antiferromagnetic, superconducting, or
Strongly interacting Fermi systems on a two-dimensionabther ordered states. The incoherent regime characterized by

(2D) lattice have been a focus of interest ever since higha large single-particle decay rate kn-t is confined to small
temperature superconductor materials were discovered idoping levelss,< §<0.3 and crosses over into a Fermi lig-
1986. The unusual properties of these materials, in particulajid state at5=0.3.
in the normal conducting phase, have led to the hypothesis A minimal model encompassing the physics described
that the usual Landau Fermi liquid theory may not be appli-gpove is the-J model. It is well known that the interplay of
cable in this caseA widely accepted view holds that these nopning and local correlations induced by the on-site Cou-
systems may be considered as hole-doped Mott-Hubbard ifjgmp interaction may be captured in dynamical mean-field
sulators. The correlations present in a Mott-Hubbard 'nSUIafheory, in which the lattice model is mapped onto a quantum

tor are characterized by strongly suppressed charge ﬂ”Ctuﬂﬁpuriw coupled to a fermionic bath in a self-consistent

:Irc())rr]r? fﬁgittr%r:heoﬁosr;f;rg'gjﬂ r::gprzmglsci)f thaenz()le?h;iiglgnq‘ashion‘."s In the same spirit the nearest-neighbor exchange
ong ) pulsibh) : .interaction of a given spin to its neighboring spins may be

guantum spin fluctuations governed by the antiferromagnetic . . . o
pproximated by a dynamically fluctuating bosonic field, to

nearest-neighbor spin exchange interaction. The interplay 3 . . 7 ) :
the motion of holes with the antiferromagnetically correlate %.e determined self-consistent!y.In this way the two prin-

spin background is the central problem of hole-doped MottCiPal Processes—constrained hopping and spin exchange
Hubbard insulators. Despite an extraordinary effort by manyteraction—may be fully incorporated on the same footing,
theorists and a correspondingly large number of papers wen the level of short-range correlations. _
believe it to be fair to say that a thorough understanding of AS reviewed in Sec. Il, the extended dynamical mean-
this problem is still lacking. field theory(EDMFT) for the two-dimensionai-J model is

The ground state of the Mott insulating state of electrongbtained by approximating the single-particle self-energy
on a square lattice at half-filling is expected to be antiferro>k(w) and the two-particle self-energyM(w) by
magnetically ordere&?® Doping with holes leads to a rapid momentum-independent functions(w) andM(w) are ob-
destruction of long-range order, at a critical concentratipn tained by equating the locéle., the momentum-integrated
of a few percent doping. For larger dopings there is evidencé&ingle-particle Green's function and spin susceptibility, re-
for strong antiferromagnetic spin fluctuations of relatively spectively, with the corresponding quantities of an extended
short range. Anderson impurity model, featuring a fermionic and a

In this paper we undertake to explore the consequences ®Psonic bath to be determined self-consistently. For the bare
strong incoherent and locéle., nearest-neighbpspin fluc-  hopping integrals and exchange couplings we use a nearest-
tuations on the dynamics of charge carriers and on the thefeighbor tight-binding model on the square lattice. The local
modynamics of the systems. We also investigate how th@pproximation is better the higher the spatial dimension
single-particle properties feed back into the spin dynamicsand becomes exact fat—c, provided the hopping ampli-
Our approach is focused on the temperature regime o 0.1tudet and the exchange couplingare scaled a#/+/d and
=T=t (J=0.3 in the cuprateswhereJ is the exchange J/\/d. This scaling is possible in the paramagnetic regime.
constant and is the nearest-neighbor hopping amplitude. InMost of the methods employed for the solution of the Ander-
this regime we expect strong quantum and thermal fluctuason impurity or Kondo problem do not work here. We use
tions driven by competing interactions to decohere the ferself-consistent perturbation theory in the form of conserving
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approximation$® and the exact projection onto the Hilbert — Despite the similarity of the numerical results, quite dif-
space without double occupané@mit U—«). We are in- ferent explanations for the observed pseudogap physics have
terested in describing the highly incoherent regime at smalpeen suggested, ranging from short-range spin correlations,
doping levels and not too low temperatures, where the spegpin-charge separation, and resonant valence WH&WB)
tral functions are broad and relatively featureless. In this rephysics® to effects of the upper Hubbard band and current
gime we expect vertex corrections and higher-order proCOffElationS inVOlVing three neighboring Slflégy construc-
cesses, in general, to change the characteristic parametdi@n our approximation scheme is not able to describe such
like maximum values, peak widths, and gap widths of theintersite correlations or RVB singlets and does not include
dynamic quantities by correction terms of order unity, but Wethe upper Hubbard band: nevertheless, the overall results are
do not expect that these contributions lead to more coherend@ialitatively very similar. We take this as a strong indication
or new collective behavior. In this spirit we approximate all that neither short-range magnetic or current correlations nor
self-energies by their lowest order self-consistent perturbaRVB physics is the underlying reason but argue that there is
tion theory expressionén the hopping parameter and ex- another generic mechanism for pseudogap formation: The
change coupling The resulting theory, presented in Sec. 11, strongly incoherent dynamics captured in our scheme as well
is an extension of the non_crossing approximdﬁdNCA) as those of Refs. 16 and 17 appears to be the dominant fea-
including the bosonic bath. ture of the Hubbard model as well as thd model in the

The results of this approximation scheme for thg  low-energy sector (0= w=t) for small doping. Therefore
model are presented in Sec. IV. It turns out that nearestPseudogap formation seems to be a generic property of any
neighbor spin fluctuations are sufficient to create astrongly incoherent Fermi system close to a Mott insulator.
pseudogap in the Sing|e-partic|e Spectrum and in the Sp|H1 other WOde, the existence of a pseudogap neither requires
excitation spectrum aj vectors away from ﬁ-'ﬂ-)’ for small S|OW|y fluctuating, finite-range-ordered domaiftentiferro-
dopings 5<0.1, similar to what is seen in angle-resolved Magnetic, superconducting’ nor a local resonance state.
photoemission spectroscogRPES experiments and in
the magnetic properti€€:'® The pseudogap scales with Il. EXTENDED DYNAMICAL MEAN-FIELD
There are several indications that Fermi liquid behavior is THEORY OF THE T-J MODEL
violated for 6=0.2. Most noteworthy, the effective chemical
potential is found to move from the center of the band up to
the band edge, as the doping is decreased to small values.
6 grows beyond 0.25, however, Fermi liquid behavior ap-
pears to be restored. The entropy turns out to be large in the L 1
range 0.% 6=<0.2 and is reduced on both sides of this inter- H =Z tijciTch(,Jr > 2 JiS-§, (1)
val by the pseudogap and incipient Fermi liquid behavior, b b
respectively. The resistivity is dom_ir_lateo_l by strong inCOher'Where$= is a_/’(‘_’:iT 7...G.., is the spin operator at lattice
ent scattering, and the Hall coefficient is found to be hoIeSitei + denotes the vector of Pauli matrices. & @, ) are
like, «1/8, for small 8§, again resembling the observed ’ ; &)

behavior* Finally we note that in dimensions less or equalthe hopping amplitudegexchange interactionconnecting

t0 2. EDMET does not allow for a continuous phase transi_sitesi andj. For the numerical evaluation to be discussed
o ; . P .- later we will use a tight-binding model on a two-dimensional
tion to an antiferromagnetically ordered state at any f|n|tes uare latticet — —ts. . 3=38 - where 7 labels
temperature, in accordance with the Mermin-Wagner theo>J g Lt = LT

rem, as this would require the static local spin susceptibility’€arest-neighbor sites. The ope_rad:ﬁ,r (ciy) createsanni-
to diverge and this is forbidden by its self-consistent cou-hilates an electron at sitewith spin projectiono at a singly
pling within EDMFT (see discussion in Sec)\VSome of the occupied Iatt|ce~5|te. In terms of usual electron operators
results have been reported in Ref. 15. ¢l (ci,) one hag! =c! (1-n; _,), wheren;,=c/ c;, is
Results similar to ours have been found in two recenthe occupation number operator. In this way occupation of
works using DMFT for a cluster of sites within the Hubbard lattice sites by two electrons with spiisand | is avoided,
model. Maieret al® applied the dynamical cluster approxi- which would cost the large Hubbard energy We will be
mation (DCA) for various cluster sizes up to 64 sites to theinterested in electron densities close to half-filing of the
Hubbard model in the intermediate-coupling regime@ ( band, such that2 n;,)=n=1— 6, where5<1 is the dop-
~bandwidth). The DCA equations were solved with quan-ing concentration of holes.
tum Monte CarlodlQMC) techniques down to room tempera-  Whereas at exactly half-filling, wheR reduces to the
ture. The authors of Ref. 16 identified signals for non-Fermi-Heisenberg model, the ground state has antiferromagnetic
liguid behavior at low dopingd<0.1 and found a large long-range order, we anticipate that this will not be the case
residual scattering rate and a pronounced pseudogap at Idar sufficiently large dopings> &, (in experiments.=0.03
doping. In Ref. 17, Stanescu and Phillips studied the Hubfor low T) or large T. In this regime it is reasonable to
bard model at intermediate coupling within a two-site clusterassume the antiferromagnetic correlations in the system to be
approach using the noncrossing approximation as a quantusiort ranged. We assume furthermore that additional forms
impurity solver at not too low temperatures. It is again foundof long-range ordefsuch as superconductivjtyhat may be
that Luttinger’s theorem appears to be violated for low dop-possible ground states of theJ model are confined to a
ing in a regime where a pseudogap opens. lower-temperature regime, such that the corresponding fluc-

The standard model embodying the physics of the hole-
gped Mott-Hubbard insulator is theJ model, defined by
the Hamiltonian
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tuations are subdominant at elevated temperatures. Conserefore follow Refs. 6 and 7 and extend the dynamical
qguently, one expects an extended high-temperature reginmaean-field idea for the paramagnetic phase by introducing a
where short-ranged spin fluctuations lead to a highly incofluctuating magnetic field coupling to the local spin as rep-
herent metallic state, as observed in high-temperature supaesenting an additional class of degrees of freedom of the
conductors, with anomalous transport propertlesge, non- medium. This type of approximation, termed “extended
Fermi-liquid-type electrical resistivity, holelike Hall DMFT,” has been applied to the Kondo lattice mdtiahd
constanl, large entropy, broad “quasiparticle” peaks in pho- the extended Hubbard modelt is important to note that
toemission, etc. It is our aim to investigate this regime withinEDMFT (i.e., the neglecting of the momentum dependences
an approximation scheme which neglects most of the longemf X and M) becomes exact in the limit of infinite dimen-
range spatial correlations, but keeps the dominant shorsionsd— o, providedt andJ are scaled at/\/d andJ/\/d,

range spin correlations. respectively. We shall use this property in deriving the
The single-particle dynamics and two-particle dynamicsEDMFT equationgsee Appendix A We will, however, re-
of the model are described by the Green’s function gard EDMFT as an approximation applied in finite dimen-
p sions and, as such, will use the tight-binding expressions for
G i - _ d eiwr T E "é 0 €y anqu Valid. ind=2. . . .
koll@) fo €T Lo 7)o (0)) To summarize, the EDMFT is probably best visualized by

considering a single-site, the “impurity,” and its coupling to
_ 1 2 the surrounding “medium.” There are two types of coupling
o+ u—e—2y (iw) processes, as is evident from the Hamiltonian
(i) Hopping to and from the “impurity” into the medium,
as in the Anderson impurity modéh the limit of infinite U,
as a consequence of the no double occupancy constraint

and by the spin susceptibility

Xq.o(iQ)= fﬁdre“”{TTS_q'a( 7)Sq.4(0)) The medium is modeled by a noninteracting fermion system
0 (the “conduction electrong;, whose local density of states
1 has to be determined self-consistently.
= (3) (i) Exchange coupling of the local spin at the “impurity”
Jg T Mq,(i€2) site to the spins of the medium. In the lindt—oo the two

Here 8 is the inverse temperatuf® (we employ units with ~components of the medium—fermioksee aboveand spin
ks=%i=1), » andQ are fermionic and bosonic Matsubara fluctuations—are completely decoupled. We do not expect
frequencies, ané, andJ, are the lattice Fourier transforms that this approximation holds in 2D for low temperatures.
of the hopping amplitudes; and the exchange couplings But in the regime considered in this paper, where eleptrons
Jij, respectively. While the self-energies (iw) and are hlghly mcoherer!t, we bell_eve that such a_modellng is
M(iw) are momentum dependent in general, the observa@Ppropriate. The spin qu_ctuatlons of the medium are de-
tion that the fluctuations in the system are short ranged in thcribed by avectop bosonic bath, whose spectrum again has
regime we are interested in suggests that a “local” approxit0 Pe determined self-consistently. _ _
mation, neglecting the momentum dependenc& aind M In thls_ way one |s_Ied to a generalized quantum impurity
altogether, may be a good starting point. We therefore emodel with Hamiltonian

ploy in this paper the main approximation

2 @)=2(w) @ HEDMFTZZ Ekcla-ckrr—'_VE (Cl(ra(r—i_H'C')_lu’nd
and ko ko
Mq(@)=M (o), (5) +; wqha-th% Se-(hg+h'y). (6)

thus capturing the effect of local fluctuations in time, which

we expect to be important in the presence of strong inelastic o _ o o _

scattering. A formal derivation ofH gpyer in the limit d—« is given in
The momentum independence Bfand M allows us to  Appendix A. Herea:', is a projected fermion creation opera-

map the lattice problem onto an Anderson impurity problemor for the impurity orbital(the original operatot;, at the
Wher_e the host _ me_dlum has to be d_etermlned .Se”'chosen “mpurity’ site 0, ny=3,4d7d., and S
consistently. Considering first the single-particle properties—" ~t ~ o v
i.e., S (w)—the corresponding DMFT has been widely used= 22,0/ d5750'dy . The fermionic bath is represented by
to calculate properties of the Hubbard model and periodidree fermion operators{,,, the bosonic bath by free boson
Anderson modet3 One maps the problem onto an Andersonoperators h! ,, «=1,2,3 with hy=(hg1,hg2,hg3), and
impurity embedded in a fermionic bath. Applied to thd q(hgt+ hiq) plays the role of a fluctuating local magnetic
model it amounts to treating the exchange interaction irfield. The excitation spectrum of the bath degrees of free-
mean-field theory. This is not sufficient to allow us to main-dom, E, and w,, as well as the coupling constantsand |

tain the balance between dynamical hopping processes am@ve to be determined self-consistently by equating both the

spin fluctuations, which is at the heart of thd model. We  single-particle Green'’s function and the spin susceptibility of
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the impurity modelGiy,p, ximp With the local Green’s func-
tion G, and the local susceptibilityy,,. of the lattice
model,

| B
Gimp,oli®)= - fo dre'*"(T,d,()d}(0))=Goc(iw),

B !
Ximp,a(iw):fo d7e'(T.S,(7)S,(0)) = xioc(iw). (7)

The localG and y are obtained from their lattice counter-

parts(2) and(3), taking into account Eq%4) and(5), and by
summation over all momenta:

G|oc<w>=§ Gylio), ®)

Xioc(®) = g Xq(i o). 9)

As shown in Appendix A, the self-energigsandM also
characterize the impurity Green'’s functions

Gimplio)=[io+u—V?Gio)-2(iw)]"", (10
Ximp(i®)=[M—=1?G] 7%, (11)
where
Geliw)=2> pr—— (12)
o qu
Gh(m)_g o= (o (13

so that the system of equatio(®—(11) is closed. It follows

from Egs.(10) and(11) that only the densities of states of the

baths,

2
Adw)= V?Im Gc(w—i0)=v22k Sw—Ey) (14

and

2

=|2% [8(w0—wg)— 8w+ wg)], (15)
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the numerical renormalization group metfiddre not appli-
cable in the case of a bosonic bath. The quantum Monte
Carlo method has been successfully applied to solve the
EDMFT problem for an anisotropic Kondo lattice model
with Ising-type spin coupling®?!but it is extremely difficult
to treat Heisenberg couplings with manageable effort. The
only method left to us is self-consistent perturbation theory
like the NCA or the conservingl-matrix approximation
(CTMA).910

We will therefore employ a conserving diagrammatic ap-
proximation in which infinite classes of perturbation theory
in V andl are resummed. We are aiming at a level of ap-
proximation corresponding to the NCA for the usual Ander-
son model. A convenient way to phrase the perturbation
theory in the hopping/ and the exchange coupliigin the
presence of an infinitely strong Coulomb repulsidnis in
terms of a pseudoparticle representation. We define pseudo-
fermion operatorsff,,a:T,l, creating the singly occupied
impurity state and the slave boson operatbrcreating the
empty impurity level, when acting on a corresponding
vacuum staté? Since the local level is either empty or singly
occupied, the operator constra@t=b'b+32 f'f =1 has
to be satisfied at all times. The constraint is enforced exactly
by adding a term\ Q to the Hamiltonian and taking the limit
N—x [see Eq(23) below]. The projected local electron op-

eratorsd, may then be replaced by'f ., turning the prob-
lem into a many-body system of pseudofermiains and

slave bosons, interacting with the fermions,, and bosons
hy of the bath.

It is essential for any approximation scheme to respect the
projection and not to allow transitions between different sec-
tors of Hilbert space labeled b9. To this end we employ a
conserving approximation specified by a generating
Luttinger-Ward-type functional® from which all self-
energies are obtained as functional derivatives,
=6®/5G,. The building blocks ofd are the dressed
Green’s functions of pseudofermionS; (depicted as a
dashed ling slave boson$s, (wiggly line), bath fermions
G, (solid ling), and bath boson&,, (curly line) and the ver-
tices corresponding to hoppingand exchange interactidn

In the strongly incoherent regime we are interested in,
vertex corrections are not expected to change the behavior in
a qualitative way. They may, however, lead to quantitative
changes. In this paper we would like to explore the leading
behavior first, so that we may neglect vertex corrections for
the moment. The lowest-order terms ®fin self-consistent
perturbation theory in the bare coupling constanend| are
shown in Fig. 1a). The first one is the known generating
functional of the NCA, whereas the second one is new and

are needed. For practical purposes we have included the coimvolves the bath bosons. The corresponding self-energies
pling constantsy/ andl, respectively, in the definitions of the are shown in Fig. (b), for the pseudofermions(;) and

density of states.

Ill. GENERALIZED NONCROSSING APPROXIMATION

The solution of the quantum impurity mod@) for given

A.(w) andD(w) is difficult. Many of the methods devel-
oped in the past for solving Anderson impurity models in the

context of DMFT such as iterated perturbation thécapd

slave bosonsY,;), as well as the bath fermion& () and the
bath bosonsY¥,). We note that the impurity single-particle
Green’s function after projection\(— ) is related ta> . by?

1
Gimp(iw)zwzc(iw) (16)
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FIG. 1. The two lowest-order contributions to the Luttinger-
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Next one may transform the Matsubara frequency sums into
frequency integrals along the branch cuts of the Green’s
functions and perform the analytical continuation to the real
frequency axis. The projection to the singly occupied sector
of Hilbert space may now be carried out. To this end the
frequency arguments of the pseudoparticle Green'’s functions
are shifted by the chemical potentialand the limit\ — oo is
taken. This yields

22?;’°‘><w+i0>=f def(— €A (6)Gplw—£+i0),
(209

Ward functional® and corresponding self-energies. Only diagrams

with no line crossings are taken into acco(mgeneralization of the
NCA). The dashedwavy) line denotes the pseudofermiguseudo-

boson Green’s functionG; (Gy), and the solid lines represent the

conduction electron Green’s functio,, the curly line the cor-

1
Egib)(w-f-iO):Z 2 TZU,Tg,Uf dén(é)

XDp,(£)Gyor(w+&+i0), (20D

relator G,, of the bosonic bath. Also shown are the pseudo-self-

energies as well as self-energies of the baths.

and likewise the impurity spin susceptibility is proportional

to the bath boson self-energy

1
Ximp(i@)=— I—ZEh(iw)- 17

2b<w+i0>=2 dEf(€)Ace(£)Gio(w+E+i0),
(200

wheref(£) andn(§) are the Fermi and Bose functions, re-
spectively, andA (&) andD(€) are spectral functions of the
fermionic and bosonic baths as defined in Edd) and(15).

Cutting a pseudofermion line in each of the two diagrams of Since we incorporated the factors ¥f and1? into the

the generating functional, Fig(d), one finds two diagrams
for the pseudofermion self-energy

Si(iw)=2(i0)+32(iw) (18)
as depicted in Fig. (b). Likewise, the slave boson self-
energy,, the fermion bath self-energy., and the boson

bath self-energy>,, are obtained by cutting the respective

Green’s function lines in the two diagrams ®f The corre-
sponding analytical expressions are given by

3EN(w)=—V2TY, G lin')Gylio—iw’), (193
(2b)/; 1 2 a @
EfU (Iw)=—ZI 2 T Tl
X X Gho(iQ)Gi,(iw+i€), (19b)
[¢)

S,(iQ)=V2T D, G (i )G (iQ+in'),

’
o,

(199

S (iw)= —v%% Gt (iw+iQ)GL(iQ), (190

1
Eha(iﬂ)z ZIZZ TZG.;TZ;UT

X > Gi(iow)Gr(iow’ +iQ), (199

whereiw, iow’, andi{) are fermionic and bosonic Matsub-
ara frequencies, respectively;,c’=1,|; and «=1,2,3.

definition,A; andD,, are not normalized anymore, their total
weight being given by? and|?, respectively.

The projected pseudoparticle Green’s functions are ex-
pressed in terms of their self-energies as

1

Ciloti0) = =S (0 F10)’

(219

1
o—Ng—2p(w+i0)’

Gp(w+i0)= (21b
where the(finite) energy shift\ ; is determined by fixing the
local chargeQ,®

o

= f dwe A®

Here the subscripG specifies an expectation value in the
grand canonical ensemble anlli(w)=—(1/7)ImG¢(w
+i0), etc.

The remaining self-energie¥ . and X, contain one
pseudoparticle loop each and are therefogs #*. The pro-
jected expectation value of any operator that vanishes in the
Q=0 subspace is then given By

(A
A=l e

using Eq.(22). It follows that

A—

lim eﬁ”< >t o+ bTb>
G

> Ar(w)+A(w)|=1. (22)

= lim e (A)g

A—00

(23
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Ecvg(w+i0)=V2f dée PG, (é+w+i0)Ay (&)

—Ato(£)Gp(§~w—i0)].

With the help of Eq.(16) we find the imaginary part of the
impurity Green’s function in the compact form

(24)

w

f(—w)

f deePEA(£+0)A(E).
(25

IMGjmp,o(w+i0)=—

From Eq.(19e one finds after analytical continuation and
projection
|2
Sholw+i0)= 7 E TZU,TZrUf dée B¢
X[At4(8)Giyr(§+ 0 +i0)

TGt (§—w—10)At(§)].

The impurity susceptibility is obtained from Egel7) and
(26) as

(26)

) T
IM Ximp,o(@+i0)= In(e) z Too' Tor g

T,0

deée_ﬁgAfa(f—w)Aw(f)- (27)

Equations (7)—(13), together with the “impurity solver,”
Egs.(18), (198-(190), (22), (25), and(27) have been solved

PHYSICAL REVIEW B 68, 155119 (2003

T/t=0.1 =0.015
=== I/=0

1

S\ f o e

0.05

______

—
--- Ti=0.6 |
— T/=0.4
—m T=0.2
N T/t=0.12_]
A — T/=0.06
6=0.04 J/t=0.3

Alnc(m)

0.05

-
-

-1
w/t

FIG. 2. The local spectral function plotted vs frequency for four
differentJ/t=0, 0.1, 0.2, and 0.3 and=0.1t for doping level of
6=0.015. The evolution of the pseudogap of widths clearly
visible. The zero of energy is set at the chemical potentialhe
inset shows temperature dependence of the local spectral function at
the doping level 4% and fai=0.3.

IV. RESULTS

A. Local spectral function: Pseudogap
and non-Fermi-liquid physics

The most striking result of our work is the appearance of
a pseudogap in the local electron spectral funchigp(w) at
small hole doping and low temperatures. For the purpose of
this paper we define the pseudogap as a pronounced reduc-
tion of the density of states at the Fermi energy. Figure 2
shows how the pseudogap starts to form when the exchange

self-consistently. Starting with given initial values of the fer- interactionJ is switched on, fo=0.015 andl =0.1t. In the
mionic and bosonic bath and pseudoparticle spectral fundimiting case ofJ=0, corresponding to the Hubbard model

tionsA;(&) andDy(€), the first approximation to the pair of
impurity Green’s functionsG,,. and y,,c as well as the

in the limit U—«, A,.(w) is characterized by a broad
maximum below the Fermi levely(=0), interpreted as the

pseudoparticle spectral functions is determined. Using théower Hubbard band, and a narrow peéiquasiparticle

identities

1
Ge=>, —— (28)
loc ; Gl + V2G,— €

1
Xloczz (29

71 L
T Xjoe—12GptJ,

which follow from Egs.(2), (7), (8), (10) and (3), (7), (9),
(11), the new bath spectral functioms,= (— 1/7)Im V?G,
and D= (—1/7)Im12G,, may be deduced. With these and

peak”) abovew=0. As J is switched on, the quasiparticle
peak disappears rapidly and the weight under it appears to be
shifted a distance-J below the Fermi level, forming a peak-
dip-hump structure. The width of the pseudogap appears to
scale withJ. At the same time the spectral function develops
a tail abovew=0 reaching far {-t) above the bare band
edge. It is instructive to observe how the pseudogap disap-
pears for a giveld=0.3 at T=0.0& with increasing doping
level (Fig. 3). The pseudogap vanishes and the quasiparticle
peak begins to appear at dopings aboéwe0.1. In the inset

of Fig. 2 the temperature dependence of the pseudogap fea-
ture is shown atv=0.04. Note thatA,,.(0=0) is weakly

the updated pseudoparticle Green’s functions one determinedfected, as the main effect of temperature is a smearing of

new Gy, Xioc: Gi, andG, with the help of the impurity

the pseudogap structure. We note in passing that the bulk of

solver. The iteration is continued until convergence is foundhe spectral weight in the lower Hubbard band is shifted
to the desired level. This process is found to converge well iigidly with the chemical potential and only a section of

the temperature regim&=0.04 using a nearest-neighbor
tight-binding model, where is the hopping amplitude. At
lower T a solution could not be found anymore. In the fol-

width ~4 max(J, 6t) at the chemical potential is changing
with the doping.
The formation of the pseudogap at a low dopidg

lowing we will present the results of the numerical evalua-=0.04 and fixed]=0.3 as the temperature is lowered from
tion before discussing in detail the reasons for the breakdowm =2J down to T=0.2] is shown in the inset of Fig. 2. In

of the solution in the low-temperature domain.

order to quantify the appearance of the pseudogap for given
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band, signaling the availability of states even above the lat-
ter. By contrast, the validity of Luttinger’'s theorem would
require that the chemical potential be located in the center of
the band, approaching,=0 in the limit 5— 0. The fact that
Meff IS Moving up towards the upper band edgedes 0 is a
strong and unequivocal signal of non-Fermi-liquid
behavior—it is only possible for a highly incoherent metal
with a large ImX. It is interesting to recall that in DMFT for
the Hubbard modelwhich in the limitU—cc is identical to

the t-J model forJ—0) one finds Fermi liquid behavior at
low temperatures and .= ug. Even at not so low tempera-
tures (T=0.08) for J=0, wei follows uqy except at rather
low doping values5=<0.05, where a strong temperature de-
pendence appears.

That indeed strong inelastic scattering drives the effective
chemical potential out of the band and that this induces a
reduction of the density of states is shown in Appendix B for
a toy model describing the pseudogap formation in a doped
which the curvature of\,.(w) at =0 changes sign from pandinsulator in the presence of strong inelastic scattering.
negative to positive values asis lowered. In the inset of pEqr sufficiently low 8, uey moves beyond the bare band
Fig. 3 theT* values determined in this way are plotted ver- edge as the scattering strength—jlen 3|—is increased. As
susé. T* is seen to drop rapidly witl, tending to zero at 3 consequence, the local spectral function at the Fermi level
0~0.15. These results are reminiscent of what is seen igrops dramatically. Also for a doped Mott insulator and a flat
ARPES experiments on high, superconductors: density of states, we show explicitly in Appendix B that a

How is the pseudogap generated? The clue to this quegseudogap is generated,if is moving from the center of
tion lies in the behavior of the effective chemical potentialthe lower Hubbard band to or above the upper band edge_
He= n—ReX(0), as afunction of doping. In Fig. 4/ie is Similar behavior has been found in Refs. 16 and 17 for
shown at a low temperaturé=0.0&, in comparison with  the Hubbard model at intermediate coupling. In Ref. 16 the
the effective chemical potential, of a Fermi liquid(which  dynamical cluster approximation involving up to 64 sites
due to Luttinger’s theorem and the momentum independenogas employed and the mean-field equations were solved by
of % coincides with the chemical potential of a noninteract-QMC simulation and the maximum entropy method, to effect
ing system. At doping levels6=0.2 one finds thajies CO-  the analytical continuation from imaginary to real frequen-
incides namely withuo, a necessary condition for Fermi cies. Maieret al!® interpreted the pseudogap found in their
liquid behavior. Upon lowering the doping concentration, spectra as generated by finite-range antiferromagnetic corre-
Meff IS seen to grow until ad~0.02 the upper edge of the lations on the cluster or as RVB physics. Note that in our
bare band is reachdthe zero of energy is fixed at the center approachfinite-range AF correlations and the formation of
of the tight-binding band In fact uet moves above the bare intersite singlets are not included as magnetic fluctuations on
neighboring sites are treated as uncorrelated. Since the re-

FIG. 3. The local spectral function plotted vs frequency Tor
=0.06 andJ/t= 0.3 for various hole-doping concentratiofsThe
inset shows the characteristic temperaflifewhere the pseudogap
opens(for the definition see the main tgxt

6 as a function ofT one may define the temperatufé at

Tyt

1 ——= 1)
o—o U z=H-ReZ K
K eff

05 =——

T =]

T/

0.5

sults of Ref. 16 are so similar to ours—including violations
of Luttinger’s theorem in the relevarit range—we suggest
that their pseudogap is created by the same mechanism we
identify as being responsible for our pseudogap: incoherent
fluctuations(see above In their approach the self-energy
and therefore the pseudogap show a pronounced momentum
dependence not captured by our approximation. Within the
picture sketched above, ka dependence ok, would give

rise to a momentum dependence of the “effective chemical
] potential” we=u—ReX, and therefore of the pseudogap.
Stanescu and Phillipsused a two-site cluster approach to
derive nonlocal DMFT equations. The quantum impurity
J model was solved by an adaptation of the noncrossing ap-
proximation. Again the results for the spectral functions are
in units of 4 vs doping forJ=0.3 andT=0.08 (left scale. The  Similar to ours. The authors claim that an effective low-

dashed line shows the effective chemical poteniiglof a Fermi ~ €Nergy model cannot be defined, as low- and high-energy
liquid at T=0 (see text Open circles mark the estimation for the Se€ctors are mixed in a dynamical way. We do not see any
Kondo temperatur@, vs doping as calculated from E(1) (right ~ reason for such an unusual situation, either from their paper
scalg. The arrow marks the position whefg is equal tol. Onlyin ~ Or from outside arguments. Rather, in the litdi&t or, more

the regime wherd is larger than] does the solution show the precisely, ifU is strong enough to generate a Mott gap, the

onset of a Fermi liquid phase. separation of the lower and upper Hubbard bands is well

FIG. 4. Open squares mark the effective chemical poteptial
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[\ 6=0.24 J1=0.3
4 - T=06
-- T/e=0.4
Iy - T/t=0.241
A T/i=0.16
— T/=0.08

Aloc(o‘))

1
1
: l'lT=O.081

”’T =0.6t

==l

FIG. 5. Temperature evolution of local spectral function for dop- FIG. 6. Quasiparticle renormalization amplitu@eplotted vs

ing level 5=0.24. In the main panel, the arrows show the position e nerature for various doping concentrations. The inset shows the

of the chemical potential while the inset shows spectra with theaginary part of the self-energy at zero frequency as a function of
chemical potential fixed ab=0. The evolution of broad quasipar-

: . . .. temperature.
ticle peak above the Fermi level is clearly visible.

defined, and a projection onto the lower band is justified. In Tk=VDmA(0) exp( - ZAMO ) (31
Ref. 17 the appearance of the pseudogap is attributed to o(0)
short-range (nearest-neighbor correlations, limiting the  Figure 4 showd  /t as a function ofs for the low tempera-
phase space for low-energy excitations. These correlationgire T=0.1t, usingD=2t. The Kondo temperature is seen
are identified as orbital ring currents flowing between threeo fall strongly with decreasing even at the highest value
adjacent sites. Since such effects are not included in ous=0.24 and approaches zero rapidly in the pseudogap re-
calculation and we nonetheless find a pseudogap and a vigime. The value wherd=J is indicated. In the regime
lation of Luttinger's theorem, very similar to Ref. 17, we T,<J (dotted lin@ one expects the exchange interaction to
conclude that the interpretation given in Ref. (&8 sketched pe of increasing importance, such that the interpretation in
above is not conclusive. terms of an Anderson impurity model loses its meaning.

We conclude that the behavior found in our scheme for |n the Fermi liquid regime the imaginary part of the self-
low doping—namely, pseudogap and non-Fermi-liquidenergy ofG,,. is expected to vary as
physics—is a generic feature of an incoherent metal. We
have found this incoherent state to be quite robust, e.g., IM3(w—i0)~t[w?+(7T)%]/TZ, (32

against changes in band structure. It is worth mentioning tha\}vhere the Kondo temperatulie. plavs the role of the renor-
Parcollet and Georg&srecently studied a-J model with P & play

- . . malized Fermi energy. The quadratic dependence is expected
randomJ, which is equivalent to our EDMFT equations for ) :
the Bethe lattice. They did not find indications for ato hold forw, T<T . The inset of Fig. 6 shows 1(0) as

pseudogap. We believe the reason is that they employ slav _fll_m(_:tt_lon ofT fo?r ?_op;ng Ievelts frorga= 0'3 down_to 0'?1'
boson mean-field theory and, thereby, miss the incohere Imiting - quadratic temperature dependence 1S not seen

part of the spectral function. A similar spin model has beerrNCe the lowest temperature reached in our evaluation is

considered before by Sachdev and®¥e. aboveTy (or, for 6>0.2, only slightly belowT).

At larger dopings the solution shows the onset of a Fermi . However, for=0.3 behavior consistent with Fermi lig-
liquid phase, which we now proceed to discuss. First weUId theory WOUld. smoot'hly match the results shown. For
show in Fig. 5 the local spectral function &=0.24 andJ sNrr(;a(I)I:eir_doplr;g, mtr?atrt_ltc_ulalr aroun£~?.1, Im= ta;th_T b
=0.3. With increasing temperature the quasiparticle pealil D 1S sotrﬂrge 'tha : F'S |mp|c?ss!d eb ohcqnnebc | W'S €
broadens and the chemical potential shifts to lower energied!aV!0r Smoothly with -a ‘=ermiliquid behavior Delowk

The value ofA(w) at the Fermi level increases with falling :0'.]1' 'A(‘jt Stit” fI:na]!Ier 5’t.|mzf 'ti seen go decrease with
temperature and tends to a limiting valueTas 0. oping, dué to the formation of the pseudogap.

; ; . - As a further indication of Fermi liquid behavior we evalu-
At lar ing the exchange interacti nimportan S . X
tlarge doping the exchange interactiaits unimportant ate the quasiparticle weight factdrdefined as

and the EDMFT model reduces to an Anderson impurity
model. We may estimate the hybridization widthof this JReS,
model from the density of states of the fermionic bath at the Z:( -

Fermi level @=0):

-1

o | (33

Figure 6 showsZ as a function of temperature fod
I'=7mA(w=0). (30  =0.02-0.3. A finite quasiparticle weight in the limit—0
would signal Fermi liquid behavior. It is seen that only for
The energy of the local orbitals,, according to Eq(6), is  the highest doping leveld=0.3 and 0.24 would an extrapo-
given by the chemical potentiedy= — x. An estimate of the lation toT=0 give a finite value. For smaller values &the
Kondo temperature is obtained from the conventional exZ factor appears to drop rapidly with decreasing temperature,
pressionT = /DT exp(E4/2I') as possibly extrapolating to zero.
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FIG. 7. The pseudofermion spectral function plotted vs fre-  FiG. 9. The local dynamical spin susceptibility plotted vs fre-
quency for four different values af The inset shows the evolution quency for four differentl/t and doping concentratiof=0.01.
of spectra by doping the system at constant0.3t.
temperature off =0.1t and forJ=0.3, the pseudogap fea-
ture at smalls is seen to smoothly cross over to the quasi-
particle peak at large doping.

B. Pseudoparticle spectral functions

The pseudofermion spectral functiéy(w) at 6=0.015
andT=0.1t is plotted versus/t in Fig. 7, for values ofl/t
from 0 to 0.3. While atJ=0 A;(w) is characterized by a
narrow peak at a frequeney~T and of width~T, increas- ) ) o
ing J leads to a rapid asymmetric broadening of the peak, of 1h€ dynamical spin susceptibility is expected to reveal
width Aw~J. Although in the limitT—0 for general rea- how the character of_spln fluctuat|ons_ depende_nts on doping
sons one expect;(w) [and alsoA,(w)] to acquire power- and exchange co.upllng constahtin F|.g. 9 the imaginary
law divergent behavior at the threshald=0,% the tempera- P&t 0f Xioc(w)/ @ is shown at low dopingy=0.01 and low
ture T=0.1t is too high to show the asymptotic behavior. At temperaturer=0.0a for various values od/t ranging from
large doping,6>0.2, when the Kondo temperatufig as 0to 0.3. A_sJ is increased, the_peak of Ima] x/ » broadens
defined in Eq(31) is larger thanJ, A¢(w) is hardly affected ~2nd the width is seen to be given Byw=J. The real part
by J. The doping dependence Af(w) atJ=0.%, as shown Rex(@=0)=x"(0) decreases with as shown in Fig. 9.

in the inset of Fig. 7, is weak. The characteristic energy scal&!OWeVer, there is no trace of a pseudogap inyg(w).
is max@,T)~J up to the highest doping 0=0.24 and, The pseudogap reveals itself in the spectrum of the self-
hence, is independent & energyM (w) of magnetic excitations, as shown in Fig. 10,

The pseudoboson spectral function shown in Fig. 8 igvhere ImM(w)=M"(«) is observed to develop a gap for
roughly speaking a mirror image of the lower Hubbard band@=1J- As analyzed in Sec. V, the pseudogap is caused by
As Jis switched on spectral weight is pushed from below thel2rge values of’(w), which force a redistribution of spec-
threshold atw=0 and from the far end of the Hubbard band {ral weight inM"(w) by way of the self-consistent feedback
into a peak at~J, emulating the peak-dip-hump structure °f X' (@) into M"(w). In Fig. 11, the momentum-resolved
in Aj,.(w) in the pseudogap regime. spin excitation spectrurp(’(;(w)/w is shown forJ=O.3_t, 1)

Both in the case of=0 and for5>0.2 a sharp quasipar- =0.01, andT=0.1t. Whereas a pronounced gap existgjat
ticle peak is observed to form it,(w) atw=0. The peakis Vvalues away from the antiferromagnetic wave vec@r
suppressed at temperatur€s Ty, which is why it is not = (7,7), nearQ the gap is filled in. This is due to the fact
seen in Fig. 8. In contrast t;(w), Ap(w) is strongly dop-  that in the region ofj space aroun@ not only is M"(w)
ing dependent, as shown in Fig. 8. At the moderately low

C. Dynamical spin susceptibility

T/t=0.1
0.15} 6=0.015
— J/t=0
------- J/=0.1 I
----- J=0.2 R . \
= 0.1 === Ji=0.3 0 1+
e R R ' (i 1 [ = };t=8é 7
<:Q = _— [ - t=0. s T z ]
4 ¥;[=%3] I:‘ é 0 -_ - J/t=03 /,,}/:./A,«v:,~..§.1:.,\v.\ o ]
0.05 / I / 4 ak // .// \-\ \\\ i
4 '. L / 7 AX \
f _ o ‘ 1 b o
| | '; -1 -0.5 0 0.5 1
0 0 1 w/t

FIG. 10. The spin self-energyl (w) plotted vs frequency for

FIG. 8. The pseudoboson spectral function for the same paranfour differentJ/t. The horizontal dotted lines mark the valaé,
eters as used in Fig. 7.

wherez=4 is the coordination number.
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FIG. 11. The momentum-dependent spin susceptibility along the FIG. 12. The inverse of dynamic correlation length plotted as a
(0,0)— (,7) axis plotted as a function of frequency for doping function of temperature for various doping levels. The curvedor
concentrations=0.01 and temperaturg=0.1t. =0 is taken from Ref. 27 and corresponds to the two-dimensional

Heisenberg model.
small for w=<J, but also the real part of the denominator of
Xq(w) vanishes, aM’(w)+J,—0 for g—Q and as the The total weight under the spectral functioAg(w) and
transition to the antiferromagnetically ordered state is apD;(w) is equal to the squares of the coupling constaffts
proached. Consequently, the rals'r‘tj’(w)/|)(q(w)|2 develops andl?, respectively. As shown in Appendix C, the coupling
pronounced peaks &b|~J rather than a pseudogap. In the constantv? is fixed by sum rules and is given by
local susceptibility the contribution fromg~Q tends to fill
in the pseudogap, which is therefore not discernible in Fig. 9. VZ2=2t%(1+ ). (35
The effect of approaching the ordered state is also observed
in the real part ofyy(w), shown in Fig. 11. The static In contrast, a similarly simple relation does not hold Fér
g-dependent susceptibility,(0) is seen to grow by two or- However,1* may be related to. andM as follows:
ders of magnitude agq is varied fromg=0 to q=Q. This

behavior reflects the effect of a large spin correlation length , [7do , 1 :
2 1 It turns out that the numerical evaluation yields
Xq0)= 55— (34)

23 24(g-Q)% 12~2J2(1- §). (37)

for q~Q (z=4 is the coordination number and length is The first moment of the eigenfrequencieg of the bosonic
measured in units of the lattice constanin Fig. 12 the  path is given by thé-sum rule

inverse correlation length is plotted verst& for J=0.3t
and for various doping levels. For comparison, the theoreti- . () (= dw
cal result for the Heisenberg modgio-loop order RG of quE 0g= T — OX[p(®), (39
the nonlinearc mode) given in Refs. 2 and 27limit & q 219 - T
=0) is shown as well. It appears to connect smoothly to the . .
curve for §=0.02. Figure 12 also serves to show that theWhere(e®)=dee’Ny(e) andNj(e) is the density of states
numerical solution ceases to existyg§(0)= 10%, as will be (DOS) of Jg.

discussed in Sec. V.

— 5=0.01 Ac/(21)’

D. Spectral functions of the fermionic and bosonic baths T g=g~(1)? QC/(Z’)Z ",4"‘\

The spectral functionA,(w) of the fermionic bath is 01F _ . 6=0.18 A;c T=0.1t J=0.3t ‘:"‘.‘ .

shown forJ=0.3 and atT=0.1t in Fig. 13. The imposed o Y L
self-consistency of the EDMFT equations has led to a drastic = TR
renormalization of the structureless tight-binding density of 0.05F ,4,,;" ’ i
states. In facA (w) reflects the structure seenA,(w) to A ’\‘,\\
a large degree: on the one hand, the quasiparticle peak at i '\'
large doping and, on the other, the pseudogap at stn&lbr 0 L L
comparison we show,.(w) in Fig. 13 as well. -8 -6 -4 2 0 2

A similar trend is seen in the case of the spectral function ol

of the bosonic batD(w), as is apparent from Fig. 14. Here  FiG. 13. The fermionic bath spectral functiéq for two differ-
we also see from the comparison wjifi.(w) a large degree ent doping levelss=0.01 ands=0.18 atJ=0.% andT=0.1t. The
of similarity. local spectral function is also shown for comparison.
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FIG. 14. The bosonic bath spectral functidp for two different FIG. 15. Entropy per site as a function of dopidgat various

doping levelss=0.01 ands=0.18 atJ=0.3 and T=0.1t. For  temperatures. Exact diagonalization resyRef. 28 for the same
comparison, the local dynamic spin susceptibility is also shown. temperatures are denoted by dotted lines while the open circles
correspond to the experimental déRef. 29 on La _,Sr,Cu0,.

E. Thermodynamic properties

The thermodynamic potenti&) within EDMFT can be for 6—0 is qualitatively reproduce¢hote that forJ=0, S
expressed in terms of the |mpur|ty free ene@ymp and inCI’easeS a§—>0, and thIS behaViOI’ iS Obtained in DMFT

contributions from the fermionic and bosonic baths: calculations of the Hubbard modelNot only the doping
dependence but also the temperature dependence compares
) ) well with exact diagonalization results as shown in Fig. 16.
Q=Qimp+ke T { kZ IN[Gy (i @)/ g, (i )] Another thermodynamic quantity of interest is the particle
e LR densityn, given by

(42)

1 .
+§2 |n[Xg“(iw)/ngg(iw)]]e'w° . (39) 20
o[22
au -

Performing the analytical continuation from imaginary

frequencies to the real axis and expressing the momentum, Fig. 17 the dopings is plotted versuse at T=0.1t. As
summations as energy integrals, £89) may be written &8s o) hected,s varies monotonically withe, with positive cur-

vature.
Q=Qmp+ EJ deD(e) The particle density may also be obtained from the local
™ Green’s function as=2G,,. ,(r=07"). The resulting val-
ues ofn are indistinguishable from those calculated by dif-
Zf dof(w)I{Gy(w)|w+pu—2(w)—¢€l} ferentiating(), which provides a check for numerical accu-
racy within our conserving approximation.

X1m

3 J )
—l—if don(w)in X|Oc(w)(M(w)+?e ] (40

F. Transport properties

The calculation of transport properties in EDMFT is fa-
cilitated by the observation that a momentum independent
self-energy leads to a local current vertex functionother
(41) words, the nonlocal parts vanish in the limit dimensidn

—) (Refs. 30—32 The optical conductivity is therefore
given by the single-particle Green’s function as

The impurity free energy is given by the shift of the
chemical potentidf,\,, defined by Eq(22):

Qimp:)\o.

The entropyS= — (d€2/4T) , as a function of doping con-
centrationé for various temperatures is shown in Fig. 15.

Even at the low temperatufe=0.1t, Sis seen to be rather il — =0 |,
large (~0.5In2), an indication for strong correlations and a o tgé
rather incoherent state. The entropy of a noninteracting sys- [ &\ ~—&024| / \=- 3=0.3 |

[
C,/T (ED)

tem at the same density would be about an order of magni- >
tude smaller. The overall magnitude $tompares well with

both the results of exact diagonalizaft®for a small system

and experimental data for La,Sr,CuQ, (Ref. 29. The cal- L L
culated entropy shares the trend that it is reduced both at 0 01 0~2T/t0-3 0.4 0.1 0~2T/t0~3 04
large doping, when the system crosses over to a Fermi liquid,

and at smaller doping in the pseudogap phase. The quench- FIG. 16. Specific heat coefficient vs temperature for various
ing of the magnetic fluctuations by the incipient magneticdoping concentrations. In the right panel we show results obtained
order as the antiferromagnetic Mott insulator is approachedy the exact diagonalizatiofRef. 28.

—
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FIG. 18. The weighting functions for the two-dimensional

FIG. 17. Solid line: derivative of the thermodynamic potential square lattice can be expressed by elementary functiods 4%)

with respect to chemical potential+1(9Q/du)+ (or equivalently
doping vs chemical potentialThe contributions from three differ-

=(2t/7?)[2|x|E(1— 1/x?) + 2K (1— 1/x?) — 2I1(1— 1/|x|,1—- 1/x3)]
and @,.,(x) = 2(2t/7)’[x*E(1— 1x%) —K(1—1/x*)]sgn(). Here,

ent parts of the thermodynamic potential—impurity, electronK(x), E(x), andII(x) are complete elliptic integrals of the first,

Green’s functiorsecond term in Eq40)], and spin susceptibility
part[last term in Eq.(40)]—are shown separately.

2
opliw)= %kBTZ kE (0)%Gy(iw")Gio' +iw),
lw (43)

wherev = 2t sink, is the bare current vertex. Using the fact

that G, depends ork only throughe [see Eqs(2) and(4)]

and performing the analytical continuation to the real fre-

guency axis one finds

Reoxx(w+i6)=27-re2f ded, (€)

Xf dw,f(w')—f(w'-ﬁ-w)

w
XA(e,w)A(€, 0"+ w), (44
where
¢xx(e>=; (v)?8(e— ) (45)

andA(ey,)=(1/m)ImG(w—id).

Similarly, the off-diagonal or Hall conductivity in the
presence of a magnetic field perpendicular to the plane
takes the fori=—3°

47%e3
Ty="3

of
BJ’ deq)xy(e)f dw( — &_w)[A(G’w)]S'

(46)
where
Pyy(€) =2, detk) (e~ e 47
and
(EE)Z E)Iiy (9€k (92€k
deth)=| ,y  ww &g K gk
EkEk fk a a B
(48)

second, and third kinds and=¢/(4t).

The weight factorsb,, and ®,, are shown in Fig. 18.
One observes that for the simple 2D tight-binding lattice,
®,, is an even function of energy, whit,, is an odd func-
tion of energy.

The Hall coefficientR,, is defined as

Oxy

>
o3

For orientation it is useful to discuss the limit of low tem-
peratures, assuming B(w)—0 at w—0 and A(e,w)
sharply peaked as a function efat e=w+ ues. One may
then do the integrations oa and w in Egs. (44) and (46),
yielding

D Metr)
a2 XX e
Oyx=€ || 2(0)| (50
and
0}
= 1 xy(Meff) (51)

28 (D (e ]2

with e= —|e|. We observe thaR,, does not depend on I
in this limit. In the Fermi liquid regimeu.s= uo<0, and
consequentlyb, (uo)>0, leading to a negativR,<0.

By contrast, in the incoherent regime of thé model ¢
is found to be positive, approaching the upper band edge for
6—0 (see Fig. 4, since®,,(¢) is negative for positive
and Ry is seen to be positivéhole like). For 6>0.17, ug
changes sign andRy turns negative. For the nearest-
neighbor tight-binding model and assuming a linear variation
of pe With 8, per=4t(1—CJ), Ry takes the simple form

T 1

Riu=3¢ Tefs"

6—0, C=>O0. (52
Using in addition the result for a single hole in the half-filled
band®® R, =1/|e|8, one finds by compariso@ = 7/2. For
the conductivity one obtains in a similar way
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—0. For doping levelss=0.16, R, is negative at lowT,
consistent with Eq(51), and changes sign at high&r simi-
lar to what is observed in experiment.

V. INSTABILITY OF THE EDMFT SOLUTION
DUE TO CRITICAL FLUCTUATIONS IN d=2

We will now investigate the question of why no solutions
of the EDMFT equations exist for low temperatures and
small dopings. Within the EDMFT of the-J model long-
range antiferromagnetic fluctuations are not taken into ac-
FIG. 19. T dependence of the resistivity multiplied by dopifig count in a proper way. As a consequence the local spin ex-

The linearT behavior for highT flattens fors>0.1 at a temperature  CItation spectrumyjoq(w) =Im x|oc(w—i0) keeps a simple
of the order ofJ. For §<0.1 the resistivity drops in the regime Lorentzian-type shape. On the other hand, the static local

where a pseudogap opens. susceptibility x{,.(0) (in two dimensions diverges as I
when the transition to the antiferromagnetically ordered state

, té is approached and the ”spin cgrrelatipn_ lengthoo., T.his in

Oy=6€ Ims (o)’ 5—0. (53 turn forces the slope of|,.(w) in the limit —0 to diverge

as In¢ as well. Within the effective impurity model of ED-

. N MFT a steep slope of|,.(w) entails a large maximum of
Although Egs.(52) and(53) are in qualitative agreement loc .
gh Egs.(52) and (53 d g " (@) at Oma=d, Of ValUe X/ (@man ~ Xiac(0). AS Wil

with our numerical results, we emphasize that the assumploc , :
tion of small Im3(0) is not justified in the incoherent re- b€ Shown below, a maximum value g,.(wma,) larger than
gime. A large ImS is actually necessary to obtain gy ~ SOME critical valueyjo ¢t =C/J, where the constart de-
close to the band edge and therefore a positive sigR.af ~ Pends on the density of statbls(e) [see Eq(54)], leads to

We now present the numerical results. In Fig. 19 thean unphysical pole ixy(w) at = wmaxandq=Qgmax. This
scaled resistivity, 5/ po, Wherepo=#/€?, is plotted versus in turn forces InM (w—i0) to change sign into an unphysi-
temperature for values af ranging from 0.01 to 0.23. The cal branch of the complex frequency plane. This is the point
curves form a narrow band, meaning that the scapipg When a stable numer!cal solu'glon cannot be found any longer.
«1/5 shown in Eq(53) holds approximatelyand Im3.(0) is To demonstrate this behawor _expllcnly we consider now a
a weak function of]. The values of the resistivity are rather flat density of states of spin excitations,
high. In the pseudogap regimé<0.1) the resistivity tends 1
to turn downward for decreasing temperature. By contrast, at Ny(e)=>, S(e—Jg) === 0(43—|e]), (54)
higher dopings an upward curvature is observed, leading to a q 8J
plateau at lowT, beforep begins to drop to lower values at . .
still lower T. The plateau is likely to be an artifact of the where fche ba_mdyv iatth B has E)een chosen to agree with that
NCA. The linearT dependence op at large temperatures of the t|gh.t.-b|nd|ng modequ—ZJ(coquJrcosqy). The local
has also been seen in DMFT calculatidfisbased on QMC susceptibility as defined by E¢9) may thep be expressed
simulations which do not include the effects of short-rangeoanalyt'c"’lIIy In terms of the self-energy (o)
magnetic fluctuations. The Hall coefficient is plotted in Fig. 1 43+ M(w—i0)
20 versus temperature, for valuesdfanging from 0.01 to
0.23. For small doping<0.16, Ry, is always positive, ap-

Xiocl 0= 10)= 55N g M(w—10) X TX"

proaching the expected vafifel/(|e|8) in the limit 5—0,T (55)
Inverting this relation one finds
gl M(w—i0)—432 2 golef-t-2iv” (56)
w—i0)= = ;
i v-1 lv—1J?
Z‘ wherev =exp(8yx)=v’'+iv". The imaginary part of, given
=5} by
v"=exp(8Jx’)sin(8Jx"), (57
0
. , , , ) will change sign asy”(w) increases with increasing, if
0 0.1 0.2 0.3 0.4 8Jx"=m. By Eq. (56), this will lead to a sign change of

T M”(w—i0) from negative(stable to positive values. How

FIG. 20. T dependence dRy, for J=0.&. For small doping and  can x” and M” both be positive? This is possible since
T—0, Ry approaches the value ¢(5) expected for a single hole x4(@—i0) develops a pole in the physical domain|J|
in at-J model. <4J, at finite o= wyay, giving a contribution toy,,. with
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the “right” sign. The instability occurs at finite frequency stant down to arexponentiallysmall energy scalé&®(T)
and thus is not easily interpreted as a physical phenomenon: 1/¢?, wherez is some positive exponent. For sufficiently

In the numerical treatment we found that a convergentmall T, ES(T) will be exponentially smaller thaii. At this
solution cannot be obtained when the stability criterion point we have to ask the question whether the solution of the

effective impurity model can produce a structure at energies
" exponentially smaller thai. We think that this is extremely
Xloc<3 (58) unlikely and conclude therefore that no solution can exist for
sufficiently smallT, consistent with our results and also with
is violated. The constant takes the valuer/8 for the flat  QMC simulations by Burdiret al*° of a model equivalent to
DOS and a value=0.3 for the tight-binding model. ours in the limit of zero doping.

We emphasize that this instability is not an artifact of the  Equation(56) also shows how the pseudogap M)
method of solution of the impurity model but is a generic emerges from the self-consistency pfand M. The absorp-
feature of the EDMFT equations in two dimensions. In thetjve part of the self-energ\, as seen from Eq(57), is
following we argue that whenever the ground stat€al is  exponentially small in the regime where
ordered, the self-consistency scheme has to break down be-
low some finite temperature. This argument is not only rel- 8Jx (w)>1. (59

evant for our calculation but should be relevant for otherFrom the numerical results in Fig. 10 one sees that(59)
applications of EDMFT which have focused on dlscussmgis satisfied if|w|<cyJ, wherecy, is a constant of order

the possibility of novel quantum critical points in the pres- | . ;
) . . 3839 \ ot unity, which depends on the DOSI;(e). Thus, the
ence of two-dimensional magnetic fluctuatichs$? While seudogap is found to develop as a consequence of the in-

our reasoning does not apply directly to the quantum criticaErease ofy’ (0)o<(1/3)In & with growing £, in two dimen-
point, it strongly suggests that no solution exists on the Olions. We stress that a relation similar t’o E66) between
dered side of the phase diagram below a finite breakdowrﬂ/l(w)' and y(w) holds whenever the DOB,(¢) is finite at
temperature. While this breakdown temperature will prob-the band edges, which is a signature of tho dimensions. In
ably vanish at the quantum phase transition, this neverthele?ﬁis case the cénclusions drawn above remain valid wHen
casts somtle doubt on the applicability of EDMFT at the quans gy i replaced byAN,, the DOS jump, ang is replaced
tum critical point. K . X

Our formal argument starts from the observation that inlin ()(f))_]xreg’ where  xreg(w) = Jde[Ny(€) — AN, 1/[Jq
two dimensions no phase transiti¢f first or second order )
is possible forT>0 within EDMFT, since in a hypothetical

ordered phase the local susceptibility would diverge due to VI. CONCLUSION

the presence of Goldstone mod_es—in this respect, the EE_)- The physics of the doped Mott-Hubbard insulator is gov-
MFT approach obeys the Mermin-Wagner theorem. Technigneq by the interplay of the motion of holes and the antifer-
cally, this fact is bu!It into the_ EDMFT by the self-consistent romagnetic fluctuations of the spin background. In this paper
treatment of the spin fluctuations: A second-order phase traRye have used a local approximation scheme to describe both
sition would require the static spin susceptibility .(0),  the constrained hopping of holes and the quantum spin fluc-
Eg. (3), to diverge at some wave vectar In one Or tWo  tyations in the paramagnetic phase on an equal footing. The
dimensions this would immediately imply a logarithmic or |oca) approximation becomes exact in the limit of infinite
power-law divergence, respectively, of the static local sustoordination number of the underlying lattice and is known
ceptibility, Eq.(9). The latter is forbidden in EDMFT by the 55 extended dynamical mean-field theory. Rather than study-
self-consistency requiremefoc= Ximp. Whereximy—€.9.,  ing the model in this limit, we take the point of view that in
Eqg. (27)—is nondivergent foff>0. We mention in passing finite dimensions the approximation of neglecting the mo-
that even in the case of Ising symmetry a second-order phasgentum dependence of the single-particle self-energy and
transition is not possible, as within EDMFT the longitudinal the J-irreducible spin susceptibility may still be useful. Here
this case a first-order transition towards an ordered phase f@4ttice with nearest-neighbor hopping and exchange interac-
T>0 cannot be excluded on general grounds. Indeed, a firstion, We expect that the approximation should work in a
order transition has been found by Sun and KO%'&T“Q regime of temperatures and doping concentrations where in-
Zhu, Grempel, and Sifor an Ising-coupled Anderson lattice coherent fluctuations dominate and wash out any of the col-
or Kondo lattice, respectively. Assuming that for=0 the |ective effects sensitive to the system dimension, such as
system is magnetically ordered, the local susceptibilityong-range antiferromagnetic order or superconductivity.
Xioc(0)~In & will grow steadily asT is lowered wheré is In the regime of temperatures abote 0.1J and for dop-
exponentially Iarge§~eﬁE*, for T<E* andE* can crudely ing levels of 0.0%& §<0.3, we indeed find a highly incoher-
be identified with the mean-field transition temperature.ent phase, with a broad distribution of spin excitation ener-
However, we have shown that within EDMF%"(w) is  gies, a high entropy and a large electrical resistance. Most
bounded from above by the requirements of self-consistencgtrikingly, the local single-particle spectral function, which is
How can this be reconciled with largey,,.(0) characterized by a narrow peak above the chemical potential
=[[Im x"(w)/w]dw/7~In &? The only possibility consis- for §=0.25, develops a pseudogap & reduced down to
tent with the Kramers-Kronig relation is that'(w) is con-  the few percent range. The appearance of the pseudogap is
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related to a dramatic shift of the effective chemical potential 1
from its noninteracting(i.e., Fermi liquid value near the H=—-2 tijclcj,+UX NN+ 5 > 3iS'S. (A1
center of the lower Hubbard band to the upper band edge. " ' .
The shift persists down to the lowest accessible temperaturgsis straightforward to extend the theory to other nonlocal
of T=~0.1J and constitutes an unequivocal signal of non-interactions like nonlocal Coulomb repulsion, but since we
Fermi-liquid behavior in the regime 0.816<0.2. The are mainly interested in the effect of magnetic fluctuations,
single-particle pseudogap is accompanied by a gap in thee will neglect other terms in the Hamiltonian.
spin excitation spectrum for momenta not too close to the For simplicity, let us assume there is no long-range order
ordering wave vectoQ= (1, ). (i.e., the system is in the paramagnetic stdtet us start the
The Hall transport is found to be hole like, the Hall con- derivation of the EDMFT equations with the action corre-
stant tending to large positive valuedl/é as the doping is sponding to the HamiltoniatAl1):
reduced. At large dopings and low temperatures Fermi-
liquid-type behavior is recovered. (A 2 +
These results are encouraging and give rise to the expec- S= fo d7 i Cig(7)
tation that the present EDMFT scheme is able to capture the
main features of thé-J model in the incoherent regime. At 1
lower temperatures and small dopings one should expect the ts %: ‘JiJS‘(T)SJ(T)JFZ Uni; (1) (7)
closeness to the antiferromagnetic transitiorm a0 and &
<6, to play an important role. We indeed find that the The action can be divided into three parts: the on-site part for
EDMFT equations stop having a physical solution below athe chosen siteS),
limiting temperature ofT~0.1]. We are able to trace this 5 5
behavior to an intrinsic lack of structure in the spin structure o« _ T 7 _
factor of the effective impurity model, which is ultimately So= fo dr ; CO‘T(T)(&T M)CO"(THunOT(T)nOL(T)}'
due to the insufficient treatment of critical fluctuations in the (A3)
EDMFT model. It is likely that similar limitations apply to
other applications of the EDMFT in low-dimensional sys-
tems.
In conclusion, we emphasize that within the present local 8
approximation scheme neither effects of finite-range, slowly AS= df{z _tiOCiTa( 7)Coy T)_toicga( 7)Cio(7)
0

J
P K

Cj o’( T)

. (A2)

the intersite interaction between the chosen site 0 and the rest
of the system AS),

fluctuating antiferromagnetic or superconducting domains io

nor local singlet formation or similar short-range correlations 1

are included. Nonetheless, the strongly incoherent fluctua- + = (Jio+J0)S(7)-So(7) |, (A4)
tions characteristic of our approagh this case of the spins, 2

e T oo e and the ltice acion i the presence of the cavEf')
cting : , P 9ap N which is equal to the original actiofA2) with site 0 ex-
lation of Luttinger’s theorem, and a hole-type Fermi surface

in the proximity of a Mott insulator cluded from all summations.
P y ' The series expansion in the coupling between the central

site and the rest of the system can be expressed as
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APPENDIX A: EDMFT DERIVATION + EJ dTlf dr(T,AL(T)AL(T)) O+ ],
-JO 0

In this appendix we derive the EDMFT self-consistent (A6)
equations for thé-J model using the cavity method.

To treat the no-double occupancy constraint of the  where AS=[5A£L(7)d7 and ()(?) means the average with
model, we will add a local Coulomb repulsion term explic- respect to the cavity actio®®). In the second line we have
itly and take the limitU — <o at the end. In this approach, the integrated out all fermions except for site 0.

electron creation(destruction operatorsc; (ciT) obey the The first term linear iM\ £ vanishes, since the average of
usual fermion anticommutation relations. The resultingeach spin(S(7))=0 is zero by the assumption of no long-
Hamiltonian is the so-called extended Hubbard model range order in the system. For the broken-symmetry phase,
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the spin operator has to be replaced with its deviation fronfaster than 1/d. Thus, in the limit of larged all but the first

the average valu§—S —(S) and the derivation can pro- tarm (A8) can be neglected and the effective action becomes
ceed along the same lines. The second term in the series

expansion reads

1 (8

B
1), drlfo dr(T,AL(T1)AL(7))*

1 (8 B
- EJ’O dTlJO dTZ<TTL2 tiOCiTg(Tl)COcr(Tl)

+10iCh o (71) i n)—Ei JoiSo(m1)-Si(71)

X

% tiOCiTa-( Tz)COg( TZ) + tOngU( TZ)CiU'( 72)

> (0)

(A7)

—2 Jio Si(72)-So(7)

It is crucial to observe that there is no interference between

B
Sert= Jo Ung; (7)Ng,(7)
b Pt -1
- [an, | "arach 65 (= a7

1(8 B
=5 an | Cansrxg - ms(e),

(A9)
where

gal(lw):mﬁ#—% tiotoj G\ (1),

x51<|w>=; JiodoixPl1w). (A10)

the kinetic and the spin term since the average of the correFhe Weiss fields are thus determined by the cavity Green's
lation function (c;,(71)Sj(72))® vanishes. The leading- function G{ and the cavity susceptibility” . The absence

order term in the effective action thus reads
B
Sef=So— drd7y
0

X CSO’( Tl) ; ti0t0j<T7'Ci o’( Tl)CJTO'( 7-2)>(0)C00'( 7-2)

1
o5 2 3oy (TrS(70)8(72)) VSl 72) .

(A8)

Within EDMFT both terms are equally important and are of
order 1 in the 1d expansion. The two-point Green’s function

and the susceptibility scale asd/ 12 sincet andJ fall off

as 14/d. Furthermord andj are neighbors of site 0 and are

thus at least 2 lattice sites apéri Manhattan distangegiv-
ing a contribution of order #. The prefactort? or J? is
proportional to 1d, while the double sum gived? and the
net result is therefore of order 1.

of interference between the kinetic and spin terms in Eq.
(A8) also leads to separate equations for both cavity quanti-
ties:

Gi(jO): Gij _GiOGaOlGOj '

Xi(jo):Xij — Xi0X06-X0j - (A11)
Using power-counting arguments one can shbthat in the
limit d—o and EDMFT scaling the single-particle self-
energy > (iw) as well as the double particle self-energy

M (i w) become local quantities, i.e.,

1
iot+tu—e—2(iw)’

Gylio)=

1

Xq(iw)= —Jq+M(iw). (A12)

Inserting the definitiongA12) into (A1l) and combining
with Egs. (A10) we finally obtain the self-consistent condi-

Further it follows from the linked cluster theorem that tions
only connected #point correlation functions appear in

higher-order terms of the effective action. Since they have Go '=3%+Ggq,
the usual dependence ordl/all but the first term vanish in . .
the limit d—oc. For instance, the next-order term would in- Xo =M—X0c- (A13)

volve three-point connected correlation functiong;y

~(S'S[Sfy  or  Ci~(Scie) that scale like
1/d“—iff2d|i—k|’2. When all three variables j, andk are dif-
ferent, the correlation functions is of orderdi/since all
three sites are neighbors of 0. The prefacidror Jt? is

proportional to 1d*? while the sums gived®. The term is
thus of order 1{d. If i=], but distinct fromk, the correla-
tion function is of order I while sums gived? and the net
result is again of order 4d. Higher-order terms fall off

These relate the Weiss fields to the local quantities comput-
able from the local actiofA9). The system of equations is
thus closed.

For practical computation, however, it is convenient to
have a Hamiltonian representation of the local effective ac-
tion (A9). Since it includes retardation effects through fre-
quency dependent Weiss fields, it is necessary to introduce
auxiliary degrees of freedom describing the baths. The one-
particle character of the Weiss fie{t, ! can be represented
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with the fermionic bath while the two particle fiejg, * has

a bosonic nature and dictates a bosonic bath. One of the

possible choices is
_ T t i i
H= kE Ekckock(r+ VkE (Ck(rCO¢r+ CO(er(r) - 2 MCO(TCO(T
g a g

+Un0Tn0l+2q wght- hq+I§ So-(hg+h'y),

(A14)

whereh,, corresponds to a vector-bosonic bath with the com-

mutation relations[h”,hg,T]z5qq,5aﬁ. The corresponding
action

J
—+ Ek) Cka+ VCEO’( T)COO'( T)

Cl"( 7 or

S=S+ f:dTE

ko

d

+Vel (7)Co(7) hi(7) St g |hg(7)

B
+f dTE
0 q

(A15)

+1hg(7) - So(7) +1Se(7)-h' 4 (7)

is quadratic inc,, andhy, and therefore both baths can be

eliminated, leading to

B B Orr
s:so—f0 dTlfodeZ cbo(m)| 2V
7 —+
aT Ex

COo’( TZ)

B B O,
_f dTlf drSo(m)| 2 12—
0 0 q d

—+tw
ar 4

So(72). (Al6)

This action is identical to the effective actioA9) provided
that the following relations hold:

)
_ 172
gOl(Tl_TZ):_ a__M) 7172+2 V2 P ’
—+
arT =
-1 2 57172 57172
XO (71_72):§ I (9 (9 ’
E_'ﬁ'wq E_'qu
(A17)
or, equivalently,
Goltlw)=10+u— V3G (10),
Xo t1w)=—12G(1w). (A18)

Finally, combining Egqs(A13) and (A18) yields

PHYSICAL REVIEW B68, 155119 (2003

FIG. 21. Upper panel: normalized spectral densitwatO as a
function of hole doping’ for a toy model of a doped band insulator
(see textand various values df,,. For largel’;, and small doping
the density of states is reduced. The origin of this effect is that the
effective chemical potential, shown in the lower panel, moves out-
side of the band edget4Inset:I"pg as a function of doping. For
I';(»>T'pg the density of states ab=0 is reduced by more than a
factor of 1/2.

Gior=iw+u—3—V32Ge,

Xiot=M+12Gy,,
which coincide with Egs(10) and (11).

(A19)

APPENDIX B: PSEUDOGAPS IN A DOPED BAND
AND MOTT INSULATOR

In this appendix we investigate in the framework of sim-
plified models, first, how a pseudogap is generated in a
doped Mott(or band insulator when the chemical potential
et MoOves up to and beyond the bare band edge and, second,
how strong incoherence drives the chemical potential far out
of the bare band for a dopdshndinsulator.

Using a flat bare density of states witiN(ey)
=(1/8t)0 (4t—|€), the local Green’s functiof8) is given

by
1 o+ u—3(w)+4t
Cloc( @)= gln o+ pu—3(w)—4t

At =0, definingues=p—ReX(0) and Imx(0)=—T,,
the local density of states is obtained from Eg§1) as

11 1 pZt T2 1612
A|oc(0)— g E— ;arctarsTrm . (BZ)

. (B1)

In the Fermi liquid regime, whem2,+T'2<16t> and T,

n

<4t, A (0)=1/8t. As u.z moves towards the band edge,
Aibc(0) is strongly reduced, gi.4= \/16t2—1“i2n by a factor

of 1/2, andA,.(0) drops to zero fop¢ far above the band
(see Fig. 21 and discussion belowhis simple observation

is the main reason why we obtain a reduced density of states
in the incoherent regime at small dopings. In order to under-
stand the origin of the rather sharp threshold behavior in
Ap(w) at o=—J in Figs. 2 and 3 better, it is useful to
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w-dependentt,. For smallw we may still neglect thaw H(z)= ,
dependence of IR (w), but keep it for R& in the approxi- Zm€  7-V?G (w—i0)
mate forme + u— ReX (0) ~w/Z+ per, Where theZ factor iy b (¢) the DOS of the tight-binding bane, and G(w)
has been de_ﬂned N Eq?’?’)' F“’”_‘ Fig. 6, we see that4/ the fermionic bath Green’s function defined in Ed.2).
~3-5, leading to a rapid reduction af+ u—ReX (w) for Solving Eq.(C1) for V2G, and taking the limitwo—o one
negativew from w4 to values beIovm/thz—Fzm. This leads  inds
to a rapid increase of,(w) for negativew as found in
Figs. 2 and3. _ ] )

We now address the question of whay moves up to and lim [V2Ge(0—i0)]=V?= lim ‘*’( = %)
even outside the bare band for small doping and increasing @ e
scattering. We study this question in the case of a doped band ®
insulator with (unspecified inelastic scattering, assuming a = lim ;(52). (C2
model form for the self energy.(w)=—il";,. In a Mott 0=
insulator thew dependence ak(w) is much more compli-  Here the zero of energy has been chosen such(#at0,

cated and a simple “toy-model” form is not known to us. \yith (") =[deD(e)e", and(€?) is a measure of the squared
The effective chemical potential is determined from the parsy,igih of the band. For the tight-binding bareg= 2t(cosk,

analyze the model given above, now allowing for JD(e)de! 1
= (Cy

ticle number conditiorat low temperaturesf <I';,) +cosk,) one finds( ) =42,
o q We now use the sum rule on the spectral weight in the
w
1—6=— f_ IM[ Gl )] — (B3) lower Hubbard band,

* dw ) 1
nL=f —IMGe(w=i0)=5(1+8),  (C3)

—0o0

The result of solving Eq(B3) for w.« (equal tow in this
case for fixed I';, as a function of hole doping is shown in
the lower part of Fig. 21: Due to the tails in the local density
of states induced by;,, the effective chemical potentigl.
has to move far above the band for decreasing be con-

which, using the analyticity o6.(w—i0) in the lower half-
plane, is equivalent to the statement

. . . 1
sistent with Eq. (B3); for 6§—0 we obtain u n = lim wGoe(w—i0)= lim — >, = |lim ﬂ,
~4t cotHdtwdl;, =TI,/ 76. As a consequence, the local w—® woeNL K 276 2
spectral function at the Fermi level gets very small for de- (C9

creasingd (upper panel of Fig. 21with where N, is the number ofk points in the first Brillouin

5 zone, which are summed over. Combining E@32)—(C4)
o one gets

~g— for 6—0.
1—‘in

At
1—‘in

A(0)~ L sink?
167t? 1
2 _ 2
It is useful to determine the value df;,, at which the v _2(1+5)<6 ) (€9
pseudogap starts to form for a givéh namedl pg in the
inset of Fig. 211" pg increases monotonically from zero with
increasings with

The coupling constant may be related toy,,.(w) and
M(w). Using Eq.(11), one may expres§,;, as

12Gh(@)=M(0)— Xjgn( ). (C6)

(B4) Since G, is a boson Green'’s functiofsee Eq.(13)] with

positive energy spectrump,=0, the following relation
for small 5. For small dopings rather weak inelastic scatter-holds:
ing is sufficient to reduce strongly the density of states at the
Fermi energy.

8te

I'pg

I'p
5~ﬂln

*dw )
f —ImGy(w—i0)=1. (C7)
[

. 2 2
APPENDIX C: SUM RULE CONSTRAINTS ON V< AND I From Eq.(C7) one then finds

Within EDMFT, the coupling parametek$ and| defined q
by Eg. (6), describing the hopping onto and the exchange 12— J'm_“’l M(w—i0)— v w—i
interaction with the impurity, are determined self- o T MM (@ =10)=Xioc(@=10)]. €8
consistently. Interestingly, sum rules completely determine L ) . _
the values ofV and partially constrain the values tf We A further relation is obtained by using tfiesum rules:
start with the single-particle hopping Defining a complex d 1
variablez_:w+ﬂ+2(<‘u.—i0) one may write the EDMFT f _ww IMGh(w—i0)= lim 02Gp(w)= — >, quzzq
self-consistency conditiof7), using Eqs(2), (8), and(10), g 0 N “g
as (C9
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and

dw )
J 7)(;,00(“’): lim wZXIoc(w)- (C10

w— %

Taking the limit lim, .’ - - -] of Eq. (C6) one finds
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— () (do
quﬁ 7&)}“00(&)), (Cll)

with (€?) as defined after E¢C2).
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