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Pseudogaps in thet-J model: An extended dynamical mean-field theory study
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We investigate the highly incoherent regime of hole-doped two-dimensional Mott-Hubbard insulators at
moderately small dopingd and temperatures*0.1J, whereJ is the exchange coupling. Within an extended
dynamical mean-field theory of thet-J model and a generalized noncrossing approximation we calculate the
single-particle spectral function, the dynamical susceptibility, and thermodynamic and transport quantities.
Short-ranged antiferromagnetic fluctuations lead to strongly incoherent single-particle dynamics, large entropy,
and large electrical resistivity. At low doping a pseudogap is found to open up in both the single-particle and
spin excitation spectra, leading to a decrease in entropy and resistivity. The Hall coefficient changes sign to
positive values upon lowering the doping level and increases inversely proportional tod.
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I. INTRODUCTION

Strongly interacting Fermi systems on a two-dimensio
~2D! lattice have been a focus of interest ever since hi
temperature superconductor materials were discovere
1986. The unusual properties of these materials, in partic
in the normal conducting phase, have led to the hypoth
that the usual Landau Fermi liquid theory may not be ap
cable in this case.1 A widely accepted view holds that thes
systems may be considered as hole-doped Mott-Hubbard
sulators. The correlations present in a Mott-Hubbard insu
tor are characterized by strongly suppressed charge fluc
tions ~due to the constrained hopping of the holes result
from the strong on-site Coulomb repulsionU) and enhanced
quantum spin fluctuations governed by the antiferromagn
nearest-neighbor spin exchange interaction. The interpla
the motion of holes with the antiferromagnetically correlat
spin background is the central problem of hole-doped M
Hubbard insulators. Despite an extraordinary effort by ma
theorists and a correspondingly large number of papers
believe it to be fair to say that a thorough understanding
this problem is still lacking.

The ground state of the Mott insulating state of electro
on a square lattice at half-filling is expected to be antifer
magnetically ordered.2,3 Doping with holes leads to a rapi
destruction of long-range order, at a critical concentrationdc
of a few percent doping. For larger dopings there is evide
for strong antiferromagnetic spin fluctuations of relative
short range.

In this paper we undertake to explore the consequence
strong incoherent and local~i.e., nearest-neighbor! spin fluc-
tuations on the dynamics of charge carriers and on the t
modynamics of the systems. We also investigate how
single-particle properties feed back into the spin dynam
Our approach is focused on the temperature regime of 0J
&T&t (J50.3t in the cuprates! where J is the exchange
constant andt is the nearest-neighbor hopping amplitude.
this regime we expect strong quantum and thermal fluc
tions driven by competing interactions to decohere the
0163-1829/2003/68~15!/155119~19!/$20.00 68 1551
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mionic excitations. This temperature regime is bounded fr
below by possible antiferromagnetic, superconducting,
other ordered states. The incoherent regime characterize
a large single-particle decay rate ImS;t is confined to small
doping levelsdc&d&0.3 and crosses over into a Fermi liq
uid state atd*0.3.

A minimal model encompassing the physics describ
above is thet-J model. It is well known that the interplay o
hopping and local correlations induced by the on-site C
lomb interaction may be captured in dynamical mean-fi
theory, in which the lattice model is mapped onto a quant
impurity coupled to a fermionic bath in a self-consiste
fashion.4,5 In the same spirit the nearest-neighbor exchan
interaction of a given spin to its neighboring spins may
approximated by a dynamically fluctuating bosonic field,
be determined self-consistently.6,7 In this way the two prin-
cipal processes—constrained hopping and spin excha
interaction—may be fully incorporated on the same footin
on the level of short-range correlations.

As reviewed in Sec. II, the extended dynamical mea
field theory~EDMFT! for the two-dimensionalt-J model is
obtained by approximating the single-particle self-ene
Sk(v) and the two-particle self-energyMq(v) by
momentum-independent functions.S(v) andM (v) are ob-
tained by equating the local~i.e., the momentum-integrated!
single-particle Green’s function and spin susceptibility,
spectively, with the corresponding quantities of an extend
Anderson impurity model, featuring a fermionic and
bosonic bath to be determined self-consistently. For the b
hopping integrals and exchange couplings we use a nea
neighbor tight-binding model on the square lattice. The lo
approximation is better the higher the spatial dimensiond
and becomes exact ford→`, provided the hopping ampli-
tude t and the exchange couplingJ are scaled ast/Ad and
J/Ad. This scaling is possible in the paramagnetic regim
Most of the methods employed for the solution of the And
son impurity or Kondo problem do not work here. We u
self-consistent perturbation theory in the form of conserv
©2003 The American Physical Society19-1
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approximations8,9 and the exact projection onto the Hilbe
space without double occupancy~limit U→`). We are in-
terested in describing the highly incoherent regime at sm
doping levels and not too low temperatures, where the sp
tral functions are broad and relatively featureless. In this
gime we expect vertex corrections and higher-order p
cesses, in general, to change the characteristic param
like maximum values, peak widths, and gap widths of
dynamic quantities by correction terms of order unity, but
do not expect that these contributions lead to more cohere
or new collective behavior. In this spirit we approximate
self-energies by their lowest order self-consistent pertur
tion theory expressions~in the hopping parameter and e
change coupling!. The resulting theory, presented in Sec. I
is an extension of the non-crossing approximation10 ~NCA!
including the bosonic bath.

The results of this approximation scheme for thet-J
model are presented in Sec. IV. It turns out that near
neighbor spin fluctuations are sufficient to create
pseudogap in the single-particle spectrum and in the s
excitation spectrum atq vectors away from (p,p), for small
dopingsd&0.1, similar to what is seen in angle-resolv
photoemission spectroscopy~ARPES! experiments11 and in
the magnetic properties.12,13 The pseudogap scales withJ.
There are several indications that Fermi liquid behavior
violated ford&0.2. Most noteworthy, the effective chemic
potential is found to move from the center of the band up
the band edge, as the doping is decreased to small value
d grows beyond 0.25, however, Fermi liquid behavior a
pears to be restored. The entropy turns out to be large in
range 0.1&d&0.2 and is reduced on both sides of this int
val by the pseudogap and incipient Fermi liquid behav
respectively. The resistivity is dominated by strong incoh
ent scattering, and the Hall coefficient is found to be h
like, }1/d, for small d, again resembling the observe
behavior.14 Finally we note that in dimensions less or equ
to 2, EDMFT does not allow for a continuous phase tran
tion to an antiferromagnetically ordered state at any fin
temperature, in accordance with the Mermin-Wagner th
rem, as this would require the static local spin susceptibi
to diverge and this is forbidden by its self-consistent co
pling within EDMFT ~see discussion in Sec. V!. Some of the
results have been reported in Ref. 15.

Results similar to ours have been found in two rec
works using DMFT for a cluster of sites within the Hubba
model. Maieret al.16 applied the dynamical cluster approx
mation ~DCA! for various cluster sizes up to 64 sites to t
Hubbard model in the intermediate-coupling regimeU
;bandwidth). The DCA equations were solved with qua
tum Monte Carlo~QMC! techniques down to room temper
ture. The authors of Ref. 16 identified signals for non-Fer
liquid behavior at low dopingd&0.1 and found a large
residual scattering rate and a pronounced pseudogap a
doping. In Ref. 17, Stanescu and Phillips studied the H
bard model at intermediate coupling within a two-site clus
approach using the noncrossing approximation as a quan
impurity solver at not too low temperatures. It is again fou
that Luttinger’s theorem appears to be violated for low do
ing in a regime where a pseudogap opens.
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Despite the similarity of the numerical results, quite d
ferent explanations for the observed pseudogap physics
been suggested, ranging from short-range spin correlati
spin-charge separation, and resonant valence bond~RVB!
physics16 to effects of the upper Hubbard band and curre
correlations involving three neighboring sites.17 By construc-
tion our approximation scheme is not able to describe s
intersite correlations or RVB singlets and does not inclu
the upper Hubbard band: nevertheless, the overall results
qualitatively very similar. We take this as a strong indicati
that neither short-range magnetic or current correlations
RVB physics is the underlying reason but argue that ther
another generic mechanism for pseudogap formation:
strongly incoherent dynamics captured in our scheme as
as those of Refs. 16 and 17 appears to be the dominant
ture of the Hubbard model as well as thet-J model in the
low-energy sector (0.1J&v&t) for small doping. Therefore
pseudogap formation seems to be a generic property of
strongly incoherent Fermi system close to a Mott insula
In other words, the existence of a pseudogap neither requ
slowly fluctuating, finite-range-ordered domains~antiferro-
magnetic, superconducting!,18 nor a local resonance state.

II. EXTENDED DYNAMICAL MEAN-FIELD
THEORY OF THE T-J MODEL

The standard model embodying the physics of the ho
doped Mott-Hubbard insulator is thet-J model, defined by
the Hamiltonian

H5(
i , j

t i j c̃is
† c̃ j s1

1

2 (
i , j

Ji j Si•Sj , ~1!

whereSi5
1
2 (s,s8c̃is

† tss8c̃is8 is the spin operator at lattice
site i, t denotes the vector of Pauli matrices, andt i j (Ji j ) are
the hopping amplitudes~exchange interaction! connecting
sites i and j. For the numerical evaluation to be discuss
later we will use a tight-binding model on a two-dimension
square lattice,t i j 52td i ,i 1t , Ji j 5Jd i ,i 1t , where t labels
nearest-neighbor sites. The operatorc̃is

† ( c̃is) creates~anni-
hilates! an electron at sitei with spin projections at a singly
occupied lattice site. In terms of usual electron operat
cis

† (cis) one hasc̃is
† 5cis

† (12ni ,2s), wherenis5cis
† cis is

the occupation number operator. In this way occupation
lattice sites by two electrons with spins↑ and↓ is avoided,
which would cost the large Hubbard energyU. We will be
interested in electron densities close to half-filling of t
band, such that̂(snis&5n512d, whered!1 is the dop-
ing concentration of holes.

Whereas at exactly half-filling, whenH reduces to the
Heisenberg model, the ground state has antiferromagn
long-range order, we anticipate that this will not be the ca
for sufficiently large dopingd.dc ~in experimentdc.0.03
for low T) or large T. In this regime it is reasonable t
assume the antiferromagnetic correlations in the system t
short ranged. We assume furthermore that additional fo
of long-range order~such as superconductivity! that may be
possible ground states of thet-J model are confined to a
lower-temperature regime, such that the corresponding fl
9-2
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PSEUDOGAPS IN THEt-J MODEL: AN EXTENDED . . . PHYSICAL REVIEW B68, 155119 ~2003!
tuations are subdominant at elevated temperatures. Co
quently, one expects an extended high-temperature reg
where short-ranged spin fluctuations lead to a highly in
herent metallic state, as observed in high-temperature su
conductors, with anomalous transport properties~large, non-
Fermi-liquid-type electrical resistivity, holelike Ha
constant!, large entropy, broad ‘‘quasiparticle’’ peaks in ph
toemission, etc. It is our aim to investigate this regime with
an approximation scheme which neglects most of the lon
range spatial correlations, but keeps the dominant sh
range spin correlations.

The single-particle dynamics and two-particle dynam
of the model are described by the Green’s function

Gk,s~ iv!52E
0

b

dteivt^Ttc̃ks~t!c̃ks~0!&

5
1

iv1m2ek2Sk,s~ iv!
~2!

and by the spin susceptibility

xq,a~ iV!5E
0

b

dteiVt^TtS2q,a~t!Sq,a~0!&

5
1

Jq1Mq,a~ iV!
. ~3!

Hereb is the inverse temperatureT ~we employ units with
kB5\51), v andV are fermionic and bosonic Matsuba
frequencies, andek andJq are the lattice Fourier transform
of the hopping amplitudest i j and the exchange coupling
Ji j , respectively. While the self-energiesSk( iv) and
Mq( iv) are momentum dependent in general, the obse
tion that the fluctuations in the system are short ranged in
regime we are interested in suggests that a ‘‘local’’ appro
mation, neglecting the momentum dependence ofS and M
altogether, may be a good starting point. We therefore
ploy in this paper the main approximation

Sk~v!.S~v! ~4!

and

Mq~v!.M ~v!, ~5!

thus capturing the effect of local fluctuations in time, whi
we expect to be important in the presence of strong inela
scattering.

The momentum independence ofS and M allows us to
map the lattice problem onto an Anderson impurity probl
where the host medium has to be determined s
consistently. Considering first the single-particle propertie
i.e., S(v)—the corresponding DMFT has been widely us
to calculate properties of the Hubbard model and perio
Anderson model.4,5 One maps the problem onto an Anders
impurity embedded in a fermionic bath. Applied to thet-J
model it amounts to treating the exchange interaction
mean-field theory. This is not sufficient to allow us to ma
tain the balance between dynamical hopping processes
spin fluctuations, which is at the heart of thet-J model. We
15511
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therefore follow Refs. 6 and 7 and extend the dynami
mean-field idea for the paramagnetic phase by introducin
fluctuating magnetic field coupling to the local spin as re
resenting an additional class of degrees of freedom of
medium. This type of approximation, termed ‘‘extend
DMFT,’’ has been applied to the Kondo lattice model6 and
the extended Hubbard model.7 It is important to note that
EDMFT ~i.e., the neglecting of the momentum dependen
of S and M ) becomes exact in the limit of infinite dimen
sionsd→`, providedt andJ are scaled ast/Ad andJ/Ad,
respectively. We shall use this property in deriving t
EDMFT equations~see Appendix A!. We will, however, re-
gard EDMFT as an approximation applied in finite dime
sions and, as such, will use the tight-binding expressions
ek andJq valid in d52.

To summarize, the EDMFT is probably best visualized
considering a single-site, the ‘‘impurity,’’ and its coupling t
the surrounding ‘‘medium.’’ There are two types of couplin
processes, as is evident from the Hamiltonian

~i! Hopping to and from the ‘‘impurity’’ into the medium
as in the Anderson impurity model~in the limit of infinite U,
as a consequence of the no double occupancy constra!.
The medium is modeled by a noninteracting fermion syst
~the ‘‘conduction electrons’’!, whose local density of state
has to be determined self-consistently.

~ii ! Exchange coupling of the local spin at the ‘‘impurity
site to the spins of the medium. In the limitd→` the two
components of the medium—fermions~see above! and spin
fluctuations—are completely decoupled. We do not exp
that this approximation holds in 2D for low temperature
But in the regime considered in this paper, where electr
are highly incoherent, we believe that such a modeling
appropriate. The spin fluctuations of the medium are
scribed by a~vector! bosonic bath, whose spectrum again h
to be determined self-consistently.

In this way one is led to a generalized quantum impur
model with Hamiltonian

HEDMFT5(
ks

Ekcks
† cks1V(

ks
~cks

† d̃s1H.c.!2mnd

1(
q

vqhq
†
•hq1I(

q
Sd•~hq1h2q

† !. ~6!

A formal derivation ofHEDMFT in the limit d→` is given in
Appendix A. Hered̃s

† is a projected fermion creation opera

tor for the impurity orbital~the original operatorc̃0s
† at the

chosen ‘‘impurity’’ site 0!, nd5(sd̃s
† d̃s , and Sd

5 1
2 (s,s8d̃s

†tss8d̃s8 . The fermionic bath is represented b
free fermion operatorscks

† , the bosonic bath by free boso
operators hqa

† , a51,2,3 with hq5(hq1 ,hq2 ,hq3), and
(q(hq1h2q

† ) plays the role of a fluctuating local magnet
field. The excitation spectrum of the bath degrees of fr
dom, Ek andvq , as well as the coupling constantsV and I
have to be determined self-consistently by equating both
single-particle Green’s function and the spin susceptibility
9-3
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the impurity modelGimp ,x imp with the local Green’s func-
tion Gloc and the local susceptibilityx loc of the lattice
model,

Gimp,s~ iv!52E
0

b

dteivt^Ttd̃s~t!d̃s
†~0!&5

!

Gloc~ iv!,

x imp,a~ iv!5E
0

b

dteivt^TtSa~t!Sa~0!&5
!

x loc~ iv!. ~7!

The localG and x are obtained from their lattice counte
parts~2! and~3!, taking into account Eqs.~4! and~5!, and by
summation over all momenta:

Gloc~v!5(
k

Gk~ iv!, ~8!

x loc~v!5(
q

xq~ iv!. ~9!

As shown in Appendix A, the self-energiesS andM also
characterize the impurity Green’s functions

Gimp~ iv!5@ iv1m2V2Gc~ iv!2S~ iv!#21, ~10!

x imp~ iv!5@M2I 2Gh#21, ~11!

where

Gc~ iv!5(
k

1

iv2Ek
, ~12!

Gh~ iv!5(
q

2vq

~ iv!22~vq!2
, ~13!

so that the system of equations~2!–~11! is closed. It follows
from Eqs.~10! and~11! that only the densities of states of th
baths,

Ac~v!5
V2

p
Im Gc~v2 i0!5V2(

k
d~v2Ek! ~14!

and

Dh~v!5
I 2

p
Im Gh~v2 i0!

5I 2(
q

@d~v2vq!2d~v1vq!#, ~15!

are needed. For practical purposes we have included the
pling constantsV andI, respectively, in the definitions of th
density of states.

III. GENERALIZED NONCROSSING APPROXIMATION

The solution of the quantum impurity model~6! for given
Ac(v) and Dh(v) is difficult. Many of the methods devel
oped in the past for solving Anderson impurity models in t
context of DMFT such as iterated perturbation theory5 and
15511
u-

the numerical renormalization group method19 are not appli-
cable in the case of a bosonic bath. The quantum Mo
Carlo method has been successfully applied to solve
EDMFT problem for an anisotropic Kondo lattice mod
with Ising-type spin coupling,20,21but it is extremely difficult
to treat Heisenberg couplings with manageable effort. T
only method left to us is self-consistent perturbation the
like the NCA or the conservingT-matrix approximation
~CTMA!.9,10

We will therefore employ a conserving diagrammatic a
proximation in which infinite classes of perturbation theo
in V and I are resummed. We are aiming at a level of a
proximation corresponding to the NCA for the usual Ande
son model. A convenient way to phrase the perturbat
theory in the hoppingV and the exchange couplingI, in the
presence of an infinitely strong Coulomb repulsionU, is in
terms of a pseudoparticle representation. We define pse
fermion operatorsf s

† ,s5↑,↓, creating the singly occupied
impurity state and the slave boson operatorb† creating the
empty impurity level, when acting on a correspondi
vacuum state.22 Since the local level is either empty or sing
occupied, the operator constraintQ5b†b1(s f s

† f s51 has
to be satisfied at all times. The constraint is enforced exa
by adding a termlQ to the Hamiltonian and taking the limi
l→` @see Eq.~23! below#. The projected local electron op
eratorsd̃s may then be replaced byb†f s , turning the prob-
lem into a many-body system of pseudofermionsf s and
slave bosonsb, interacting with the fermionscks and bosons
hq of the bath.

It is essential for any approximation scheme to respect
projection and not to allow transitions between different s
tors of Hilbert space labeled byQ. To this end we employ a
conserving approximation specified by a generat
Luttinger-Ward-type functionalF from which all self-
energies are obtained as functional derivatives,Sa
5dF/dGa . The building blocks ofF are the dressed
Green’s functions of pseudofermionsGf ~depicted as a
dashed line!, slave bosonsGb ~wiggly line!, bath fermions
Gc ~solid line!, and bath bosonsGh ~curly line! and the ver-
tices corresponding to hoppingV and exchange interactionI.

In the strongly incoherent regime we are interested
vertex corrections are not expected to change the behavi
a qualitative way. They may, however, lead to quantitat
changes. In this paper we would like to explore the lead
behavior first, so that we may neglect vertex corrections
the moment. The lowest-order terms ofF in self-consistent
perturbation theory in the bare coupling constantsV andI are
shown in Fig. 1~a!. The first one is the known generatin
functional of the NCA, whereas the second one is new a
involves the bath bosons. The corresponding self-ener
are shown in Fig. 1~b!, for the pseudofermions (S f) and
slave bosons (Sb), as well as the bath fermions (Sc) and the
bath bosons (Sh). We note that the impurity single-particl
Green’s function after projection (l→`) is related toSc by8

Gimp~ iv!5
1

V2
Sc~ iv! ~16!
9-4
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and likewise the impurity spin susceptibility is proportion
to the bath boson self-energy

x imp~ iv!52
1

I 2
Sh~ iv!. ~17!

Cutting a pseudofermion line in each of the two diagrams
the generating functional, Fig. 1~a!, one finds two diagrams
for the pseudofermion self-energy

S f~ iv!5S f
(2a)~ iv!1S f

(2b)~ iv! ~18!

as depicted in Fig. 1~b!. Likewise, the slave boson sel
energySb , the fermion bath self-energySc , and the boson
bath self-energySh are obtained by cutting the respectiv
Green’s function lines in the two diagrams ofF. The corre-
sponding analytical expressions are given by

S f s
(2a)~ iv!52V2T(

v8
Gcs~ iv8!Gb~ iv2 iv8!, ~19a!

S f s
(2b)~ iv!52

1

4
I 2 (

s8,a

tss8
a ts8s

a T

3(
V

Gha~ iV!Gf s8~ iv1 iV!, ~19b!

Sb~ iV!5V2T (
s,v8

Gcs~ iv8!Gf s~ iV1 iv8!, ~19c!

Scs~ iv!52V2T(
V

Gf s~ iv1 iV!Gb~ iV!, ~19d!

Sha~ iV!5
1

4
I 2 (

s,s8
tss8

a ts8s
a T

3(
v8

Gf s~ iv8!Gf s8~ iv81 iV!, ~19e!

where iv, iv8, and iV are fermionic and bosonic Matsub
ara frequencies, respectively;s,s85↑,↓; and a51,2,3.

FIG. 1. The two lowest-order contributions to the Luttinge
Ward functionalF and corresponding self-energies. Only diagra
with no line crossings are taken into account~a generalization of the
NCA!. The dashed~wavy! line denotes the pseudofermion~pseudo-
boson! Green’s functionGf (Gb), and the solid lines represent th
conduction electron Green’s functionsGc , the curly line the cor-
relator Gh of the bosonic bath. Also shown are the pseudo-s
energies as well as self-energies of the baths.
15511
f

Next one may transform the Matsubara frequency sums
frequency integrals along the branch cuts of the Gree
functions and perform the analytical continuation to the r
frequency axis. The projection to the singly occupied sec
of Hilbert space may now be carried out. To this end t
frequency arguments of the pseudoparticle Green’s funct
are shifted by the chemical potentiall and the limitl→` is
taken. This yields

S f s
(2a)~v1 i0!5E dj f ~2j!Acs~j!Gb~v2j1 i0!,

~20a!

S f s
(2b)~v1 i0!5

1

4 (
s8,a

tss8
a ts8s

a E djn~j!

3Dha~j!Gf s8~v1j1 i0!, ~20b!

Sb~v1 i0!5(
s

E dj f ~j!Acs~j!Gf s~v1j1 i0!,

~20c!

where f (j) andn(j) are the Fermi and Bose functions, r
spectively, andAc(j) andDh(j) are spectral functions of the
fermionic and bosonic baths as defined in Eqs.~14! and~15!.

Since we incorporated the factors ofV2 and I 2 into the
definition,Ac andDh are not normalized anymore, their tot
weight being given byV2 and I 2, respectively.

The projected pseudoparticle Green’s functions are
pressed in terms of their self-energies as

Gf~v1 i0!5
1

v1m2l02S f~v1 i0!
, ~21a!

Gb~v1 i0!5
1

v2l02Sb~v1 i0!
, ~21b!

where the~finite! energy shiftl0 is determined by fixing the
local chargeQ,8

lim
l→`

eblK (
s

f s
† f s1b†bL

G

5E dve2bvF(
s

Af s~v!1Ab~v!G51. ~22!

Here the subscriptG specifies an expectation value in th
grand canonical ensemble andAf(v)52(1/p)Im Gf(v
1 i0), etc.

The remaining self-energiesSc and Sh contain one
pseudoparticle loop each and are therefore}e2bl. The pro-
jected expectation value of any operator that vanishes in
Q50 subspace is then given by23

^A&5 lim
l→`

^A&G

^Q&G
5 lim

l→`

ebl^A&G ~23!

using Eq.~22!. It follows that

s

-
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Sc,s~v1 i0!5V2E dje2bj@Gf s~j1v1 i0!Ab~j!

2Af s~j!Gb~j2v2 i0!#. ~24!

With the help of Eq.~16! we find the imaginary part of the
impurity Green’s function in the compact form

Im Gimp,s~v1 i0!52
p

f ~2v!
E dje2bjAf s~j1v!Ab~j!.

~25!

From Eq.~19e! one finds after analytical continuation an
projection

Sha~v1 i0!5
I 2

4 (
s,s8

tss8
a ts8s

a E dje2bj

3@Af s~j!Gf s8~j1v1 i0!

1Gf s~j2v2 i0!Af s8~j!#. ~26!

The impurity susceptibility is obtained from Eqs.~17! and
~26! as

Im x imp,a~v1 i0!5
p

4n~v! (
s,s8

tss8
a ts8s

a

3E dje2bjAf s~j2v!Af s8~j!. ~27!

Equations ~7!–~13!, together with the ‘‘impurity solver,’’
Eqs.~18!, ~19a!–~19c!, ~22!, ~25!, and~27! have been solved
self-consistently. Starting with given initial values of the fe
mionic and bosonic bath and pseudoparticle spectral fu
tionsAc(j) andDh(j), the first approximation to the pair o
impurity Green’s functionsGloc and x loc as well as the
pseudoparticle spectral functions is determined. Using
identities

Gloc5(
k

1

Gloc
211V2Gc2ek

, ~28!

x loc5(
q

1

x loc
212I 2Gh1Jq

, ~29!

which follow from Eqs.~2!, ~7!, ~8!, ~10! and ~3!, ~7!, ~9!,
~11!, the new bath spectral functionsAc5(21/p)Im V2Gc
and Dh5(21/p)Im I 2Gh may be deduced. With these an
the updated pseudoparticle Green’s functions one determ
new Gloc , x loc , Gf , andGb with the help of the impurity
solver. The iteration is continued until convergence is fou
to the desired level. This process is found to converge we
the temperature regimeT>0.04t using a nearest-neighbo
tight-binding model, wheret is the hopping amplitude. A
lower T a solution could not be found anymore. In the fo
lowing we will present the results of the numerical evalu
tion before discussing in detail the reasons for the breakd
of the solution in the low-temperature domain.
15511
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IV. RESULTS

A. Local spectral function: Pseudogap
and non-Fermi-liquid physics

The most striking result of our work is the appearance
a pseudogap in the local electron spectral functionAloc(v) at
small hole doping and low temperatures. For the purpose
this paper we define the pseudogap as a pronounced re
tion of the density of states at the Fermi energy. Figure
shows how the pseudogap starts to form when the excha
interactionJ is switched on, ford50.015 andT50.1t. In the
limiting case ofJ50, corresponding to the Hubbard mod
in the limit U→`, Aloc(v) is characterized by a broa
maximum below the Fermi level (v50), interpreted as the
lower Hubbard band, and a narrow peak~‘‘quasiparticle
peak’’! abovev50. As J is switched on, the quasiparticl
peak disappears rapidly and the weight under it appears t
shifted a distance;J below the Fermi level, forming a peak
dip-hump structure. The width of the pseudogap appear
scale withJ. At the same time the spectral function develo
a tail abovev50 reaching far (;t) above the bare band
edge. It is instructive to observe how the pseudogap dis
pears for a givenJ50.3t at T50.06t with increasing doping
level ~Fig. 3!. The pseudogap vanishes and the quasipart
peak begins to appear at dopings aboved'0.1. In the inset
of Fig. 2 the temperature dependence of the pseudogap
ture is shown atd50.04. Note thatAloc(v50) is weakly
affected, as the main effect of temperature is a smearin
the pseudogap structure. We note in passing that the bu
the spectral weight in the lower Hubbard band is shift
rigidly with the chemical potential and only a section
width ;4 max(J,dt) at the chemical potential is changin
with the doping.

The formation of the pseudogap at a low dopingd
50.04 and fixedJ50.3t as the temperature is lowered fro
T52J down to T50.2J is shown in the inset of Fig. 2. In
order to quantify the appearance of the pseudogap for g

FIG. 2. The local spectral function plotted vs frequency for fo
different J/t50, 0.1, 0.2, and 0.3 andT50.1t for doping level of
d50.015. The evolution of the pseudogap of widthJ is clearly
visible. The zero of energy is set at the chemical potentialm. The
inset shows temperature dependence of the local spectral functi
the doping level 4% and forJ50.3t.
9-6
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PSEUDOGAPS IN THEt-J MODEL: AN EXTENDED . . . PHYSICAL REVIEW B68, 155119 ~2003!
d as a function ofT one may define the temperatureT* at
which the curvature ofAloc(v) at v50 changes sign from
negative to positive values asT is lowered. In the inset of
Fig. 3 theT* values determined in this way are plotted ve
susd. T* is seen to drop rapidly withd, tending to zero at
d;0.15. These results are reminiscent of what is seen
ARPES experiments on highTc superconductors.11

How is the pseudogap generated? The clue to this q
tion lies in the behavior of the effective chemical potent
meff5m2ReS(0), as afunction of doping. In Fig. 4,meff is
shown at a low temperatureT50.06t, in comparison with
the effective chemical potentialm0 of a Fermi liquid~which
due to Luttinger’s theorem and the momentum independe
of S coincides with the chemical potential of a nonintera
ing system!. At doping levelsd*0.2 one finds thatmeff co-
incides namely withm0, a necessary condition for Ferm
liquid behavior. Upon lowering the doping concentratio
meff is seen to grow until atd'0.02 the upper edge of th
bare band is reached~the zero of energy is fixed at the cent
of the tight-binding band!. In fact meff moves above the bar

FIG. 3. The local spectral function plotted vs frequency forT
50.06t andJ/t50.3 for various hole-doping concentrationsd. The
inset shows the characteristic temperatureT* where the pseudoga
opens~for the definition see the main text!.

FIG. 4. Open squares mark the effective chemical potentialmeff

in units of 4t vs doping forJ50.3t andT50.06t ~left scale!. The
dashed line shows the effective chemical potentialm0 of a Fermi
liquid at T50 ~see text!. Open circles mark the estimation for th
Kondo temperatureTK vs doping as calculated from Eq.~31! ~right
scale!. The arrow marks the position whereTK is equal toJ. Only in
the regime whereTK is larger thanJ does the solution show th
onset of a Fermi liquid phase.
15511
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band, signaling the availability of states even above the
ter. By contrast, the validity of Luttinger’s theorem wou
require that the chemical potential be located in the cente
the band, approachingm050 in the limit d→0. The fact that
meff is moving up towards the upper band edge ford→0 is a
strong and unequivocal signal of non-Fermi-liqu
behavior—it is only possible for a highly incoherent me
with a large ImS. It is interesting to recall that in DMFT for
the Hubbard model~which in the limit U→` is identical to
the t-J model forJ→0) one finds Fermi liquid behavior a
low temperatures andmeff5m0. Even at not so low tempera
tures (T*0.06t) for J50, meff follows m0 except at rather
low doping valuesd&0.05, where a strong temperature d
pendence appears.

That indeed strong inelastic scattering drives the effec
chemical potential out of the band and that this induce
reduction of the density of states is shown in Appendix B
a toy model describing the pseudogap formation in a do
band insulator in the presence of strong inelastic scatteri
For sufficiently low d, meff moves beyond the bare ban
edge as the scattering strength—i.e.uIm Su—is increased. As
a consequence, the local spectral function at the Fermi le
drops dramatically. Also for a doped Mott insulator and a fl
density of states, we show explicitly in Appendix B that
pseudogap is generated ifmeff is moving from the center of
the lower Hubbard band to or above the upper band edg

Similar behavior has been found in Refs. 16 and 17
the Hubbard model at intermediate coupling. In Ref. 16
dynamical cluster approximation involving up to 64 sit
was employed and the mean-field equations were solved
QMC simulation and the maximum entropy method, to effe
the analytical continuation from imaginary to real freque
cies. Maieret al.16 interpreted the pseudogap found in the
spectra as generated by finite-range antiferromagnetic co
lations on the cluster or as RVB physics. Note that in o
approachfinite-range AF correlations and the formation
intersite singlets are not included as magnetic fluctuations
neighboring sites are treated as uncorrelated. Since the
sults of Ref. 16 are so similar to ours—including violatio
of Luttinger’s theorem in the relevantT range—we sugges
that their pseudogap is created by the same mechanism
identify as being responsible for our pseudogap: incohe
fluctuations~see above!. In their approach the self-energ
and therefore the pseudogap show a pronounced mome
dependence not captured by our approximation. Within
picture sketched above, ak dependence ofSk would give
rise to a momentum dependence of the ‘‘effective chem
potential’’ meff5m2ReSk and therefore of the pseudoga
Stanescu and Phillips17 used a two-site cluster approach
derive nonlocal DMFT equations. The quantum impur
model was solved by an adaptation of the noncrossing
proximation. Again the results for the spectral functions a
similar to ours. The authors claim that an effective lo
energy model cannot be defined, as low- and high-ene
sectors are mixed in a dynamical way. We do not see
reason for such an unusual situation, either from their pa
or from outside arguments. Rather, in the limitU@t or, more
precisely, ifU is strong enough to generate a Mott gap, t
separation of the lower and upper Hubbard bands is w
9-7
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K. HAULE, A. ROSCH, J. KROHA, AND P. WO¨ LFLE PHYSICAL REVIEW B 68, 155119 ~2003!
defined, and a projection onto the lower band is justified
Ref. 17 the appearance of the pseudogap is attribute
short-range ~nearest-neighbor! correlations, limiting the
phase space for low-energy excitations. These correlat
are identified as orbital ring currents flowing between th
adjacent sites. Since such effects are not included in
calculation and we nonetheless find a pseudogap and a
lation of Luttinger’s theorem, very similar to Ref. 17, w
conclude that the interpretation given in Ref. 17~as sketched
above! is not conclusive.

We conclude that the behavior found in our scheme
low doping—namely, pseudogap and non-Fermi-liqu
physics—is a generic feature of an incoherent metal.
have found this incoherent state to be quite robust, e
against changes in band structure. It is worth mentioning
Parcollet and Georges24 recently studied at-J model with
randomJ, which is equivalent to our EDMFT equations fo
the Bethe lattice. They did not find indications for
pseudogap. We believe the reason is that they employ sl
boson mean-field theory and, thereby, miss the incohe
part of the spectral function. A similar spin model has be
considered before by Sachdev and Ye.25

At larger dopings the solution shows the onset of a Fe
liquid phase, which we now proceed to discuss. First
show in Fig. 5 the local spectral function atd50.24 andJ
50.3t. With increasing temperature the quasiparticle pe
broadens and the chemical potential shifts to lower energ
The value ofA(v) at the Fermi level increases with fallin
temperature and tends to a limiting value asT→0.

At large doping the exchange interactionJ is unimportant
and the EDMFT model reduces to an Anderson impu
model. We may estimate the hybridization widthG of this
model from the density of states of the fermionic bath at
Fermi level (v50):

G5pAc~v50!. ~30!

The energy of the local orbitalsEd , according to Eq.~6!, is
given by the chemical potentialEd52m. An estimate of the
Kondo temperature is obtained from the conventional
pressionTK5ADG exp(pEd/2G) as

FIG. 5. Temperature evolution of local spectral function for do
ing level d50.24. In the main panel, the arrows show the posit
of the chemical potential while the inset shows spectra with
chemical potential fixed atv50. The evolution of broad quasipa
ticle peak above the Fermi level is clearly visible.
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TK5ADpAc~0! expS 2
m

2Ac~0! D . ~31!

Figure 4 showsTK /t as a function ofd for the low tempera-
ture T50.1t, usingD52t. The Kondo temperature is see
to fall strongly with decreasingd even at the highest valu
d50.24 and approaches zero rapidly in the pseudogap
gime. The value whereTK5J is indicated. In the regime
TK&J ~dotted line! one expects the exchange interaction
be of increasing importance, such that the interpretation
terms of an Anderson impurity model loses its meaning.

In the Fermi liquid regime the imaginary part of the se
energy ofGloc is expected to vary as

Im S~v2 i0!;t@v21~pT!2#/TK
2 , ~32!

where the Kondo temperatureTK plays the role of the renor
malized Fermi energy. The quadratic dependence is expe
to hold for v,T!TK . The inset of Fig. 6 shows ImS(0) as
a function ofT for doping levels fromd50.3 down to 0.01.
A limiting quadratic temperature dependence is not s
since the lowest temperature reached in our evaluatio
aboveTK ~or, for d.0.2, only slightly belowTK).

However, ford50.3 behavior consistent with Fermi liq
uid theory would smoothly match the results shown. F
smaller doping, in particular aroundd;0.1, ImS at T
;0.03t is so large that it is impossible to connect this b
havior smoothly with a Fermi liquid behavior belowTK
.0.1t. At still smaller d, Im S is seen to decrease wit
doping, due to the formation of the pseudogap.

As a further indication of Fermi liquid behavior we evalu
ate the quasiparticle weight factorZ defined as

Z5S 12
] ReS

]v D
v50

21

. ~33!

Figure 6 showsZ as a function of temperature ford
50.02–0.3. A finite quasiparticle weight in the limitT→0
would signal Fermi liquid behavior. It is seen that only f
the highest doping levelsd50.3 and 0.24 would an extrapo
lation toT50 give a finite value. For smaller values ofd the
Z factor appears to drop rapidly with decreasing temperat
possibly extrapolating to zero.

-

e

FIG. 6. Quasiparticle renormalization amplitudeZ plotted vs
temperature for various doping concentrations. The inset shows
imaginary part of the self-energy at zero frequency as a function
temperature.
9-8
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B. Pseudoparticle spectral functions

The pseudofermion spectral functionAf(v) at d50.015
andT50.1t is plotted versusv/t in Fig. 7, for values ofJ/t
from 0 to 0.3. While atJ50 Af(v) is characterized by a
narrow peak at a frequencyv;T and of width;T, increas-
ing J leads to a rapid asymmetric broadening of the peak
width Dv;J. Although in the limitT→0 for general rea-
sons one expectsAf(v) @and alsoAb(v)] to acquire power-
law divergent behavior at the thresholdv50,26 the tempera-
tureT50.1t is too high to show the asymptotic behavior. A
large doping,d.0.2, when the Kondo temperatureTK as
defined in Eq.~31! is larger thanJ, Af(v) is hardly affected
by J. The doping dependence ofAf(v) at J50.3t, as shown
in the inset of Fig. 7, is weak. The characteristic energy sc
is max(J,TK)'J up to the highest doping ofd50.24 and,
hence, is independent ofd.

The pseudoboson spectral function shown in Fig. 8
roughly speaking a mirror image of the lower Hubbard ba
As J is switched on spectral weight is pushed from below
threshold atv50 and from the far end of the Hubbard ban
into a peak atv;J, emulating the peak-dip-hump structu
in Aloc(v) in the pseudogap regime.

Both in the case ofJ50 and ford.0.2 a sharp quasipar
ticle peak is observed to form inAb(v) at v50. The peak is
suppressed at temperaturesT@TK , which is why it is not
seen in Fig. 8. In contrast toAf(v), Ab(v) is strongly dop-
ing dependent, as shown in Fig. 8. At the moderately l

FIG. 7. The pseudofermion spectral function plotted vs f
quency for four different values ofJ. The inset shows the evolutio
of spectra by doping the system at constantJ50.3t.

FIG. 8. The pseudoboson spectral function for the same par
eters as used in Fig. 7.
15511
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temperature ofT50.1t and forJ50.3t, the pseudogap fea
ture at smalld is seen to smoothly cross over to the qua
particle peak at large doping.

C. Dynamical spin susceptibility

The dynamical spin susceptibility is expected to rev
how the character of spin fluctuations dependents on dop
and exchange coupling constantJ. In Fig. 9 the imaginary
part of x loc(v)/v is shown at low dopingd50.01 and low
temperatureT50.09t for various values ofJ/t ranging from
0 to 0.3. AsJ is increased, the peak of Im(v)x/v broadens
and the width is seen to be given byDv'J. The real part
Rex(v50)5x8(0) decreases withJ as shown in Fig. 9.
However, there is no trace of a pseudogap in Imx loc(v).
The pseudogap reveals itself in the spectrum of the s
energyM (v) of magnetic excitations, as shown in Fig. 1
where ImM (v)5M 9(v) is observed to develop a gap fo
v&J. As analyzed in Sec. V, the pseudogap is caused
large values ofx8(v), which force a redistribution of spec
tral weight inM 9(v) by way of the self-consistent feedbac
of x8(v) into M 9(v). In Fig. 11, the momentum-resolve
spin excitation spectrumxq9(v)/v is shown forJ50.3t, d
50.01, andT50.1t. Whereas a pronounced gap exists aq
values away from the antiferromagnetic wave vectorQ
5(p,p), nearQ the gap is filled in. This is due to the fac
that in the region ofq space aroundQ not only is M 9(v)

-

-

FIG. 9. The local dynamical spin susceptibility plotted vs fr
quency for four differentJ/t and doping concentrationd50.01.

FIG. 10. The spin self-energyM (v) plotted vs frequency for
four different J/t. The horizontal dotted lines mark the valuezJ,
wherez54 is the coordination number.
9-9
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small for v&J, but also the real part of the denominator
xq(v) vanishes, asM 8(v)1Jq→0 for q→Q and as the
transition to the antiferromagnetically ordered state is
proached. Consequently, the ratioM 9(v)/uxq(v)u2 develops
pronounced peaks atuvu;J rather than a pseudogap. In th
local susceptibility the contribution fromq'Q tends to fill
in the pseudogap, which is therefore not discernible in Fig
The effect of approaching the ordered state is also obse
in the real part ofxq(v), shown in Fig. 11. The static
q-dependent susceptibilityxq(0) is seen to grow by two or
ders of magnitude asq is varied fromq50 to q5Q. This
behavior reflects the effect of a large spin correlation len
j, defined through

xq~0!5
2

zJ

1

j221~q2Q!2
, ~34!

for q'Q (z54 is the coordination number and length
measured in units of the lattice constant!. In Fig. 12 the
inverse correlation length is plotted versusT/t for J50.3t
and for various doping levels. For comparison, the theor
cal result for the Heisenberg model~two-loop order RG of
the nonlinears model! given in Refs. 2 and 27~limit d
50) is shown as well. It appears to connect smoothly to
curve for d50.02. Figure 12 also serves to show that t
numerical solution ceases to exist atxQ(0)*102, as will be
discussed in Sec. V.

D. Spectral functions of the fermionic and bosonic baths

The spectral functionAc(v) of the fermionic bath is
shown forJ50.3t and atT50.1t in Fig. 13. The imposed
self-consistency of the EDMFT equations has led to a dra
renormalization of the structureless tight-binding density
states. In factAc(v) reflects the structure seen inAloc(v) to
a large degree: on the one hand, the quasiparticle pea
large doping and, on the other, the pseudogap at smalld. For
comparison we showAloc(v) in Fig. 13 as well.

A similar trend is seen in the case of the spectral funct
of the bosonic bathDh(v), as is apparent from Fig. 14. Her
we also see from the comparison withx loc9 (v) a large degree
of similarity.

FIG. 11. The momentum-dependent spin susceptibility along
(0,0)2(p,p) axis plotted as a function of frequency for dopin
concentrationd50.01 and temperatureT50.1t.
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The total weight under the spectral functionsAc(v) and
Dh(v) is equal to the squares of the coupling constantsV2

and I 2, respectively. As shown in Appendix C, the couplin
constantV2 is fixed by sum rules and is given by

V252t2~11d!. ~35!

In contrast, a similarly simple relation does not hold forI 2.
However,I 2 may be related tox loc andM as follows:

I 25E
0

`dv

p
Im@M ~v2 i0!2x loc

21~v2 i0!#. ~36!

It turns out that the numerical evaluation yields

I 2'2J2~12d!. ~37!

The first moment of the eigenfrequenciesvq of the bosonic
bath is given by thef-sum rule

v̄q[(
q

vq5
^e2&

2I 2 E2`

` dv

p
vx loc9 ~v!, ~38!

where^e2&5*dee2NJ(e) andNJ(e) is the density of states
~DOS! of Jq .

e FIG. 12. The inverse of dynamic correlation length plotted a
function of temperature for various doping levels. The curve fod
50 is taken from Ref. 27 and corresponds to the two-dimensio
Heisenberg model.

FIG. 13. The fermionic bath spectral functionAc for two differ-
ent doping levelsd50.01 andd50.18 atJ50.3t andT50.1t. The
local spectral function is also shown for comparison.
9-10
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E. Thermodynamic properties

The thermodynamic potentialV within EDMFT can be
expressed in terms of the impurity free energyV imp and
contributions from the fermionic and bosonic baths:

V5V imp1kBT(
iv

H(
k,s

ln@Gks~ iv!/Gloc,s~ iv!#

1
1

2 (
q,a

ln@xq
aa~ iv!/x loc

aa~ iv!#J eiv01
. ~39!

Performing the analytical continuation from imagina
frequencies to the real axis and expressing the momen
summations as energy integrals, Eq.~39! may be written as

V5V imp1
1

pE deD~e!

3ImH 2E dv f ~v!ln$Gloc~v!@v1m2S~v!2e#%

1
3

2E dvn~v!lnFx loc~v!S M ~v!1
J

t
e D G J . ~40!

The impurity free energy is given by the shift of th
chemical potential,8 l0, defined by Eq.~22!:

V imp5l0 . ~41!

The entropyS52(]V/]T)m as a function of doping con
centrationd for various temperatures is shown in Fig. 1
Even at the low temperatureT50.1t, S is seen to be rathe
large (;0.5 ln 2), an indication for strong correlations and
rather incoherent state. The entropy of a noninteracting
tem at the same density would be about an order of ma
tude smaller. The overall magnitude ofScompares well with
both the results of exact diagonalization28 for a small system
and experimental data for La22xSrxCu04 ~Ref. 29!. The cal-
culated entropy shares the trend that it is reduced bot
large doping, when the system crosses over to a Fermi liq
and at smaller doping in the pseudogap phase. The que
ing of the magnetic fluctuations by the incipient magne
order as the antiferromagnetic Mott insulator is approac

FIG. 14. The bosonic bath spectral functionDh for two different
doping levelsd50.01 andd50.18 at J50.3t and T50.1t. For
comparison, the local dynamic spin susceptibility is also shown
15511
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for d→0 is qualitatively reproduced~note that forJ50, S
increases asd→0, and this behavior is obtained in DMF
calculations of the Hubbard model!. Not only the doping
dependence but also the temperature dependence com
well with exact diagonalization results as shown in Fig. 1

Another thermodynamic quantity of interest is the partic
densityn, given by

n512d52S ]V

]m D
T

. ~42!

In Fig. 17 the dopingd is plotted versusm at T50.1t. As
expected,d varies monotonically withm, with positive cur-
vature.

The particle density may also be obtained from the lo
Green’s function asn52Gloc,s(t501). The resulting val-
ues ofn are indistinguishable from those calculated by d
ferentiatingV, which provides a check for numerical acc
racy within our conserving approximation.

F. Transport properties

The calculation of transport properties in EDMFT is f
cilitated by the observation that a momentum independ
self-energy leads to a local current vertex function~in other
words, the nonlocal parts vanish in the limit dimensiond
→`) ~Refs. 30–32!. The optical conductivity is therefore
given by the single-particle Green’s function as

FIG. 15. Entropy per site as a function of dopingd at various
temperatures. Exact diagonalization results~Ref. 28! for the same
temperatures are denoted by dotted lines while the open cir
correspond to the experimental data~Ref. 29! on La22xSrxCu04.

FIG. 16. Specific heat coefficient vs temperature for vario
doping concentrations. In the right panel we show results obtai
by the exact diagonalization~Ref. 28!.
9-11
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sxx~ iv!5
e2

v
kBT(

iv8
(
ks

~vk
x!2Gk~ iv8!Gk~ iv81 iv!,

~43!

wherevk
x52t sinkx is the bare current vertex. Using the fa

that Gk depends onk only throughek @see Eqs.~2! and~4!#
and performing the analytical continuation to the real f
quency axis one finds

Resxx~v1 id!52pe2E deFxx~e!

3E dv8
f ~v8!2 f ~v81v!

v

3A~e,v8!A~e,v81v!, ~44!

where

Fxx~e!5(
k

~vk
x!2d~e2ek! ~45!

andA(ek ,v)5(1/p)Im Gk(v2 id).
Similarly, the off-diagonal or Hall conductivity in the

presence of a magnetic fieldB perpendicular to the plan
takes the form33–35

sxy5
4p2e3

3
BE deFxy~e!E dvS 2

] f

]v D @A~e,v!#3,

~46!

where

Fxy~e!5(
k

det~k!d~e2ek! ~47!

and

det~k!5U~ek
x!2 ek

xy

ek
xek

y ek
yyU, ek

a5
]ek

]ka
, ek

ab5
]2ek

]ka]kb
.

~48!

FIG. 17. Solid line: derivative of the thermodynamic potent
with respect to chemical potential 11(]V/]m)T ~or equivalently
doping vs chemical potential!. The contributions from three differ
ent parts of the thermodynamic potential—impurity, electr
Green’s function@second term in Eq.~40!#, and spin susceptibility
part @last term in Eq.~40!#—are shown separately.
15511
-

The weight factorsFxx and Fxy are shown in Fig. 18.
One observes that for the simple 2D tight-binding lattic
Fxx is an even function of energy, whileFxy is an odd func-
tion of energy.

The Hall coefficientRH is defined as

RH5
sxy

sxx
2 B . ~49!

For orientation it is useful to discuss the limit of low tem
peratures, assuming ImS(v)→0 at v→0 and A(e,v)
sharply peaked as a function ofe at e5v1meff . One may
then do the integrations one and v in Eqs. ~44! and ~46!,
yielding

sxx.e2
Fxx~meff!

uIm S~0!u
~50!

and

RH.
1

2e

Fxy~meff!

@Fxx~meff!#
2

, ~51!

with e52ueu. We observe thatRH does not depend on ImS
in this limit. In the Fermi liquid regimemeff5m0,0, and
consequentlyFxy(m0).0, leading to a negativeRH,0.

By contrast, in the incoherent regime of thet-J modelmeff
is found to be positive, approaching the upper band edge
d→0 ~see Fig. 4!, sinceFxy(e) is negative for positivee
andRH is seen to be positive~hole like!. For d.0.17, meff
changes sign andRH turns negative. For the neares
neighbor tight-binding model and assuming a linear variat
of meff with d, meff54t(12Cd), RH takes the simple form

RH.
p

2C

1

ueud
, d→0, C.0. ~52!

Using in addition the result for a single hole in the half-fille
band,36 RH51/ueud, one finds by comparisonC5p/2. For
the conductivity one obtains in a similar way

l
FIG. 18. The weighting functions for the two-dimension

square lattice can be expressed by elementary functions asFxx(x)
5(2t/p2)@2uxuE(121/x2)12K(121/x2)22P(121/uxu,121/x2)]
and Fxy(x)52(2t/p)2@x2E(121/x2)2K(121/x2)#sgn(x). Here,
K(x), E(x), and P(x) are complete elliptic integrals of the firs
second, and third kinds andx5«/(4t).
9-12
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sxx.e2
td

uIm S~0!u
, d→0. ~53!

Although Eqs.~52! and ~53! are in qualitative agreemen
with our numerical results, we emphasize that the assu
tion of small ImS(0) is not justified in the incoherent re
gime. A large ImS is actually necessary to obtain ameff
close to the band edge and therefore a positive sign ofRH .

We now present the numerical results. In Fig. 19
scaled resistivityrxxd/r0, wherer05\/e2, is plotted versus
temperature for values ofd ranging from 0.01 to 0.23. The
curves form a narrow band, meaning that the scalingrxx
}1/d shown in Eq.~53! holds approximately@and ImS(0) is
a weak function ofd]. The values of the resistivity are rathe
high. In the pseudogap regime (d!0.1) the resistivity tends
to turn downward for decreasing temperature. By contras
higher dopings an upward curvature is observed, leading
plateau at lowT, beforer begins to drop to lower values a
still lower T. The plateau is likely to be an artifact of th
NCA. The linear-T dependence ofr at large temperature
has also been seen in DMFT calculations5,37 based on QMC
simulations which do not include the effects of short-rang
magnetic fluctuations. The Hall coefficient is plotted in F
20 versus temperature, for values ofd ranging from 0.01 to
0.23. For small dopingd,0.16, RH is always positive, ap-
proaching the expected value36 1/(ueud) in the limit d→0,T

FIG. 19. T dependence of the resistivity multiplied by dopingd.
The linear-T behavior for highT flattens ford.0.1 at a temperature
of the order ofJ. For d,0.1 the resistivity drops in the regim
where a pseudogap opens.

FIG. 20. T dependence ofRH for J50.3t. For small doping and
T→0, RH approaches the value 1/(ueud) expected for a single hole
in a t-J model.
15511
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→0. For doping levelsd>0.16, RH is negative at lowT,
consistent with Eq.~51!, and changes sign at higherT, simi-
lar to what is observed in experiment.41

V. INSTABILITY OF THE EDMFT SOLUTION
DUE TO CRITICAL FLUCTUATIONS IN dÄ2

We will now investigate the question of why no solution
of the EDMFT equations exist for low temperatures a
small dopings. Within the EDMFT of thet-J model long-
range antiferromagnetic fluctuations are not taken into
count in a proper way. As a consequence the local spin
citation spectrumx loc9 (v)5Im x loc(v2 i0) keeps a simple
Lorentzian-type shape. On the other hand, the static lo
susceptibilityx loc8 (0) ~in two dimensions! diverges as lnj
when the transition to the antiferromagnetically ordered s
is approached and the spin correlation lengthj→`. This in
turn forces the slope ofx loc9 (v) in the limit v→0 to diverge
as lnj as well. Within the effective impurity model of ED
MFT a steep slope ofx loc9 (v) entails a large maximum o
x loc9 (v) at vmax&J, of valuex loc9 (vmax);x loc8 (0). As will
be shown below, a maximum value ofx loc9 (vmax) larger than
some critical valuex loc,crit9 5c/J, where the constantc de-
pends on the density of statesNJ(e) @see Eq.~54!#, leads to
an unphysical pole inxq(v) at v5vmax andq5qmax. This
in turn forces ImM (v2 i0) to change sign into an unphys
cal branch of the complex frequency plane. This is the po
when a stable numerical solution cannot be found any lon

To demonstrate this behavior explicitly we consider now
flat density of states of spin excitations,

NJ~e!5(
q

d~e2Jq!5
1

8J
u~4J2ueu!, ~54!

where the bandwidth 8J has been chosen to agree with th
of the tight-binding model,Jq52J(cosqx1cosqy). The local
susceptibility as defined by Eq.~9! may then be expresse
analytically in terms of the self-energyM (v):

x loc~v2 i0!5
1

8J
ln

4J1M ~v2 i0!

24J1M ~v2 i0!
5x81 ix9.

~55!

Inverting this relation one finds

M ~v2 i0!54J
v11

v21
54J

uvu22122iv9

uv21u2
, ~56!

wherev5exp(8Jx)5v81iv9. The imaginary part ofv, given
by

v95exp~8Jx8!sin~8Jx9!, ~57!

will change sign asx9(v) increases with increasingv, if
8Jx9>p. By Eq. ~56!, this will lead to a sign change o
M 9(v2 i0) from negative~stable! to positive values. How
can x9 and M 9 both be positive? This is possible sinc
xq(v2 i0) develops a pole in the physical domain,2uJqu
,4J, at finite v5vmax, giving a contribution tox loc with
9-13



y
no
en

he
ric
he

b
e
e

in
s-

ica
o
w
b
le

an

i

l
t

E
n

nt
ra

or
us

ha
a
in

e
rs

e

lit

re

nc

-

ly

the
ies

for
th

e in-

. In
hen

v-
er-
per
both
uc-
The
te

n
dy-

n
o-
and
re
are

rac-
a
in-

col-
as

-
er-
ost
is
ntial

ap is

K. HAULE, A. ROSCH, J. KROHA, AND P. WO¨ LFLE PHYSICAL REVIEW B 68, 155119 ~2003!
the ‘‘right’’ sign. The instability occurs at finite frequenc
and thus is not easily interpreted as a physical phenome

In the numerical treatment we found that a converg
solution cannot be obtained when the stability criterion

x loc9 ,
c

J
~58!

is violated. The constantc takes the valuep/8 for the flat
DOS and a value.0.3 for the tight-binding model.

We emphasize that this instability is not an artifact of t
method of solution of the impurity model but is a gene
feature of the EDMFT equations in two dimensions. In t
following we argue that whenever the ground state atT50 is
ordered, the self-consistency scheme has to break down
low some finite temperature. This argument is not only r
evant for our calculation but should be relevant for oth
applications of EDMFT which have focused on discuss
the possibility of novel quantum critical points in the pre
ence of two-dimensional magnetic fluctuations.38,39 While
our reasoning does not apply directly to the quantum crit
point, it strongly suggests that no solution exists on the
dered side of the phase diagram below a finite breakdo
temperature. While this breakdown temperature will pro
ably vanish at the quantum phase transition, this neverthe
casts some doubt on the applicability of EDMFT at the qu
tum critical point.

Our formal argument starts from the observation that
two dimensions no phase transition~of first or second order!
is possible forT.0 within EDMFT, since in a hypothetica
ordered phase the local susceptibility would diverge due
the presence of Goldstone modes—in this respect, the
MFT approach obeys the Mermin-Wagner theorem. Tech
cally, this fact is built into the EDMFT by the self-consiste
treatment of the spin fluctuations: A second-order phase t
sition would require the static spin susceptibilityxq,a(0),
Eq. ~3!, to diverge at some wave vectorq. In one or two
dimensions this would immediately imply a logarithmic
power-law divergence, respectively, of the static local s
ceptibility, Eq.~9!. The latter is forbidden in EDMFT by the
self-consistency requirementx loc5x imp , wherex imp—e.g.,
Eq. ~27!—is nondivergent forT.0. We mention in passing
that even in the case of Ising symmetry a second-order p
transition is not possible, as within EDMFT the longitudin
fluctuations would diverge at the critical point; however,
this case a first-order transition towards an ordered phas
T.0 cannot be excluded on general grounds. Indeed, a fi
order transition has been found by Sun and Kotliar21 and
Zhu, Grempel, and Si20 for an Ising-coupled Anderson lattic
or Kondo lattice, respectively. Assuming that forT50 the
system is magnetically ordered, the local susceptibi
x loc(0); ln j will grow steadily asT is lowered wherej is
exponentially large,j;ebE* , for T!E* andE* can crudely
be identified with the mean-field transition temperatu
However, we have shown that within EDMFT,x9(v) is
bounded from above by the requirements of self-consiste
How can this be reconciled with largex loc(0)
5*@ Im x9(v)/v#dv/p; ln j? The only possibility consis
tent with the Kramers-Kronig relation is thatx9(v) is con-
15511
n.
t

e-
l-
r
g

l
r-
n
-
ss
-

n

o
D-
i-

n-

-

se
l

for
t-

y

.

y.

stant down to anexponentiallysmall energy scaleEc(T)
;1/jz, wherez is some positive exponent. For sufficient
small T, Ec(T) will be exponentially smaller thanT. At this
point we have to ask the question whether the solution of
effective impurity model can produce a structure at energ
exponentially smaller thanT. We think that this is extremely
unlikely and conclude therefore that no solution can exist
sufficiently smallT, consistent with our results and also wi
QMC simulations by Burdinet al.40 of a model equivalent to
ours in the limit of zero doping.

Equation~56! also shows how the pseudogap inM (v)
emerges from the self-consistency ofx andM. The absorp-
tive part of the self-energyM, as seen from Eq.~57!, is
exponentially small in the regime where

8Jx8~v!@1. ~59!

From the numerical results in Fig. 10 one sees that Eq.~59!
is satisfied if uvu,cMJ, where cM is a constant of order
unity, which depends on the DOSNJ(e). Thus, the
pseudogap is found to develop as a consequence of th
crease ofx8(0)}(1/J)ln j with growing j, in two dimen-
sions. We stress that a relation similar to Eq.~56! between
M (v) andx(v) holds whenever the DOSNJ(e) is finite at
the band edges, which is a signature of two dimensions
this case the conclusions drawn above remain valid w
1/8J is replaced byDNJ , the DOS jump, andx is replaced
by x2x reg , where x reg(v)5*de@NJ(e)2DNJ#/@Jq
1M (v)#.

VI. CONCLUSION

The physics of the doped Mott-Hubbard insulator is go
erned by the interplay of the motion of holes and the antif
romagnetic fluctuations of the spin background. In this pa
we have used a local approximation scheme to describe
the constrained hopping of holes and the quantum spin fl
tuations in the paramagnetic phase on an equal footing.
local approximation becomes exact in the limit of infini
coordination number of the underlying lattice and is know
as extended dynamical mean-field theory. Rather than stu
ing the model in this limit, we take the point of view that i
finite dimensions the approximation of neglecting the m
mentum dependence of the single-particle self-energy
the J-irreducible spin susceptibility may still be useful. He
we have applied this scheme to the two-dimensional squ
lattice with nearest-neighbor hopping and exchange inte
tion. We expect that the approximation should work in
regime of temperatures and doping concentrations where
coherent fluctuations dominate and wash out any of the
lective effects sensitive to the system dimension, such
long-range antiferromagnetic order or superconductivity.

In the regime of temperatures aboveT;0.1J and for dop-
ing levels of 0.01&d&0.3, we indeed find a highly incoher
ent phase, with a broad distribution of spin excitation en
gies, a high entropy and a large electrical resistance. M
strikingly, the local single-particle spectral function, which
characterized by a narrow peak above the chemical pote
for d*0.25, develops a pseudogap asd is reduced down to
the few percent range. The appearance of the pseudog
9-14
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related to a dramatic shift of the effective chemical poten
from its noninteracting~i.e., Fermi liquid! value near the
center of the lower Hubbard band to the upper band ed
The shift persists down to the lowest accessible temperat
of T'0.1J and constitutes an unequivocal signal of no
Fermi-liquid behavior in the regime 0.01&d&0.2. The
single-particle pseudogap is accompanied by a gap in
spin excitation spectrum for momenta not too close to
ordering wave vectorQ5(p,p).

The Hall transport is found to be hole like, the Hall co
stant tending to large positive values}1/d as the doping is
reduced. At large dopings and low temperatures Fer
liquid-type behavior is recovered.

These results are encouraging and give rise to the ex
tation that the present EDMFT scheme is able to capture
main features of thet-J model in the incoherent regime. A
lower temperatures and small dopings one should expec
closeness to the antiferromagnetic transition atT50 andd
,dc to play an important role. We indeed find that th
EDMFT equations stop having a physical solution below
limiting temperature ofT'0.1J. We are able to trace thi
behavior to an intrinsic lack of structure in the spin structu
factor of the effective impurity model, which is ultimatel
due to the insufficient treatment of critical fluctuations in t
EDMFT model. It is likely that similar limitations apply to
other applications of the EDMFT in low-dimensional sy
tems.

In conclusion, we emphasize that within the present lo
approximation scheme neither effects of finite-range, slo
fluctuating antiferromagnetic or superconducting doma
nor local singlet formation or similar short-range correlatio
are included. Nonetheless, the strongly incoherent fluc
tions characteristic of our approach~in this case of the spins
but one could imagine similar effects, e.g., in the superc
ducting sector! suffice to drive pseudogap formation, a vi
lation of Luttinger’s theorem, and a hole-type Fermi surfa
in the proximity of a Mott insulator.
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APPENDIX A: EDMFT DERIVATION

In this appendix we derive the EDMFT self-consiste
equations for thet-J model using the cavity method.

To treat the no-double occupancy constraint of thet-J
model, we will add a local Coulomb repulsion term expli
itly and take the limitU→` at the end. In this approach, th
electron creation~destruction! operatorsci (ci

†) obey the
usual fermion anticommutation relations. The resulti
Hamiltonian is the so-called extended Hubbard model
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H52(
i j ,s

t i j cis
† cj s1U(

i
ni↑ni↓1

1

2 (
i j

Ji j Si•Sj . ~A1!

It is straightforward to extend the theory to other nonloc
interactions like nonlocal Coulomb repulsion, but since
are mainly interested in the effect of magnetic fluctuatio
we will neglect other terms in the Hamiltonian.

For simplicity, let us assume there is no long-range or
~i.e., the system is in the paramagnetic state!. Let us start the
derivation of the EDMFT equations with the action corr
sponding to the Hamiltonian~A1!:

S5E
0

b

dtF(
i j ,s

cis
† ~t!F S ]

]t
2m D d i j 2t i j Gcj s~t!

1
1

2 (
i j

Ji j Si~t!Sj~t!1(
i

Uni↑~t!ni↓~t!G . ~A2!

The action can be divided into three parts: the on-site part
the chosen site (S0),

S05E
0

b

dtF(
s

c0s
† ~t!S ]

]t
2m D c0s~t!1Un0↑~t!n0↓~t!G ,

~A3!

the intersite interaction between the chosen site 0 and the
of the system (DS),

DS5E
0

b

dtF(
i ,s

2t i0cis
† ~t!c0s~t!2t0ic0s

† ~t!cis~t!

1
1

2
~Ji01J0i !Si~t!•S0~t!G , ~A4!

and the lattice action in the presence of the cavity (S(0)),
which is equal to the original action~A2! with site 0 ex-
cluded from all summations.

The series expansion in the coupling between the cen
site and the rest of the system can be expressed as

Z5E Dc0s
† Dc0sE )

iÞ0
Dcis

† Dcis

3expS 2S02S(0)2E
0

b

DL~t!dt D ~A5!

5E Dc0s
† Dc0sexp~2S0!Z(0)S 12E

0

b

^DL~t!& (0)dt

1
1

2!E0

b

dt1E
0

b

dt2^TtDL~t1!DL~t2!& (0)1••• D ,

~A6!

where DS5*0
bDL(t)dt and ^& (0) means the average wit

respect to the cavity actionS(0). In the second line we have
integrated out all fermions except for site 0.

The first term linear inDL vanishes, since the average
each spin̂ Si(t)&50 is zero by the assumption of no long
range order in the system. For the broken-symmetry ph
9-15
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the spin operator has to be replaced with its deviation fr
the average valueSi→Si2^Si& and the derivation can pro
ceed along the same lines. The second term in the se
expansion reads

1

2!E0

b

dt1E
0

b

dt2^TtDL~t1!DL~t2!& (0)

5
1

2!E0

b

dt1E
0

b

dt2K TtF(
i ,s

t i0cis
† ~t1!c0s~t1!

1t0ic0s
† ~t1!cis~t1!2(

i
J0iS0~t1!•Si~t1!G

3F(
i ,s

t i0cis
† ~t2!c0s~t2!1t0ic0s

† ~t2!cis~t2!

2(
i

Ji0 Si~t2!•S0~t2!G L (0)

. ~A7!

It is crucial to observe that there is no interference betw
the kinetic and the spin term since the average of the co
lation function ^cis(t1)Sj (t2)& (0) vanishes. The leading
order term in the effective action thus reads

Seff5S02E E
0

b

dt1dt2

3Fc0s
† ~t1!(

i j
t i0t0 j^Ttcis~t1!cj s

† ~t2!& (0)c0s~t2!

1S0~t1!
1

2 (
i j

Ji0J0 j^TtSi~t1!Sj~t2!& (0)S0~t2!G .
~A8!

Within EDMFT both terms are equally important and are
order 1 in the 1/d expansion. The two-point Green’s functio
and the susceptibility scale as 1/du i 2 j u/2 sincet andJ fall off
as 1/Ad. Furthermorei and j are neighbors of site 0 and ar
thus at least 2 lattice sites apart~in Manhattan distance! giv-
ing a contribution of order 1/d. The prefactort2 or J2 is
proportional to 1/d, while the double sum givesd2 and the
net result is therefore of order 1.

Further it follows from the linked cluster theorem th
only connected n-point correlation functions appear i
higher-order terms of the effective action. Since they ha
the usual dependence on 1/d, all but the first term vanish in
the limit d→`. For instance, the next-order term would i
volve three-point connected correlation functionsx i jk

;^Si
zSj

zSk
z& or Ci jk;^Si

zcj
†ck& that scale like

1/du i 2 j u/2du i 2ku/2. When all three variablesi, j, andk are dif-
ferent, the correlation functions is of order 1/d2 since all
three sites are neighbors of 0. The prefactorJ3 or Jt2 is
proportional to 1/d3/2 while the sums gived3. The term is
thus of order 1/Ad. If i 5 j , but distinct fromk, the correla-
tion function is of order 1/d while sums gived2 and the net
result is again of order 1/Ad. Higher-order terms fall off
15511
ies

n
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f

e

faster than 1/Ad. Thus, in the limit of larged all but the first
term ~A8! can be neglected and the effective action becom

Seff5E
0

b

Un0↑~t!n0↓~t!

2E
0

b

dt1E
0

b

dt2c0s
† ~t1!G 0

21~t12t2!c0s~t2!

2
1

2E0

b

dt1E
0

b

dt2S0~t1!x0
21~t12t2!S0~t2!,

~A9!

where

G 0
21~ ıv!5ıv1m2(

i j
t i0t0 jGi j

(0)~ ıv!,

x0
21~ ıv!5(

i j
Ji0J0 jx i j

(0)~ ıv!. ~A10!

The Weiss fields are thus determined by the cavity Gree
functionGi j

(0) and the cavity susceptibilityx i j
(0) . The absence

of interference between the kinetic and spin terms in E
~A8! also leads to separate equations for both cavity qua
ties:

Gi j
(0)5Gi j 2Gi0G00

21G0 j ,

x i j
(0)5x i j 2x i0x00

21x0 j . ~A11!

Using power-counting arguments one can show5,6 that in the
limit d→` and EDMFT scaling the single-particle sel
energy S( iv) as well as the double particle self-energ
M ( iv) become local quantities, i.e.,

Gk~ iv!5
1

iv1m2ek2S~ iv!
,

xq~ iv!5
1

Jq1M ~ iv!
. ~A12!

Inserting the definitions~A12! into ~A11! and combining
with Eqs. ~A10! we finally obtain the self-consistent cond
tions

G 0
215S1Gloc

21 ,

x0
215M2x loc

21 . ~A13!

These relate the Weiss fields to the local quantities com
able from the local action~A9!. The system of equations i
thus closed.

For practical computation, however, it is convenient
have a Hamiltonian representation of the local effective
tion ~A9!. Since it includes retardation effects through fr
quency dependent Weiss fields, it is necessary to introd
auxiliary degrees of freedom describing the baths. The o
particle character of the Weiss fieldG 0

21 can be represente
9-16
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with the fermionic bath while the two particle fieldx0
21 has

a bosonic nature and dictates a bosonic bath. One of
possible choices is

H5(
ks

Ekcks
† cks1V(

ks
~cks

† c0s1c0s
† cks!2(

s
mc0s

† c0s

1Un0↑n0↓1(
q

vqhq
†
•hq1I(

q
S0•~hq1h2q

† !,

~A14!

wherehq corresponds to a vector-bosonic bath with the co
mutation relations@hq

a ,hq8
b†

#5dqq8dab . The corresponding
action

S5S01E
0

b

dt(
ks

Fcks
† ~t!S ]

]t
1EkD cks1Vcks

† ~t!c0s~t!

1Vc0s
† ~t!cks~t!G1E

0

b

dt(
q

Fhq
†~t!S ]

]t
1vqDhq~t!

1Ihq~t!•S0~t!1IS0~t!•h2q
† ~t!G ~A15!

is quadratic incks andhq , and therefore both baths can b
eliminated, leading to

S5S02E
0

b

dt1E
0

b

dt2(
s

c0s
† ~t1!S (

k
V2

dt1t2

]

]t
1Ek

D c0s~t2!

2E
0

b

dt1E
0

b

dt2S0~t1!S (
q

I 2
dt1t2

]

]t
1vq

D S0~t2!. ~A16!

This action is identical to the effective action~A9! provided
that the following relations hold:

G 0
21~t12t2!52S ]

]t1
2m D dt1t2

1(
k

V2
dt1t2

]

]t
1Ek

,

x0
21~t12t2!5(

q
I 2S dt1t2

]

]t
1vq

1
dt1t2

2
]

]t
1vq

D ,

~A17!

or, equivalently,

G 0
21~ ıv!5ıv1m2V2Gc~ ıv!,

x0
21~ ıv!52I 2Gh~ ıv!. ~A18!

Finally, combining Eqs.~A13! and ~A18! yields
15511
he

-

Gloc
215 iv1m2S2V2Gc ,

x loc
215M1I 2Gh , ~A19!

which coincide with Eqs.~10! and ~11!.

APPENDIX B: PSEUDOGAPS IN A DOPED BAND
AND MOTT INSULATOR

In this appendix we investigate in the framework of sim
plified models, first, how a pseudogap is generated in
doped Mott~or band! insulator when the chemical potentia
meff moves up to and beyond the bare band edge and, sec
how strong incoherence drives the chemical potential far
of the bare band for a dopedband insulator.

Using a flat bare density of states withN(ek)
5(1/8t)Q(4t2ueku), the local Green’s function~8! is given
by

Gloc~v!5
1

8t
lnS v1m2S~v!14t

v1m2S~v!24t D . ~B1!

At v50, definingmeff5m2ReS(0) and ImS(0)52G in ,
the local density of states is obtained from Eq.~B1! as

Aloc~0!5
1

8t F1

2
2

1

p
arctanS meff

2 1G in
2 216t2

8tG in
D G . ~B2!

In the Fermi liquid regime, whenmeff
2 1G in

2 !16t2 and G in

!4t, Aloc(0)'1/8t. As meff moves towards the band edg
Aloc(0) is strongly reduced, atmeff5A16t22G in

2 by a factor
of 1/2, andAloc(0) drops to zero formeff far above the band
~see Fig. 21 and discussion below!. This simple observation
is the main reason why we obtain a reduced density of st
in the incoherent regime at small dopings. In order to und
stand the origin of the rather sharp threshold behavior
Aloc(v) at v52J in Figs. 2 and 3 better, it is useful t

FIG. 21. Upper panel: normalized spectral density atv50 as a
function of hole dopingd for a toy model of a doped band insulato
~see text! and various values ofG in . For largeG in and small doping
the density of states is reduced. The origin of this effect is that
effective chemical potential, shown in the lower panel, moves o
side of the band edge 4t. Inset:GPG as a function of doping. For
G in.GPG the density of states atv50 is reduced by more than
factor of 1/2.
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analyze the model given above, now allowing f
v-dependentS. For small v we may still neglect thev
dependence of ImS(v), but keep it for ReS in the approxi-
mate formv1m2ReS(v)'v/Z1meff , where theZ factor
has been defined in Eq.~33!. From Fig. 6, we see that 1/Z
'3 –5, leading to a rapid reduction ofv1m2ReS(v) for
negativev from meff to values belowA16t22G in

2 . This leads
to a rapid increase ofAloc(v) for negativev as found in
Figs. 2 and3.

We now address the question of whymeff moves up to and
even outside the bare band for small doping and increa
scattering. We study this question in the case of a doped b
insulator with ~unspecified! inelastic scattering, assuming
model form for the self energy,S(v)52 iG in . In a Mott
insulator thev dependence ofS(v) is much more compli-
cated and a simple ‘‘toy-model’’ form is not known to u
The effective chemical potential is determined from the p
ticle number condition~at low temperatures,T!G in)

12d52E
2`

0

Im@Gloc~v!#
dv

p
. ~B3!

The result of solving Eq.~B3! for meff ~equal tom in this
case! for fixed G in as a function of hole dopingd is shown in
the lower part of Fig. 21: Due to the tails in the local dens
of states induced byG in , the effective chemical potentialmeff
has to move far above the band for decreasingd to be con-
sistent with Eq. ~B3!; for d→0 we obtain m
'4t coth@4tpd/Gin#'G in /pd. As a consequence, the loc
spectral function at the Fermi level gets very small for d
creasingd ~upper panel of Fig. 21! with

A~0!'
G in

16pt2
sinh2F4tpd

G in
G'p

d2

G in
for d→0.

It is useful to determine the value ofG in at which the
pseudogap starts to form for a givend, namedGPG in the
inset of Fig. 21.GPG increases monotonically from zero wit
increasingd with

d'
GPG

8tp
lnF 8te

GPG
G ~B4!

for small d. For small dopings rather weak inelastic scatt
ing is sufficient to reduce strongly the density of states at
Fermi energy.

APPENDIX C: SUM RULE CONSTRAINTS ON V2 AND I 2

Within EDMFT, the coupling parametersV and I defined
by Eq. ~6!, describing the hopping onto and the exchan
interaction with the impurity, are determined se
consistently. Interestingly, sum rules completely determ
the values ofV and partially constrain the values ofI. We
start with the single-particle hoppingV. Defining a complex
variable z5v1m1S(v2 i0) one may write the EDMFT
self-consistency condition~7!, using Eqs.~2!, ~8!, and ~10!,
as
15511
g
nd

r-

-

-
e

e

e

H~z![E D~e!de

z2e
5
! 1

z2V2Gc~v2 i0!
, ~C1!

with D(e) the DOS of the tight-binding bandek andGc(v)
the fermionic bath Green’s function defined in Eq.~12!.
Solving Eq.~C1! for V2Gc and taking the limitv→` one
finds

lim
v→`

@vV2Gc~v2 i0!#5V25 lim
v→`

vS z2
1

H~z! D
5 lim

v→`

v

z
^e2&. ~C2!

Here the zero of energy has been chosen such that^e&50,
with ^en&5*deD(e)en, and^e2& is a measure of the square
width of the band. For the tight-binding bandek52t(coskx
1cosky) one finds^e2&54t2.

We now use the sum rule on the spectral weight in
lower Hubbard band,

nL5E
2`

` dv

p
Im Gloc~v2 i0!5

1

2
~11d!, ~C3!

which, using the analyticity ofGc(v2 i0) in the lower half-
plane, is equivalent to the statement

nL5 lim
v→`

vGloc~v2 i0!5 lim
v→`

1

NL
(

k

v

z2ek
5 lim

v→`

v

z
,

~C4!

where NL is the number ofk points in the first Brillouin
zone, which are summed over. Combining Eqs.~C2!–~C4!
one gets

V25
1

2
~11d!^e2&. ~C5!

The coupling constantI may be related tox loc(v) and
M (v). Using Eq.~11!, one may expressGh as

I 2Gh~v!5M ~v!2x loc
21~v!. ~C6!

Since Gh is a boson Green’s function@see Eq.~13!# with
positive energy spectrum,vq>0, the following relation
holds:

E
0

`dv

p
Im Gh~v2 i0!51. ~C7!

From Eq.~C7! one then finds

I 25E
0

`dv

p
Im@M ~v2 i0!2x loc

21~v2 i0!#. ~C8!

A further relation is obtained by using thef-sum rules:

E dv

p
v Im Gh~v2 i0!5 lim

v→`

v2Gh~v!5
1

NL
(

q
2vq[v̄q

~C9!
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and

E dv

p
x loc9 ~v!5 lim

v→`

v2x loc~v!. ~C10!

Taking the limit limv→`v2@•••# of Eq. ~C6! one finds
hy

ev

-

ics

i-
ys
.

ys

.

s.

.
n

15511
v̄q5
^e2&

2I 2 E dv

p
vx loc9 ~v!, ~C11!

with ^e2& as defined after Eq.~C2!.
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