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Anderson impurity model at finite Coulomb interaction U: Generalized noncrossing approximation
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We present an extension of the noncrossing approximation~NCA!, which is widely used to calculate
properties of Anderson impurity models in the limit of infinite Coulomb repulsionU→`, to the case of finite
U. A self-consistent conserving pseudoparticle representation is derived by symmetrizing the usual NCA
diagrams with respect to empty and doubly occupied local states. This requires an infinite summation of
skeleton diagrams in the generating functional thus defining the ‘‘symmetrized finite-U NCA’’ ~SUNCA!. We
show that within SUNCA the low-energy scaleTK ~Kondo temperature! is correctly obtained, in contrast to
other simpler approximations discussed in the literature.
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I. INTRODUCTION

Anderson impurity models have been of considerable
terest recently as generic models of local systems with in
nal degrees of freedom coupled to a Fermi gas. Although
introduced as models for magnetic impurities in metals,1 they
describe two-level systems in metals,2 quantum dots in me-
soscopic structures,3,4 and strongly correlated lattice system
in the local approximation of the dynamic mean-field theo
~DMFT! ~Ref. 5! as well. In a nut shell, the Anderson mod
features one or several local levels hybridizing with t
conduction-electron states of the metal. Multiple occupa
of the local levels is inhibited by the strong Coulom
repulsion U between electrons in the local states. As
consequence, the local levels are approximately sin
occupied, giving rise to a magnetic moment or an equiva
degree of freedom. Due to the coupling to the conducti
electron system, the local moment is screened,1 or in a mul-
tichannel situation forms a more complicated many-bo
state.6

Most investigations of Anderson models have conc
trated on the case of infinite Coulomb repulsionU. The cor-
responding restriction of the local Hilbert space to elect
occupationnd<1 allows for an economical treatment
terms of pseudoparticle representations7,8 and a projection
onto the physical sector of Hilbert space. In this framewo
the simplest approximation consists of second-order s
consistent perturbation theory in the hybridization, the
called noncrossing approximation~NCA!.9,10 Although the
NCA has its limitations, it is a valuable tool for extractin
the complex many-body physics of Anderson impurity mo
els. In the single-channel case the NCA accounts corre
for the formation of a Kondo resonance at the Fermi le
below the Kondo temperatureTK ,11 even though the appea
ance of a local Fermi-liquid state at temperaturesT!TK is
not captured in this approximation.12 In the multichannel
case even the correct low-temperature power-law behavi
obtained in NCA.13 However, in order to capture, e.g., th
physics of the upper and the lower Hubbard bands in
DMFT description of the Hubbard model and the Mo
Hubbard metal-insulator transition, it is essential to consi
the case of large but finiteU. It is therefore desirable to
0163-1829/2001/64~15!/155111~7!/$20.00 64 1551
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develop a generalization of NCA to the case of finite Co
lomb interaction. In the following we present a straightfo
ward generalization of NCA, which conserves the symme
of virtual transitions to the empty local level or doubly o
cupied local level states. This is essential for recovering
correct Kondo temperatureTK , as pointed out by Pruschk
and Grewe14 and, as will be shown, requires an infinite sum
mation of a certain class of crossing diagrams. We find t
inclusion of only the first crossing term in thi
resummation,14 while contributing the larger part of the
change ofTK , is not sufficient to provide a qualitatively
correct Kondo temperature.

II. PSEUDOPARTICLE REPRESENTATION OF THE
MODEL

The model we consider describes a local impurity le
~called thed level in the following!, hybridizing with the
conduction-electron states. The energyEd of the level may
be located below or above the Fermi energy. Two electr
with spins↑ and↓ on the local level experience a Coulom
interaction U. The local states will be assumed to b
created by pseudoparticle operatorsf s

† ~singly occupied state
with spin s), b† ~empty state!, and a† ~doubly occupied
state! acting on a vacuum state without any impurity. W
choose f s to be fermion anda, b to be boson operators
whereb will be called the ‘‘light’’ anda the ‘‘heavy’’ boson.
The creation operator for the local physical electr
can then be written asds

†5 f s
†b1sa†f 2s , where the

pseudoparticle occupation numbers must satisfy the oper
constraint

Q5a†a1b†b1(
s

f s
† f s51, ~1!

expressing the fact that at any instant of time the impurity
in exactly one charge state, empty, singly, or doubly oc
pied, respectively. The fermion operatorsckWs

† create electrons

in conduction-electron statesukWs& with energy ek . The
Hamiltonian then takes the form
©2001 The American Physical Society11-1



e
rm

il-

ug
e

a
ly
ct

l

le

e
o
o

e
igh

ch
le

y

l

-

cal
g

elf-
-

tri-
the
ng
gle-
so-
be-
an

ors,
nel

ali-

CA

K. HAULE, S. KIRCHNER, J. KROHA, AND P. WO¨ LFLE PHYSICAL REVIEW B 64 155111
H5(
kW ,s

ekWckWs
†

ckWs1Ed~2a†a1Ss f s
† f s!1Ua†a

1(
kW ,s

V~ckWs
†

b†f s1sckWs
†

f 2s
† a1H.c.!, ~2!

whereV is the hybridization matrix element. For later use w
define the conduction-electron density of states at the Fe
energy as N(0) and the effective hybridizationG
5pN(0)V2.

III. GAUGE SYMMETRY AND PROJECTION ONTO THE
PHYSICAL HILBERT SPACE

The model described by the auxiliary particle Ham
tonian~2! is invariant under simultaneous, localU(1) gauge
transformations, f s→ f seif(t), b→beif(t), a→aeif(t),
wheref(t) is an arbitrary, time-dependent phase. This ga
symmetry guarantees the conservation of the local chargQ
in time. In order to project onto the physical subspaceQ
51, it is therefore sufficient to carry out the projection
time t→2`, if the gauge symmetry is implemented exact
One starts with the grand canonical ensemble with respe
Q and the associated chemical potential2l. The projection
is achieved by taking the limitl→` of any grand canonica
expectation value of a physical operatorÂ acting in the im-
purity Hilbert space,

^Â&5 lim
l→`

^Â&G

^Q̂&G

. ~3!

Here the subscriptG denotes the grand canonical ensemb
The extra factorQ̂ in the denominator of Eq.~3! has been
introduced to project out theQ50 subspace. Note that in th
numerator this factor can be omitted, since any physical
eratorÂ acting on the impurity states consists of powers
ds

† , ds , which annihilate any state in theQ50 subspace,
ds

† uQ50&50, dsuQ50&50. A detailed description of the
projection procedure is given in Ref. 11. Expectation valu
in the grand canonical ensemble may be calculated stra
forwardly in perturbation theory in the hybridizationV, mak-
ing use of Wick’s theorem. The usual resummation te
niques may be applied. Thus the imaginary time sing
particle Green’s functions

Gf s~t12t2!52^T̂@ f s~t1! f s
†~t2!#&G ~4!

and analogously for the two bosonsa,b, may be expressed in
terms of the self-energiesS f ,b,c( iv) as

Gf s~ iv!5@ iv2l2Ed2S f~ iv!#21,

Gb~ iv!5@ iv2l2Sb~ iv!#21,

Ga~ iv!5@ iv2l22Ed2U2Sa~ iv!#21. ~5!

The local conduction-electron Green’s function is given b
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Gcs~ iv!5$@Gcs
0 ~ iv!#212Scs~ iv!%21 ~6!

with

Gcs
0 ~ iv!5(

kW
Gcs

0 ~kW ,iv!5(
kW

@ iv2ek#
21. ~7!

The physical d-electron Green’s function is proportiona
to the single-particle conduction-electront matrix tcs( iv),
and is related to the grand canonical~unprojected!
Scs G as

Gds~ iv!5
1

V2
tcs~ iv!5

1

V2
lim
l→`

eblScs G~ iv,l!, ~8!

whereb is the inverse temperature. The physical~projected
onto the Q51 subspace! local conduction-electron self
energy is then obtained from thet matrix as

Scs~ iv!5
V2Gds~ iv!

11V2Gcs
0 ~ iv!Gds~ iv!

. ~9!

IV. GENERATING FUNCTIONAL

Gauge-invariant approximations conserving the lo
chargeQ may be derived from a Luttinger-Ward generatin
functionalF. For a given approximation the functionalF is
defined by a sum of closed skeleton diagrams. The s
energiesSm ,m5a,b, f ,c, are obtained by taking the func
tional derivatives

Sm5
dF

dGm
. ~10!

The ‘‘noncrossing approximation’’~NCA! in the limit U
→` is defined by the single lowest-order diagram~second
order inV) containing a light boson line~the first diagram of
Fig. 1!. In the limit of small hybridization elementVkW , it
appears to be justified to keep only the lowest-order con
bution in V. However, as discussed in Refs. 12 and 17,
singular behavior of vertex functions may require includi
these as well. This turns out to be necessary in the sin
channel model where the formation of a many-body re
nance state is essential for recovering the Fermi-liquid
havior, and less so in the multichannel models. Including
infinite class of skeleton diagrams inF @in a ‘‘conserving
t-matrix approximation’’~CTMA!#, which allows to capture
a singular structure in the spin and charge excitation sect
the low-temperature Fermi-liquid phase of the single-chan
Anderson model is recovered.12

Here we are interested in constructing a simpler gener
zation of NCA to describe the case of finiteU. It seems
straightforward to define such an approximation on the N
level by adding to the second-order skeleton diagram forF
containing the light boson@the first diagram in Fig. 1~a!# the
corresponding diagram containing the heavy boson@the sec-
ond diagram in Fig. 1~a!#. This approximation and certain
extensions motivated by perturbative arguments14 or by a
1/N expansion (N being the spin degeneracy!16 have been
1-2
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ANDERSON IMPURITY MODEL AT FINITE COULOMB . . . PHYSICAL REVIEW B64 155111
considered some time ago. However, in the case of finiteU,
NCA was found to fail badly: Not even the Kondo ener
scale is recovered in the so-defined approximation. The
son for this failure is obvious: In the Kondo regime (nd
u1) the local spin is coupled to the conduction-electron s
density at the impurity through the antiferromagnetic e
change coupling

J5V2S 2
1

Ed
1

1

Ed1U D . ~11!

The two terms on the right-hand side of this relation ar
from virtual transitions into the empty and doubly occupi
local levels, which, e.g., contribute equally in the symmet
caseuEdu5Ed1U. The symmetric occurrence of these tw
virtual processes in all intermediate states is not include
the simple extension of NCA proposed above. Rather,
self-energy insertions in each of the two diagrams con
always only one of the processes, leading to an effectivJ,
which is only one half of the correct value. Corresponding
the Kondo temperatureTK;exp$21/@2N(0)J#% comes out
to scale as the square of the correct value, which can
orders of magnitude too small.

To correct this deficiency it is necessary to include ad
tional diagrams, restoring the symmetry between the two
tual processes. As a first step one may add the next-o
skeleton diagram toF @Fig. 1~b!#. As we will show below,
this approximation, later referred to as finite-U NCA
~UNCA!, helps to recover a large part of the correct behav
of TK .14 However, as seen from the preceding discussion,

FIG. 1. Diagrammatic representation of the generating fu
tional to describe the Anderson impurity model at finiteU.
Throughout this paper, solid, dashed, wiggly, and zigzag lines
respond to conduction-electronc, pseudofermionf, light bosonb,
and heavy bosona propagators, respectively.~a! NCA including
light and heavy boson lines.~a! and ~b! Finite-U NCA ~UNCA!.
This approximation amounts to taking only the diagrams in the fi
column of Fig. 2 into account, renormalizing only one of the ve
ces in each of these diagrams and keeping only one~light or heavy
boson! rung in the corresponding vertex function~see text!. ~a!–~c!
Symmetrized finite-U NCA ~SUNCA!.
15511
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a completely symmetric treatment of empty and doubly
cupied intermediate states one must first consider the
grams of bare perturbation theory instead of skeleton d
grams. A symmetric class of diagrams is generated
replacing a light boson line with a heavy boson line in ea
of the bare~nonskeleton! diagrams comprising the NCA, an
vice versa. Each replacement leads to a crossing
conduction-electron lines spanning one fermion and at m
two boson lines. A conserving approximation is then co
structed by substituting renormalized propagators for
bare ones and keeping only skeleton diagrams. The resu
generating functionalF is shown diagrammatically in
Figs. 1~a!–1~c!.

These diagrams look similar to the CTMA diagrams me
tioned above, but contain one light boson line and an a
trary number of heavy boson lines, or vice versa. Diagra
with, for example, two light boson lines and an arbitra
number of heavy boson lines~and conduction-electron line
spanning at most one fermion line! are reducible and do no
appear. We will call the approximation defined by the gen
ating functional given by the sum of the diagrams of Fig
‘‘symmetrized finite-U NCA’’ ~SUNCA!. The above approxi-
mation corresponding to the CTMA atU→`, termed ‘‘sym-
metrized finite-U conserving t-matrix approximation’’
~SUCTMA! is thus defined in a natural way by summing u
all skeletonF diagrams containing a single closed ring
auxiliary particle propagators with an arbitrary number
light or heavy boson lines, dressed by conduction-elect
lines spanning only one fermion line. Thus, the SUCTMA
defined by adding to the diagrams of the SUNCA the CTM
diagrams with~only! light boson lines or~only! heavy boson
lines. The SUCTMA equations have not yet been evalua
Note that the approximations discussed above are desig
to describe the correct spin-exchange couplingJ in
the Kondo regime for the case of finiteU, but do not
recover the noninteracting limit (U→0). This is because the
latter would require to reconstruct thefree local electron
Green’s function from the pseudoparticle propagators, wh
clearly involves the summation of substantially larger clas
of diagrams.

V. RESULTS OF SUNCA

As discussed above, the self-energiesSm are obtained by
functional differentiation of the generating functional wi
respect to the Green’s functionsGm . The functionalF de-
fined by Fig. 1 leads to an infinite series of diagrams forSm ,
which may be conveniently presented in terms of three-po
vertex functions~the filled semicircles with three legs: on
boson and two fermion lines!, see Fig. 2. It is necessary t
subtract a diagram of fourth order inV in each case to avoid
double counting. On the level of SUNCA and SUCTMA th
vertex functions consist of ladder summations, with light
heavy boson lines as rungs, and are defined diagrammati
in Fig. 3. Note that keeping only a single light or hea
boson rung in these vertex functions corresponds to UNC

The expressions for the self-energiesSm defined by Figs.
2 and 3, together with the definition of the Green’s functio
Eqs. ~5!, constitute a set of nonlinear integral equations

-

r-

t
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Sm(v),m5a,b, f . The local conduction-electron self-energ
Sc does not appear in any internal Green’s functions beca
it contains at least one auxiliary particle loop, i.e., carrie
factor exp(2bl) and thus vanishes due to the exact proj
tion onto the physical Hilbert space (l→`).11 Gd and there-
fore Sc may be calculated at the end via Eqs.~8! and~9! by
using the self-consistently determinedGm ,m5a,b, f . The
SUNCA equations are given explicitly in the Appendix. A
though these equations are more involved than the reg
NCA, they are numerically considerably more eas
tractable than the CTMA equations,12,17 since SUNCA con-
tains only renormalized three-point vertices~see Fig. 2! as
compared to four-point vertex functions occuring
CTMA.12 We solved the SUNCA equations numerically
the real frequency representation, i.e., after analytic cont
ation from Matsubara frequenciesvn to the real frequency
axis.

As a first important characteristic feature of th
pseudoparticles we note that the single-particle excita
spectrum is power-law divergent,Gm(v);v2am,m5a,b, f ,
reflecting the abundance of low-energy excitations forced
the constraint. At finite temperatureT these singularities are
cut off at the scalev;T. As observed in earlier work,12,18

the values of the exponentsam are characteristic of the stat
of the system. In the single-channel case, when the gro
state is a local Fermi liquid, the exponents may be infer
from the Friedel sum rule relating the scattering phase sh
hm,s to the number of electrons bound to the impurity
each channelDnm,s5hms /p. The exponentsam in turn are
related to thehm,s by the general result first derived for th
x-ray edge singularities,19 am512(s(hms /p)2. This is so,
since, e.g., the heavy boson Green’s function, describing

FIG. 2. Diagrammatic representation of the auxiliary parti
self-energies of SUNCA in terms of the renormalized hybridizat
vertices, defined in Fig. 3. In each line the third diagram is s
tracted in order to avoid double counting of terms within the fi
two diagrams.

FIG. 3. Diagrammatic representation of the Bethe-Salpe
equations for~a! the renormalized light boson~empty impurity!
and ~b! the renormalized heavy boson~doubly occupied impurity!
vertices, as generated by the SUNCA Luttinger-Ward functio
~Fig. 1!.
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transition amplitude for a doubly occupied impurity to b
created at timet50 and removed at a later time, is propo
tional to the overlap of the free Fermi sea of conducti
electrons with the ground state of the Anderson model. T
change in the occupation of the local level due to the hyb
ization with the conduction bandDnms is the difference be-
tween thet50 initial impurity occupationnms(t50) ~with-
out hybridization! and the occupation in the ground state
the Anderson impurity modelnds5nd/2, i.e., it depends on
the initial conditions of the different Green’s functionsGm ,
m5a,b, f .

Thus we haveDna,s5(22nd)/2, Dnf ,s5ds,s0
2 1

2 nd

~wheres0 is the spin of the fermion in the Green’s functio
Gf s0

), andDnb,s52nd/2. The infrared threshold exponen

of Gm(v) are therefore given by

aa52112nd2
nd

2

2
,

ab512
nd

2

2
,

a f5nd2
nd

2

2
. ~12!

In Fig. 4 we show the exponentsam for different nd , as
obtained from a numerical solution of the SUNCA equatio
~data points with error bars!. Note that the error bars aris
because the power-law behavior of the auxiliary spec
functions calculated numerically at finiteT is valid only over
a finite frequency range,T&v&TK . Also shown is the exac
result given by Eq.~12! ~dashed lines!, and the result~hori-
zontal lines! that can be extracted analytically from the NC
equations~defined by the first two diagrams in Fig. 1! in
analogy to Ref. 15. The numerical results of SUNCA~data
points! are seen to approach the exact result in the limitnd
→1, but in the case ofab anda f appear to follow the NCA

-
t

r

l

FIG. 4. Infrared threshold exponents of the auxiliary partic
spectral functions2Im Gf ,a,b

R (v)/p, in dependence of the impurity
occupationnd , for fixed values ofG and U and varying Ed .
Dashed curved lines: exact results@Eq. ~12!#, horizontal lines: NCA
results, and data points with error bars: SUNCA results. In
Kondo limit (nd→1) the exact exponents are recovered, while
the mixed-valence and empty impurity regimes the SUNCA res
for a f andab cross over to the NCA values.
1-4
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result rather than the exact result fornd<0.8. The results for
the exponentaa trace the exact behavior in reasonable agr
ment. Clearly the SUNCA does much better than the sim
NCA. From our experience12 with the Anderson model in the
limit U→`, we expect that the correct exponents should
recovered in SUCTMA.

We now turn to thed-electron spectral functionAd(v)
5(1/p)Im Gd(v2 i0). Figure 5 shows the results forAd(v)
for the symmetric Anderson model in the Kondo regim
(nd'1) at a very low temperature ofT.1022TK . Shown
are the results obtained from the simple NCA~diagrams of
first line in Fig. 1!, the perturbatively corrected versio
UNCA ~including the diagram in the second line of Fig. 1!,
and the full SUNCA. The inset shows that the width of t
Kondo resonance peak, which is a measure ofTK , comes out
orders of magnitude different in the three approximations
order to compare the numerical results with the exact exp
sion for TK ,

TK5minH 1

2p
UAI ,ADGJ e2p/I , ~13!

where

I 52F G

uEdu
1

G

Ed1UG , ~14!

we determineTK as the half width of the Kondo resonance
half maximum~HWHM!.

In Fig. 6 the results forTK /G obtained in this way for a
fixed value ofG50.05 ~in units of D) and several values o
Ed /G, as a function ofI (U/G) ~data points! are compared
with the exact values, Eqs.~13! and ~14! ~solid lines!. The
agreement is excellent, demonstrating that the SUNCA p
vides the correct scaleTK for a wide range of parametersEd
andU.

FIG. 5. Local electron spectral function calculated using NC
UNCA, and SUNCA. The Kondo temperature is determined as
HWHM of the Kondo peak~see inset!. It is seen that in NCA the
Kondo peak width comes out orders of magnitude too low.
15511
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VI. CONCLUSION

In this paper we have proposed a conserving schem
describe the Anderson impurity model at finite on-site rep
sion U within the auxiliary particle method. In order to in
corporate the correct value of the spin-exchange couplinJ
into the theory and, hence, to obtain the correct size of
low-energy scaleTK , it is necessary to treat fluctuation pro
cesses into the empty and into the doubly occupied inter
diate states on equal footing at the level of bare perturba
theory. The simplest Luttinger-Ward functional which
completely symmetric in this respect consists of an infin
series of skeleton diagrams, corresponding to ladder-t
vertex renormalizations in the self-energies. We term t
approximation ‘‘symmetrized finite-U NCA’’ ~SUNCA!. Al-
though considerably more involved than the regular NC
the SUNCA is numerically tractable on a typical work st
tion. We find that SUNCA recovers the correct Kondo te
perature over a wide range of the parameters of the Ande
modelEd , U, andG, while simplified approximations~NCA,
UNCA! produce a low-energy scale typically orders
magnitude smaller than the exact value. This result is es
cially relevant for a correct description of the low
temperature properties of strongly correlated lattice mod
by a diagrammatic many-body technique, since in the lim
of infinite dimensions these models reduce to
self-consistent, finite-U single-impurity problem. Applica-
tions of the present theory to such models are currently
progress.
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FIG. 6. Kondo Temperature for various parametersEd , U, and
fixed G. Solid lines represent the exact results, Eqs.~13! and ~14!.
Data points are the SUNCA results determined from the width
the Kondo peak in thed-electron spectral function.
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APPENDIX: SUNCA EQUATIONS

In this appendix we explicitly give the self-consiste
SUNCA equations which, together with the definitions, E
~5!, of the Green’s functions, determine the auxiliary parti
self-energies. We also give the expression for the phys
d-electron spectral function in terms of the auxiliary partic
propagators.

We first define the ladder vertex functionsTa , Tb with
heavy bosona and light bosonb rungs, respectively, a
shown diagrammatically in Fig. 3. These vertex functio
projected onto the physical subspaceQ51 and analytically
continued to real frequencies, obey the following Beth
Salpeter equations,

Tas~v,V!5GE de

p
f ~e2V!Ac2s

0 ~e2V!Gf 2s~e!

3Ga~e1v2V!1GE de

p
f ~e2V!Ac2s

0 ~e2V!

3Gf 2s~e!Ga~e1v2V!Ta2s~e,V!, ~A1!

Tbs~v,V!5GE de

p
f ~e2V!Acs

0 ~V2e!Gf 2s~e!Gb~e1v2V!

1GE de

p
f ~e2V!Acs

0 ~V2e!

3Gf 2s~e!Gb~e1v2V!Tb2s~e,V!, ~A2!

where f (e) is the Fermi function, Acs
0 (e)

5(1/p)Im Gcs
0 (e)/N(0) the bare conduction-electron de

sity of states per spin, normalized to the density of state
the Fermi level and, for concreteness, all propagators ar
be understood as the advanced ones. The auxiliary par
self-energies~Fig. 2! are then given by

S f s~v!5GE de

p
f ~e2v!Acs

0 ~v2e!Gb~e!@11Tas~v,e!#2

1GE de

p
f ~e2v!Ac2s

0 ~e2v!Ga~e!@1

1Tbs~v,e!#222G2E de

p
f ~e2v!Acs

0 ~v2e!

3Gb~e!E de8

p
f ~e82e!Ac2s

0 ~e82e!

3Gf 2s~e8!Ga~e81v2e!, ~A3!
15511
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Sb~v!5G(
s

E de

p
f ~e2v!Acs

0 ~e2v!Gf s~e!@1

1Tas~e,v!#1G2(
s

E de

p
f ~e2v!Acs

0 ~e2v!

3Gf s~e!E de8

p
f ~e82v!Ac2s

0 ~e82v!

3Gf 2s~e8!Ga~e81e2v!

3$@11Tbs~e,e81e2v!#

3@11Tb2s~e8,e81e2v!#21%, ~A4!

Sa~v!5G(
s

E de

p
f ~e2v!Ac2s

0 ~v2e!Gf s~e!

3@11Tbs~e,v!#1G2(
s

E de

p
f ~e2v!

3Ac2s
0 ~v2e!Gf s~e!E de8

p
f ~e82v!

3Acs
0 ~v2e8!Gf 2s~e8!Gb~e81e2v!

3$@11Tas~e,e81e2v!#

3@11Ta2s~e8,e81e2v!#21%. ~A5!

In order to calculate the physical impurity electron spe
tral functionAds from the self-consistently determinedGa ,
Gb , Gf , it is convenient to define modified vertex function
as

Sas
R ~v,V!511GE de

p
f ~e2V!Acs

0 ~e2V!Re$Gf s~e!

3@11Tas~e,V!#%Ga~e1v!, ~A6!

Sas
I ~v,V!511GE de

p
f ~e2V!Acs

0 ~e2V!Im$Gf s~e!

3@11Tas~e,V!#%Ga~e1v!, ~A7!

Sbs
R ~v,V!511GE de

p
f ~e2V!Ac2s

0 ~V2e!Re$Gf s~e!

3@11Tbs~e,V!#%Gb~e2v!, ~A8!

Sbs
I ~v,V!511GE de

p
f ~e2V!Ac2s

0 ~V2e!Im$Gf s~e!

3@11Tbs~e,V!#%Gb~e2v!. ~A9!

The impurity spectral function then reads
1-6
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Ads~v!52
1

p
ImE dV

p

e2bV

f ~2v!
Gf s~V1v!$Im@Gb~V!#@Sa2s

R ~v,V!22Sa2s
I ~v,V!2#12 Re@Gb~V!#

3Sa2s
R ~v,V!Sa2s

I ~v,V!%2
1

p
ImE dV

p

e2bV

f ~v!
Gf 2s~V2v!$Im@Ga~V!#@Sbs

R ~v,V!22Sbs
I ~v,V!2#

12 Re@Ga~V!#Sbs
R ~v,V!Sbs

I ~v,V!%12
G

pE dV

p

e2bV

f ~v!
E de

p
f ~e2V!Ac2s

0 ~e2V!

3Im@Gb~V!Gf 2s~e!#Im@Gf s~V1v!Ga~e1v!#. ~A10!

Note that the exponential divergencies of the statistical factors appearing in Eq.~A10! are compensated by the thresho
behavior of the corresponding auxiliary particle spectral functionsAm(v)5(1/p)Im Gm(v), m5a,b, f in the integrands. For
the numerical treatment, these divergencies can be explicitly absorbed by formulating the self-consistency Eqs.~A1!–~A10! in
terms of the functionsÃm(v) which are defined via

Am~v!5 f ~2v!Ãm~v! ~A11!

and, hence, have no exponential divergence. We thus have, e.g., exp(2bv)Am(v)5f(v)Ãm(v). Details of this representation ar
described in Ref. 11.
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