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Anderson impurity model at finite Coulomb interaction U: Generalized noncrossing approximation
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We present an extension of the noncrossing approximaf®@A), which is widely used to calculate
properties of Anderson impurity models in the limit of infinite Coulomb repuldibn «, to the case of finite
U. A self-consistent conserving pseudoparticle representation is derived by symmetrizing the usual NCA
diagrams with respect to empty and doubly occupied local states. This requires an infinite summation of
skeleton diagrams in the generating functional thus defining the “symmetrized inN€A” (SUNCA). We
show that within SUNCA the low-energy scdlg (Kondo temperatupeis correctly obtained, in contrast to
other simpler approximations discussed in the literature.
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[. INTRODUCTION develop a generalization of NCA to the case of finite Cou-
lomb interaction. In the following we present a straightfor-
Anderson impurity models have been of considerable inward generalization of NCA, which conserves the symmetry
terest recently as generic models of local systems with interof virtual transitions to the empty local level or doubly oc-
nal degrees of freedom Coup|ed to a Fermi gas. A|though firgt‘.upied local level states. This is essential for recovering the
introduced as models for magnetic impurities in metaleey ~ correct Kondo temperaturgy , as pointed out by Pruschke
describe two-level systems in metalguantum dots in me- and Grew&* and, as will be shown, requires an infinite sum-
soscopic structurel? and strongly correlated lattice systems mation of a certain class of crossing diagrams. We find that
in the local approximation of the dynamic mean-field theoryinclusion of only the first crossing term in this
(DMFT) (Ref. 9 as well. In a nut shell, the Anderson model resummatiort; while contributing the larger part of the
features one or several local levels hybridizing with thechange ofTy, is not sufficient to provide a qualitatively
conduction-electron states of the metal. Multiple occupancygorrect Kondo temperature.
of the local levels is inhibited by the strong Coulomb
repulsion U between electrons in the local states. As a
consequence, the local levels are approximately singly
occupied, giving rise to a magnetic moment or an equivalent

degree of freedom. Due to the coupling to the conduction- The model we consider describes a local impurity level

Il. PSEUDOPARTICLE REPRESENTATION OF THE
MODEL

electron system, the local moment is screehedin a mul-  (called thed level in the following, hybridizing with the
tlchaQneI situation forms a more complicated many-bodyconduction-electron states. The eneffy of the level may
state. be located below or above the Fermi energy. Two electrons

Most investigations of Anderson models have concenyith spins] and| on the local level experience a Coulomb
trated on the case of infinite Coulomb repulsidnThe cor-  interaction U. The local states will be assumed to be
respond_lng restriction of the local H|Ibert- space to elethorbreated by pseudoparticle operatbls(singly occupied state
occupationng<1 allows for an economical treatment in ity spin o), b" (empty statg anda’ (doubly occupied
terms of pseudoparticle representatichand a projection staté acting on a vacuum state without any impurity. We
onto the physical sector of Hilbert space. In this framework,.noosef  to be fermion anda. b to be boson operators
the simplest approximation consists of second-order selfynarep vl\T/iII be called the “Iight:’ anda the “heavy” boson. '
consistent pertu_rbation the.ory _in the hybridization, the sOThe creation operator for the local physical electron
called noncrossing approximatigiNCA).>*° Although the .1 then be written agl'=f'b+ oa'f where the

NCA has its limitations, it is a valuable tool fpr ext.ractlng pseudoparticle occupation numbers must satisfy the operator
the complex many-body physics of Anderson impurity mOd'constraint

els. In the single-channel case the NCA accounts correctly
for the formation of a Kondo resonance at the Fermi level
below the Kondo temperatuf®,** even though the appear-
ance of a local Fermi-liquid state at temperatufesTy is

not captured in this approximatidf.In the multichannel
case even the correct low-temperature power-law behavior is . . . . o
obtained in NCAL However, in order to capture, e.g., the expressing the fact that at any instant of time the impurity is

physics of the upper and the lower Hubbard bands in Elln_ exactly on_e charge state_, empty, singly, or doubly occu-
DMFT description of the Hubbard model and the Mott- pied, respectively. The fermion operataig create electrons

Hubbard metal-insulator transition, it is essential to considein conduction-electron stateHZa) with energy ¢,. The
the case of large but finit&). It is therefore desirable to Hamiltonian then takes the form

olo

Q=afa+b'b+> fif =1, 1)
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whereV is the hybridization matrix element. For later use we e physical d-electron Green’s function is proportional

define the conduction-electron density of states at the Fermj) e single-particle conduction-electrormatrix to, (i w)

energy as MO) and the effective hybridizationI'  gnq s related to the grand canonicdlinprojected
:WN(O)V . ECO'G as

IIl. GAUGE SYMMETRY AND PROJECTION ONTO THE , 1 1o ,
PHYSICAL HILBERT SPACE Gyoliw)= Wtc"(l w)=¢|lm e, clioN), (8)

A—oo

The model described by the auxiliary particle Hamil- . . Lo
tonian(2) is invariant under simultaneous, lodd(1) gauge where§ is tEe Inverse temperature. The. physigatojected
onto the Q=1 subspace local conduction-electron self-

transformations, f,—f,e'?", b—be?", a—ae’®, energy is then obtained from thenatrix as
where¢(t) is an arbitrary, time-dependent phase. This gauge gy

symmetry guarantees the conservation of the local ch@rge

2 .
in time. In order to project onto the physical subsp&ze S (iw)= VGy,(iw) ©
s . . . CO’(Iw) 2~0 /- . "
=1, it is therefore sufficient to carry out the projection at 1+ VG, (iw)Gyy(iw)
timet— —oo, if the gauge symmetry is implemented exactly.
One starts with the grand ca}nonical ensemble with_ regpect to IV GENERATING FUNCTIONAL
Q and the associated chemical potential. The projection
is achieved by taking the limit — oo of any grand canonical Gauge-invariant approximations conserving the local
expectation value of a physical operaforacting in the im- ~ chargeQ may be derived from a Luttinger-Ward generating
purity Hilbert space, functional®. For a given approximation the functiordl is
defined by a sum of closed skeleton diagrams. The self-
(A) energiesX ,,u=a,b,f,c, are obtained by taking the func-
(Ay= lim G (3)  tional derivatives
r—=(Q)c
Jolo)
Here the subscripG denotes the grand canonical ensemble. E,FK- (10
o

The extra factorQ in the denominator of Eq(3) has been . o _ o
introduced to project out th@=0 subspace. Note that in the The “noncrossing approximation{NCA) in the limit U
numerator this factor can be omitted, since any physical op=—> is defined by the single lowest-order diagrésecond

eratorA acting on the impurity states consists of powers of2der inV) containing a light boson linéthe first diagram of

d’ d.. which annihilate any state in t@=0 subspace Fig. 1. In the limit of small hybridization elemen¥, it

d¥|,Q—U(,))—O d,|Q=0)=0. A detailed description of thé appears to be justified to keep only the lowest-order contri-
ol Y/ M Vel Y . bution in V. However, as discussed in Refs. 12 and 17, the

rojection procedure is given in Ref. 11. Expectation values.. . ’ . L "

ﬁ] tJhe gran% canonical egnsemble may be caﬁculated straigh ingular behavior of vertex functions may require including

. . . S hese as well. This turns out to be necessary in the single-
B oty chamnl model whers the Tomalion of & manybody reo-
niques may be applied Thus the imaginary time Single_nan_ce state is essgntlal for recovering the Ferml—hqqld be-
particle Green’s functioné _ha_\npr, and less so in the n_1u|t|chanr_1el models. Inclut_jlng an

infinite class of skeleton diagrams fh [in a “conserving
R N t-matrix approximation”(CTMA)], which allows to capture
Gio(m1—=72) = —(Tlf () fo(T2) e (4)  asingular structure in the spin and charge excitation sectors,
the low-temperature Fermi-liquid phase of the single-channel
Anderson model is recoveréd.
Here we are interested in constructing a simpler generali-

zation of NCA to describe the case of finite. It seems

and analogously for the two bosoag, may be expressed in
terms of the self-energi€s; , .(iw) as

Groliw)=[io—A—Eg—Z¢(iw)] %, straightforward to define such an approximation on the NCA
level by adding to the second-order skeleton diagramdfor
Gpliw)=[io—N=3p(iw)] containing the light bosofthe first diagram in Fig. ()] the
corresponding diagram containing the heavy bdsba sec-
Gaiw)=[io—A—2E4—U—-3,(iw)] L. (5) ond diagram in Fig. (@]. This approximation and certain

extensions motivated by perturbative argum¥hte by a
The local conduction-electron Green’s function is given by 1/N expansion K being the spin degeneracy have been
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O =7 > + - 4 NCA a cqmpl_etely syr_nmetric treatment of empty and. doubly oc-
e e cupied intermediate states one must first consider the dia-
grams of bare perturbation theory instead of skeleton dia-

b UNCA grams. A symmetric class of diagrams is generated by

replacing a light boson line with a heavy boson line in each
of the barg(nonskeletopdiagrams comprising the NCA, and
vice versa. Each replacement leads to a crossing of
¢) SUNCA conduction-electron lines spanning one fermion and at most
two boson lines. A conserving approximation is then con-
structed by substituting renormalized propagators for the
bare ones and keeping only skeleton diagrams. The resulting
generating functional® is shown diagrammatically in
Figs. 1@—-1(c).
These diagrams look similar to the CTMA diagrams men-
tioned above, but contain one light boson line and an arbi-
+ ... trary number of heavy boson lines, or vice versa. Diagrams
with, for example, two light boson lines and an arbitrary
FIG. 1. Diagrammatic representation of the generating func-numb(?r of heavy boson lln?{and conductlon-electron lines
L spanning at most one fermion linare reducible and do not

tional to describe the Anderson impurity model at finite appear. We will call the approximation defined by the gener-
Throughout this paper, solid, dashed, wiggly, and zigzag lines cor- ppear. PP y 9

respond to conduction-electran pseudofermiorf, light bosonb, ?tlng fungtlona! Q'Ve” by t’he sum of the diagrams of F'Q- 1
and heavy bosom propagators, respectivelya) NCA including  Symmetrized finite NCA” (SUNCA). The above approxi-
light and heavy boson linega) and (b) Finite-U NCA (UNCA). ~ Mation corresponding to the CTMA Bt— o, termed “sym-
This approximation amounts to taking only the diagrams in the firstnetrized finitet)  conserving t-matrix approximation”
column of Fig. 2 into account, renormalizing only one of the verti- (SUCTMA) is thus defined in a natural way by summing up
ces in each of these diagrams and keeping only(bget or heavy  all skeletond diagrams containing a single closed ring of
boson rung in the corresponding vertex functitsee text (a)—(c) auxiliary particle propagators with an arbitrary number of
Symmetrized finitdd NCA (SUNCA). light or heavy boson lines, dressed by conduction-electron
lines spanning only one fermion line. Thus, the SUCTMA is
considered some time ago. However, in the case of fldjte defined by adding to the diagrams of the SUNCA the CTMA
NCA was found to fail badly: Not even the Kondo energy diagrams with(only) light boson lines ofonly) heavy boson
scale is recovered in the so-defined approximation. The redines. The SUCTMA equations have not yet been evaluated.
son for this failure is obvious: In the Kondo regimay( Note that the approximations discussed above are designed
=1) the local spin is coupled to the conduction-electron spirfo  describe the correct spin-exchange couplidg in
density at the impurity through the antiferromagnetic ex-the Kondo regime for the case of finitd, but do not
change coupling recover the noninteracting limit{—0). This is because the
latter would require to reconstruct tHese local electron
Green’s function from the pseudoparticle propagators, which
. (11 clearly involves the summation of substantially larger classes
of diagrams.

The two terms on the right-hand side of this relation arise
from virtual transitions into th_e empty and (_joubly occuple_d V. RESULTS OF SUNCA
local levels, which, e.g., contribute equally in the symmetric
case|Eq4|=E4+U. The symmetric occurrence of these two  As discussed above, the self-energigsare obtained by
virtual processes in all intermediate states is not included ifiunctional differentiation of the generating functional with
the simple extension of NCA proposed above. Rather, theespect to the Green’s functioi®, . The functional® de-
self-energy insertions in each of the two diagrams contairfined by Fig. 1 leads to an infinite series of diagrams3qr,
always only one of the processes, leading to an effective which may be conveniently presented in terms of three-point
which is only one half of the correct value. Correspondingly,vertex functions(the filled semicircles with three legs: one
the Kondo temperaturéy ~exp[—1/[2MN(0)J]} comes out boson and two fermion lingssee Fig. 2. It is necessary to
to scale as the square of the correct value, which can bsubtract a diagram of fourth order Vhin each case to avoid
orders of magnitude too small. double counting. On the level of SUNCA and SUCTMA the
To correct this deficiency it is necessary to include addi-vertex functions consist of ladder summations, with light or
tional diagrams, restoring the symmetry between the two virheavy boson lines as rungs, and are defined diagrammatically
tual processes. As a first step one may add the next-ordémn Fig. 3. Note that keeping only a single light or heavy
skeleton diagram t@ [Fig. 1(b)]. As we will show below, boson rung in these vertex functions corresponds to UNCA.
this approximation, later referred to as finlte-NCA The expressions for the self-energieg defined by Figs.
(UNCA), helps to recover a large part of the correct behavio2 and 3, together with the definition of the Green’s functions,
of Tx .2 However, as seen from the preceding discussion, foEgs. (5), constitute a set of nonlinear integral equations for
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FIG. 2. Diagrammatic representation of the auxiliary particle ’
self-energies of SUNCA in terms of the renormalized hybridization _1 s ! s I s ! s ! s
vertices, defined in Fig. 3. In each line the third diagram is sub- q 02 04 = 9.5 a8 1
tracted in order to avoid double counting of terms within the first d
two diagrams. FIG. 4. Infrared threshold exponents of the auxiliary particle

) spectral functions-1m GfR’ayb(w)/w, in dependence of the impurity
2 ,(0),u=a,b,f. The local conduction-electron self-energy occupationn,, for fixed values of" and U and varying Ey.

>, does not appear in any internal Green’s functions becausashed curved lines: exact resuly. (12)], horizontal lines: NCA
it contains at least one auxiliary particle loop, i.e., carries aesults, and data points with error bars: SUNCA results. In the
factor exp(-B\) and thus vanishes due to the exact projecKondo limit (ng— 1) the exact exponents are recovered, while in
tion onto the physical Hilbert spaca{-x).1! G, and there-  the mixed-valence and empty impurity regimes the SUNCA results
fore 3. may be calculated at the end via E(®). and(9) by  for «; and @, cross over to the NCA values.
using the self-consistently determinésl, ,u=a,b,f. The - ) o _
SUNCA equations are given explicitly in the Appendix. Al- transition amplitude for a doubly occupied impurity to be
though these equations are more involved than the reguldteated at tim¢=0 and removed at a later time, is propor-
NCA, they are numerica”y Considerab|y more eas"ytional to the Overlap of the free Fermi sea of conduction
tractable than the CTMA equatiof$!” since SUNCA con- electrons with the ground state of the Anderson model. The
tains only renormalized three-point verticesee Fig. 2 as change in the occupation of the local level due to the hybrid-
Compared to four-point vertex functions occuring in ization with the conduction bandnlw is the difference be-
CTMA.*? We solved the SUNCA equations numerically in tween thet=0 initial impurity occupatiom,,,(t=0) (with-
the real frequency representation, i.e., after analytic continuout hybridization and the occupation in the ground state of
ation from Matsubara frequencies, to the real frequency the Anderson impurity modely,=ngy/2, i.e., it depends on
axis. the initial conditions of the different Green’s functiofs, ,

As a first important characteristic feature of the #=a,b,f.
pseudoparticles we note that the single-particle excitation Thus we haveAn, ,=(2-ng)/2, An ;= 8,5~ 3Nq
spectrum is power-law divergerg, (o)~ “#,u=a,b,f, (whereay is the spin of the fermion in the Green’s function
reflecting the abundance of low-energy excitations forced b)GfUO), andAn, ,=—ngy/2. The infrared threshold exponents
the constraint. At finite temperatuflethese singularities are ¢ G,(w) are therefore given by

cut off at the scalas~T. As observed in earlier worké'8 5

the values of the exponenis, are characteristic of the state ag=—1+2ny— Nd

of the system. In the single-channel case, when the ground é 2"

state is a local Fermi liquid, the exponents may be inferred n§

from the Friedel sum rule relating the scattering phase shifts ap=1— >

M0 t0 the number of electrons bound to the impurity in

each channeAn, ,=»,,/7. The exponents, in turn are n3

related to theyn, , by the general result first derived for the ag=Ng— Pl (12

x-ray edge singularitie¥, a,=1-32 77”,,/77)2. This is so,
since, e.g., the heavy boson Green'’s function, describing the In Fig. 4 we show the exponents, for differentng, as
obtained from a numerical solution of the SUNCA equations
E)W (data points with error barsNote that the error bars arise
- because the power-law behavior of the auxiliary spectral
functions calculated numerically at finifeis valid only over
by — o ’ a finite frequency rangd,< o< T . Also shown is the exact
) *‘DM o E_DW result given by Eq(12) (dashed lines and the resulthori-
FIG. 3. Diagrammatic representation of the Bethe-SalpetezOntal lines that can be extracted analytically from the NCA
equations for(a) the renormalized light bosofempty impurity ~ €quations(defined by the first two diagrams in Fig) in
and (b) the renormalized heavy bosgdoubly occupied impurity ~ analogy to Ref. 15. The numerical results of SUNCfata
vertices, as generated by the SUNCA Luttinger-Ward functionalpoints are seen to approach the exact result in the limgit
(Fig. D). —1, but in the case o, and «; appear to follow the NCA

&
v
I

P
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oL , , , , FIG. 6. Kondo Temperature for various parametggs U, and

-10 -5 0 10 fixed I'. Solid lines represent the exact results, E48) and (14).
o/T Data points are the SUNCA results determined from the width of

the Kondo peak in thé-electron spectral function.

o

FIG. 5. Local electron spectral function calculated using NCA,
UNCA, and SUNCA. The Kondo temperature is determined as the
HWHM of the Kondo peak(see inset It is seen that in NCA the VI. CONCLUSION
Kondo peak width comes out orders of magnitude too low.

In this paper we have proposed a conserving scheme to
result rather than the exact result foy<0.8. The results for describe the Anderson impurity model at finite on-site repul-
the exponenty, trace the exact behavior in reasonable agreesion U within the auxiliary particle method. In order to in-
ment. Clearly the SUNCA does much better than the simpleorporate the correct value of the spin-exchange cougling
NCA. From our experien¢éwith the Anderson model in the into the theory and, hence, to obtain the correct size of the
limit U—cc, we expect that the correct exponents should beow-energy scaldy, it is necessary to treat fluctuation pro-
recovered in SUCTMA. cesses into the empty and into the doubly occupied interme-

We now turn to thed-electron spectral functiody(w)  diate states on equal footing at the level of bare perturbation
=(1/m)Im Gy(w—i0). Figure 5 shows the results f8g(w)  theory. The simplest Luttinger-Ward functional which is
for the symmetric Anderson model in the Kondo regimecompletely symmetric in this respect consists of an infinite
(ng~1) at a very low temperature af=10"?Ty. Shown  series of skeleton diagrams, corresponding to ladder-type
are the results obtained from the simple N@Aagrams of  yertex renormalizations in the self-energies. We term this
first Img in Fig. D, the pertL!rbatlver correpted VETSION approximation “symmetrized finité NCA” (SUNCA). Al-
;Jr?(ljcﬁefl?&llugﬁﬁl gjf ('jl'lr?gri?]r:eltnstwho?/vzetigﬂr:givgtrf 'g]; tlhethough cons?derably more involved than the.regular NCA,

' e the SUNCA is numerically tractable on a typical work sta-
Kondo resonance peak, which is a measuré,of comes out .. ;
orders of magnitude different in the three approximations. Ir;['on' We find that.SUNCA recovers the correct Kondo tem-
erature over a wide range of the parameters of the Anderson

order to compare the numerical results with the exact expres> IV S
P P modelEy, U, andl’, while simplified approximation€NCA,

sion for T, UNCA) produce a low-energy scale typically orders of
1 magnitude smaller than the exact value. This result is espe-
TK:min[EU\/I—, \/ﬁ] e, (13)  cially relevant for a correct description of the low-
temperature properties of strongly correlated lattice models
where by a diagrammatic many-body technique, since in the limit

of infinite dimensions these models reduce to a
self-consistent, finité single-impurity problem. Applica-

' (14 tions of the present theory to such models are currently in
progress.

T r
~4EJ] T EsrU

we determinélk as the half width of the Kondo resonance at
half maximum(HWHM).

In Fig. 6 the results foif /I" obtained in this way for a
fixed value ofl'=0.05(in units of D) and several values of
E4/T, as a function ofl (U/T) (data points are compared We are grateful to T. A. Costi and Th. Pruschke for useful
with the exact values, Eq$13) and (14) (solid lineg. The  discussions. This work was supported by DFG through
agreement is excellent, demonstrating that the SUNCA proSonderforschungsbereich 195.K., J.K., and P.W.and by
vides the correct scal€ for a wide range of parametey;,  the ESF Program “Fermi Liquid Instabilities in Correlated
andU. Metals” (FERLIN).
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APPENDIX: SUNCA EQUATIONS de
0
Sp(0) =T f —f(e=w)Al, (e~ w)Gy,(e)[1
In this appendix we explicitly give the self-consistent 7
SUNCA equations which, together with the definitions, Egs. ) de o
(5), of the Green’s functions, determine the auxiliary particle +Tao(€,@) ]+ T EUZ J ?f(f—w)AcU(E—w)
self-energies. We also give the expression for the physical

d-electron spectral function in terms of the auxiliary particle de' | o )
propagators_ XGf(r(e)f 71:(6 _w)Acfa'(E _w)
We first define the ladder vertex functioflg, T, with
heavy bosona and light bosonb rungs, respectively, as XGi_(€' )Gyl + e~ w)
shown diagrammatically in Fig. 3. These vertex functions, X{[ 1+ Tpy(€ € +e—w)]
projected onto the physical subspa@e=1 and analytically
continued to real frequencies, obey the following Bethe- X[1+Tp_ (€', € +e—w)]—1}, (A4)

Salpeter equations,
de 0
Sa(w)=I'X f;f(e—w)Ac_gw—e)Gfg(s)

T (wQ):FJ'Ef(e—Q)AO (e—0)Gs_(€) de
ar\ @ P c-o f-o X[1+Tp,(€,0)]+T2>, f?f(e—w)

X G (e+w—Q)+FJEf(e—Q)A° (e—Q) de’
a T o XAS,U(w—e)GfU(E)J’71‘(6’—(0)

XGf—a(e)Ga(E+w_Q)Ta—a(elQ)l (Al) XAO (w—e’)Gf_ (GI)Gb(6/+E_a))

X{[1+Ty,(€,€' + e~ w)]

de X[1+T, (€',€' +e—w)]—1}. (A5)
Too(0,Q)=T J ?f(e—Q)Agg(Q—e)Gf,g(e)Gb(e—Hu—Q)

In order to calculate the physical impurity electron spec-

de i i ;
+T | Zfe—)A° (O — tral funct!onAdg from the self-qonmsten_tly determm@a:
j T (6= Ay €) Gy, Gs, itis convenient to define modified vertex functions
as
XGi_,(€)Gp(etw=0)Tp4(€,Q), (A2)
R de 0
where f(e) is the Fermi function, A2 (e) Sar(@, Q) =1+T" | —f(e=Q)Ac (e~ Q)REGy,(€)
=(1/m7)Im Ggg(e)/J\/(O) the bare conduction-electron den-
sity of states per spin, normalized to the density of states at X[1+To0(€,Q)]}Ga(e+ w), (AB)
the Fermi level and, for concreteness, all propagators are to
be understood as the advanced ones. The auxiliary particle de
self-energiegFig. 2) are then given by s!w(w,g):prrf ?f(E_Q)AgU(G_QNm{GfU(e)
X[1+Ta,(€,Q)]}Ga(e+ w), (A7)

de
Si(@)=T | —f(e—0)A (0 €)Gy(e)[1+ Top(w,€)]?
to(@) f - (e—w)AL (0—€)Gy(€)[ (w,€)] SEg(w,Q)=l+Ffd—;f(6_Q)Aga(Q_f)Re{GfG(e)

d
+Ff?Ef(e—w)Ag_U(e—w)Ga(e)[l X[1+Tpy(€,Q2)}Gp(e~w), (A8)

+Tpo(w 6)]2—2F2f Ef(e—w)AO (w—€) de
oot ™ o Sho(0,0)=1+T [ Zt(e=0)AL (0 m{Gy, (o

d !
XGb(e)f %f(e’—e)Ag_a(e’—e) X[1+Tpo(€,Q)]}Gp(e— o). (A9)
XGi_,(€)Ga(e' +w—¢), (A3)  The impurity spectral function then reads
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1 [(dQ e’ . . ,
Aato)= = i [ £ E ey, (04 ) MG IS (0,078, (0.0)7]+2 REG(0)]
R ! ! o R 2_d 2
XS (008 (0.0} 2 [ 26 (0= )G O[S, (0,.0)- 8 (0,0]
OISR (.08 o I [dQ e P de]c QA Q
+2REGH()IS (0.0)8h, (0.0} 12 [ 5 [ S A e 0)

XIM[Gp(Q)Gi_,(€)]IM[ G, (2 +w)CGa(et w)]. (A10)

Note that the exponential divergencies of the statistical factors appearing i(AEQ). are compensated by the threshold
behavior of the corresponding auxiliary particle spectral functdpéw) =(1/7)ImG ,(w), u=a,b,f in the integrands. For
the numerical treatment, these divergencies can be explicitly absorbed by formulating the self-consiste{#d) E@sL0) in

terms of the functions'f\ﬂ(w) which are defined via
A (0)=f(—w0)A, (o) (A11)

and, hence, have no exponential divergence. We thus have, e.g;,(ﬁx}i(u(w)ﬂ(w)ﬂﬂ(w). Details of this representation are
described in Ref. 11.
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