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We use cluster Dynamical Mean Field Theory to study the simplest models of correlated elec-
trons, the Hubbard model and the t-J model. We use a plaquette embedded in a medium as a
reference frame to compute and interpret the physical properties of these models. We study various
observables such as electronic lifetimes, one electron spectra, optical conductivities, superconduct-
ing stiffness, and the spin response in both the normal and the superconducting state in terms of
correlation functions of the embedded cluster. We find that the shortest electron lifetime occurs
near optimal doping where the superconducting critical temperature is maximal. A second critical
doping connected to the change of topology of the Fermi surface is also identified. The mean field
theory provides a simple physical picture of three doping regimes, the underdoped, the overdoped
and the optimally doped regime in terms of the physics of the quantum plaquette impurity model.
We compare the plaquette Dynamical Mean Field Theory results with earlier resonating valence
bond mean field theories, noting the improved description of the momentum space anisotropy of
the normal state properties and the doping dependence of the coefficient of the linear temperature
dependence of the superfluid density in the superconducting state.

PACS numbers: 71.27.+a,71.30.+h

I. INTRODUCTION

The origin and the nature of superconductivity in
strongly correlated materials is one of the greatest chal-
lenges in modern condensed matter theory. It received
renewed attention with the discovery of the high temper-
ature superconductivity in copper oxide based materials.
While these materials have been studied intensively over
the past decades there is still no concensus as to what
are the essential physical ingredients responsible for the
high temperature superconductivity phenomena and how
it should be modeled1–14.

P.W. Anderson proposed that the high temperature
superconductivity phenomena was intimately connected
to the proximity to a parent Mott insulating state15,16.

Developing precise connections between the proxim-
ity to a Mott insulator and high temperature supercon-
ductivity has proved to be a difficult problem. Sug-
gestive conclusions have been reached using slave boson
methods17,18, variational wave functions19,20, and gauge
theory techniques2. However, lack of theoretical tools has
made difficult to prove that simple models are sufficient
to explain the phenomenas surrounding cuprates. For ex-
ample it is still strongly debated whether the existence of
superconductivity with a high critical temperature and
a pseudogap is a genuine property of the models studies,
or, an artifact of the approximations employed to solve
the model.

Over the past decade, significant progress in the field
of correlated electrons has been achieved through the de-
velopment of Dynamical Mean Field Theory21,22. In its
single site version, this method describes lattice mod-
els, in terms of a single site impurity problem embed-
ded in a medium. The method has been very successful
in describing, and even predicting numerous properties

of a large number of materials23–31. Cluster extensions
of this method, Cluster Dynamical Mean Field Theory
(CDMFT) (for reviews see 23,32), have been proposed
and are currently a subject of intensive investigations.

In this article we apply the cluster dynamical mean
field approach to construct a mean field theory of the
simplest models of strongly correlated materials, the one
band Hubbard and t-J models, using a 2 × 2 cluster,
namely the plaquette as the basic mean field reference
frame.

There are several motivations for constructing a mean
field theory based on a plaquette embedded in a dynam-
ical bath of conduction electrons : a) A plaquette em-
bedded in a a self consistent medium can describe the
physics of singlet formation, which is very important in
the t-J and Hubbard model. There are two roads of sin-
glet formation, the Kondo effect, in which a spin can
form a singlet with a bath of conduction electrons, or,
the superexchange mechanism which locks two spins on
a bond in a singlet state. b) A plaquette in a medium
is a minimal unit to describe d-wave superconductivity
and antiferromagnetism on the same footing, given that
their order parameters (as well as that of other forms of
order competing with superconductivity) naturally fit on
a plaquette.

From a methodological perspective, mean field theory
allows to study physical properties of different phases as a
function of control parameters, whether they are stable or
metastable. For example, we will study the evolution of
the superconducting state, together with the underlying
normal state, which appears as a metastable phase be-
low TC . From a theoretical perspective metastable states
are only defined within a mean field theory, but they are
of clear physical relevance. Furthermore, comparison re-
sponse or correlation functions in both the normal and
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the superconducting state gives important clues as to the
mechanism of superconductivity.

A clear understanding of the evolution of well defined
mean field phases of simplified model is an important
step towards constructing the phase diagram of realis-
tic Hamiltonians. Even if a phase is not realized as the
thermodynamically stable phase in a mean field treat-
ment of a simplified Hamiltonian, it could be stabilized by
adding additional longer range terms in the Hamiltonian
without significantly altering the short distance proper-
ties described by the mean field theory. Furthermore a
good understanding of the different mean field states can
be useful in elucidating the results of numerical studies
in larger finite clusters, since complicated patterns in a
finite size system, may be a reflection of phase separation
among different competing mean field phases.

The study of minimal models such as the t-J model
or the Hubbard model, describing a system near a Mott
transition is an important first step towards understand-
ing real materials. From a study of minimal models, one
can learn what aspects follow from just the proximity
to a doping driven Mott transition. This is a necessary
step before the importance of other physical effects such
as the disorder or the electron phonon interactions cer-
tainly present in the real materials, can be ascertained.
A basic question yet to be elucidated, is to which extent a
minimal model of the doping driven Mott transition such
as the t-J model, describes at the qualitatively level, the
physical properties of the cuprates. If indeed the qual-
itative low energy physics of the cuprates results from
the proximity to a Mott insulating state, as described
by a minimal model of this phenomena, then the results
can be refined by including more realistic band structure,
for example nearest and next nearest neighbor hoppings,
longer range interactions, disorder and coupling to the
lattice, as well as incorporating a multiband situation
which is needed to describe the physics in a wider energy
range. It is possible to carry out these studies in the
more realistic framework the combination of electronic
structure methods with DMFT, a subject which is left
for future studies. One should also ascertain the size of
the corrections to the mean field theory, by either ex-
panding around mean field theory33 or by increasing the
cluster size34.

Several studies have already shown that the Hubbard
model treated within cluster DMFT on a 2 by 2 pla-
quette successfully describes many properties of the high
temperature superconductors. For example the compe-
tition of antiferromagnetism and superconductivity35–39,
the existence of a pseudogap at low doping40–46, and the
formation of Fermi arcs43,44,47,48.

These phenomena involve short range non local corre-
lations. In CDMFT the approach to the Mott insulator
is characterized by the growth of the non local compo-
nents of the self energy, which is responsible for the phe-
nomena of momentum space differentiation and the for-
mation of lines of zeros in the Green’s function at zero
temperature. Surprising manifestations of strong correla-

tions such as the transfer of optical spectral weight upon
condensation49, the existence of an avoided quantum crit-
ical point50 underlying the superconducting dome, and
the presence of two distinct gaps51,52 in the supercon-
ducting state of the underdoped cuprates. The approach
describes well an anomalous incoherent normal state49,53

which is lifted by the onset of superconductivity50,54.

Other studies of the Hubbard model using large clus-
ters at values of U ≤ 8t have focused on the convergence
of the critical temperature34. In a series of publications
it has been shown that the d wave superconducting state
is well described by spin fluctuation theory34,55,56. To
which extent the physics of well defined quasiparticles
interacting with spin fluctuations responsible for the pair-
ing, can be carried over to strong coupling regime, is an
important open problem, which can be only be addressed
by gaining a better understanding of the large U limit of
the Hubbard model, which is the focus of this article.

Hence we focus on understanding the physical content
of the plaquette mean field theory in the regime where
the interaction strength is large enough to drive a Mott
transition at half filling with a substantial Mott Hubbard
gap. We gain insights by comparing the superconducting
state with the underlying normal state. For example, we
study the evolution of the Fermi arcs with temperature,
and trace the mechanism of superconductivity to the op-
timization of the superexchange energy. We connect the
maximum critical temperature with anomalies at opti-
mal doping, resulting from a maximum in the inelastic
scattering rate. The techniques introduced in this paper,
provides a simple interpretation of the cuprate phase di-
agram in terms of the occupations of a small number of
cluster eigenstates or pseudoparticles which describe a
mean-field coarse-grained version of the important exci-
tations of the lattice system, and we use them to describe
different experimental probes, tunneling optics, neutron
scattering, in both the normal and the d-wave supercon-
ducting phase. The superconducting state is character-
ized by two energy scales: one increases with decreasing
doping, and one decreases with decreasing doping. The
first can be identified with the photoemission gap in the
antinodal region while the second can be identified with
the slope of the dirac cone along the Fermi surface. We
investigate the effect of the latter scale on the penetration
depth.

The organization of the paper is the following: In
section II we summarize the formalism and introduce
the models, the cluster schemes and the impurity
solvers, i.e. the continuous time Quantum Monte Carlo
(CTQMC)57,58 and a generalization of the non crossing
approximation (NCA)59–62. Section III describes the evo-
lution of the cluster Green’s functions and the self ener-
gies as a function of doping. We identify the existence
of an anomalous scattering rate describing the nodal re-
gion of the lattice model, which peaks at a characteris-
tic doping δ2

c in the normal phase. The scattering rate
is drastically reduced in the superconducting state. We
identify a second characteristic doping δ1

c at which an-
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other self energy diverges, and connect this phenomena
to the formation of lines of zeroes in the Greens function.

One can view CDMFT in the superconducting phase
as a generalization of the Migdal Eliashberg theory to
strongly correlated electron systems, and we present the
frequency dependence of the superconducting order pa-
rameter in section IV. A great strength of the mean
field theory, is that it allows us to study the ”normal”
state underlying the superconducting state and how it
evolves with temperature. This is done for the tunneling
density of states in section IV for the optical conductiv-
ity in V and for the magnetic properties in section VI.
This comparison between the mean field normal state and
the mean field superconducting state, establishes the su-
perexchange as the main pairing mechanism, as surmised
in the RVB theory.

The pseudoparticles representing plaquette eigen-
states, are not only technical tools to set up strong cou-
pling impurity solvers but provide a physical picture of
the excitations of the system and we use them to interpret
the CDMFT results in section VII. We conclude with the
connection between our method and an earlier simpler
mean field theory approach based on the plaquette, the
slave boson mean field theory and closely related meth-
ods. For related work advancing the RVB concepts using
single site DMFT on multiorbital models see Refs. 63,64.

II. FORMALISM

In this section we summarize the methodology used
for our investigation. Two minimal models of the prox-
imity to a Mott transition were considered: the Hubbard
model and the t-J model. There are several different
versions of Dynamical Mean Field Theory. For exam-
ple in addition to standard DMFT, an extended version
of DMFT (EDMFT)23,60,61,65–69 which replaces all the
non local terms in the interaction (namely the kinetic
energy and the superexchange ) by a fermionic and a
bosonic bath has been proposed. There are also numer-
ous variants of cluster Dynamical Mean Field Theory
which differ by the dynamical medium surrounding the
plaquette (hybridization function of the impurity model).
Finally, the solution of the impurity model that results
from the CDMFT mapping, can be carried out with dif-
ferent impurity solvers. In this work we use two comple-
mentary solvers, the non crossing approximation (NCA)
and a continuous time Quantum Monte Carlo (CTQMC)
method.

The goal of this article, is to highlight physical proper-
ties which follow generally from the proximity to a Mott
insulating state which are captured by a local approach,
namely cluster DMFT. For this reason, we have focused
on physics which emerges from both the Hubbard and
t-J model, and which is captured by all the different
cluster schemes (Cellular DMFT70, Dynamical Cluster
Approximation71 and their extended versions). While

we mention some quantitative differences between these
schemes, the stress is on qualitative main conclusions
that can be obtained with all quantum cluster schemes.
In order to keep the presentation clear and the article
relatively concise we provide only methodological details
which are not available in the literature. To avoid unnec-
essary duplication, results for a given physical quantity
are presented with only one cluster scheme and impu-
rity solver, chosen to demonstrate more clearly a physical
point.

A. Models

One of the more studied models in the field of strongly
correlated electrons is the Hubbard model defined by the
Hamiltonian

H = −
∑

ijσ

tijc
†
iσcjσ +

∑

i

Uni↑ni↓ (1)

It consist of a hopping term and an on-site repulsion.
To be above the Mott transition we take an on-site re-
pulsion U = 12t.

A second model of great interest is the t-J Hamiltonian

H = −
∑

ijσ

tijc
†
iσcjσ +

1

2

∑

ij

JijSiSj . (2)

It contains two terms; first describes the kinetic energy
which delocalizes the holes introduced by doping, and the
second represents spin-spin interaction. In this work we
take J/t = 0.3.

In the t-J model, a constraint forbidding all double oc-
cupancy must be enforced, and will be treated exactly in
this work. In the spirit of understanding general features
of the proximity to the Mott state we include only the
nearest neighbor hopping t = 1 (t′ = 0).

B. Extended and standard DMFT

In DMFT, the non local terms in the Hamiltonian cou-
pling are replaced by a a coupling to a bath of conduc-
tion electrons. In the Hubbard model the only non local
term is the kinetic energy, and this leads to the standard
DMFT mapping which is described in many reviews21.
In the t-J model also the superexchange interaction con-
nects different sites, and applying the DMFT philosophy
to that term also, leads to the Extended DMFT equa-
tions.

Here we outline the derivation of the Extended version
of the cluster DMFT60,61,65,66. We first employ Hubbard-
Stratonovich transformation to decouple the non-local in-
teraction term of the t-J model leading to the following
action
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S =

∫ β

0

dτ

{
∑

kσ

c†kσ(τ)(
∂

∂τ
− µ+ ǫk)ckσ(τ) +

∑

i

Uni↑(τ)ni↓(τ) +
∑

q

[
Φ†

q(τ)
2

Jq

Φq(τ) + i Sq

(
Φ†

q(τ) + Φ−q(τ)
)]
}
.(3)

Here Φ is the Hubbard-Stratonovich vector bosonic field
which decouples the spin-spin interaction,

The many body theory described by the action above
can be summarized in a functional:

Γ[G,D] = −Tr log(G−1
0 − Σ) − Tr[GΣ]

+
1

2
Tr log(D−1

0 − Π) +
1

2
Tr[DΠ] + Φ[G,D].(4)

Here functional Φ of the exact Baym-Kadanoff func-
tional contains all two particle irreducible diagrams of
an electron-boson system with propagators G,D. Ex-
tremizing the functional Eq. (4) leads to the exact
Dyson equations for this system. Cluster approxima-
tions are obtained by restricting the functional to a sub-
set of trial Greens functions. In the Cellular-DMFT (C-
DMFT)23,70, the Φ functional is approximated as follows:
The full lattice is covered by non-overlapping clusters.
The functional within each cluster is treated exactly, i.e.,
if two lattice points i and j are inside the same cluster
ΦC−DMFT [Gij ,Dij ] = Φexact[Gij ,Dij ]. If however, i and
j are in different clusters, Φ functional is set to zero. In
this way, short range correlations within the cluster are
treated exactly, while long range correlations are ignored.

Cluster approximations are obtained by replacing
the exact functional Φ in Eq. (4) by its cluster
counterpart. The saddle point equations then be-
come Σcluster = δΦ(Gcluster)/δGcluster , Πcluster =
−2δΦ(Dcluster)/δΠcluster .

The fluctuating bosons Φq in the Extended DMFT
formalism allow to keep some out-of cluster short range
correlations and describe better the spin fluctuations by
allowing the cluster spin to relax more efficiently through
its direct exchange interaction with the bath. We will see
that this leads to higher superconducting critical tem-
peratures. Apart this quantitative difference, we did not
find any qualitative difference between extended version
(which employs bosons to describe spin fluctuations be-
tween the clusters) and the results of the non-extended
version of DMFT.

C. Cluster Schemes and impurity models

There are several cluster schemes in use, in the study
of correlated electron materials. The Dynamical Cluster

Approximation (DCA)71 can be thought of as a coarse
graining in momentum space, obtained by relaxing the
conservation of momentum. Rather than treating the
infinite number of lattice k points and corresponding
Green’s functions Gk, the Φ functional is approximated
to depend only on the Green’s function of a few clus-
ter momenta which we will denote by capital letters K

and Q. The cluster Green’s functions of the approximate
functional Φ[GK,DQ] are obtained by course graining the
exact Green’s functions, i.e., Gk → GK =

∑
k∈K Gk and

Dq → DQ =
∑

q∈Q DQ where the sum
∑

k∈K is over
those k momenta in Brillouin zone which correspond to
certain cluster momenta K (see Ref. 32 and Ref. 71).

The results of this paper were obtained with both DCA
and C-DMFT. Again, all the qualitative features to be
discussed in the next sections can be seen with both
methods. Since DCA is a cluster method with a simple
interpretation in momentum space while C-DMFT has
a simple interpretation in real space, the fact that the
qualitative physics emerges from both approaches, sug-
gests that the physical properties that we discuss in this
article, are genuine properties of cluster dynamical mean
field theory on a plaquette irrespectively of the specific
cluster scheme used.

We summarize the abbreviations used in the remaining
of the text:

• CDMFT: cluster DMFT.

• C-DMFT: Cellular DMFT70.

• DCA: Dynamical cluster approximation71.

• EC-DMFT: Extended version of Cellular DMFT

• EDCA: Extended version of Dynamical cluster
approximation71,72

A great advantage of all cluster DMFT formulations is
that the complicated functional Dyson equations for the
self energies and cluster response functions can be witten
in terms of an impurity model
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Z =

∫
D[ψ†ψ] exp



−Scluster −

∫ β

0

dτ

∫ β

0

dτ ′
∑

K

ψ†

K
(τ)∆K(τ, τ ′)ψ

K
(τ ′) +

1

2

∫ β

0

dτ

∫ β

0

dτ ′
∑

Q

SQ(τ)χ−1
0 Q

(τ, τ ′)SQ(τ ′)



(5)

which is numerically tractable and where the effective
Weiss fields ∆ and χ−1

0 have to obey the following self-
consistency conditions

G =
∑

k

(iω−Hk−Σ(iω))−1 = (iω−Eimp−Σ(iω)−∆(iω))−1

(6)

χ =
∑

k

(M(iω) + Jq)−1 = (M(iω) + χ−1
0 (iω))−1 (7)

which merely express the fact that the cluster quanti-
ties, computed from the impurity model 1/(iω−Eimp −
Σ(iω) − ∆(iω)), have to coincide with the lattice lo-
cal quantities when summing over the reduced Brillouin
zone. Namely, in the C-DMFT, the lattice was divided
into non-overlapping clusters, hence the summations over
k run over the reduced Brillouin zone. Here M plays the
role of the spin self-energy which is computed from the
local susceptibility and Weiss field by M = χ−1 − χ−1

0 ,
as evident from the Eq. (7).

A special feature of the 2×2 plaquette is worth stress-
ing: the cluster momentum K is a good quantum number
and therefore local quantities like Green’s function G or
hybridization ∆ take a diagonal form:

G =




G0,0 0 0 0
0 Gπ,0 0
0 0 G0,π 0
0 0 0 Gπ,π


 (8)

For large clusters, cellular DMFT would lead to off-
diagonal terms in the impurity action written in the ba-
sis of cluster momenta. The hybridization function in
Eq. (5) would take the form ψ†

K
∆KK′ψ

K′
. However, in

the 2×2 case, both in C-DMFT and DCA, the hybridiza-
tion function is diagonal in cluster momentum.

The DMFT mapping of the lattice model onto a pla-
quette in a medium, allows us to make a connection be-
tween this problem and the multiorbital Hubbard models
which have been studied in connection with the orbitally
selective Mott transition73–75. This is defined by a set
of bands, each one characterized by a local density of a
states, labeled by its cluster wave-vector. Notice however
that the interaction among the orbitals, i.e. the Hubbard
U term written in terms of ψ†

K
and ψ

K
is more compli-

cated than what has been treated in the literature and de-
serves further investigations. The local density of states
corresponding to the different bands can be obtained by
setting U = 0 and evaluating the non interacting Greens
function G0 corresponding to each cluster wave vector.
This is plotted in figure 1.
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FIG. 1: (Color online) Tight-binding DOS for the three
orbitals within DCA and C-DMFT. Notice that the tight-
binding Hamiltonian within C-DMFT Eq. (13) contains off-
diagonal elements therefore DOS does not contain full infor-
mation about the non-interacting part of the Green’s function
G0 (G−1

0 = G−1 + Σ)

The formalism is easily extended to the superconduct-
ing state introducing Nambu notation

ψ
K

=

(
cK↑

c†−K↓

)
. (9)

Assuming singlet pairing, all the previous discussion car-
ries through, with the cluster Greens functions and hy-
bridization functions taking the 2 × 2 matrix form:

GK(τ) = −〈TτψK
(τ)ψ†

K
(0)〉 =

(
GK↑(τ) FK(τ)

F†
K(τ) −G−K↓(−τ)

)
.

(10)
Here FK is the anomalous component of the Green’s
function. Hybridization ∆K becomes a matrix as well

∆K(iω) =

(
∆K↑(iω) ∆an

K (iω)

∆an†
K (iω) −∆−K↓(−iω)

)
(11)

and the impurity problem is off diagonal in Nambu space.
In cluster momentum basis (see Eq. (8)), which we em-

ployed in this work on the 2 by 2 plaquette, DCA and
C-DMFT share the same form of the impurity model,
the only difference between the two schemes lies in the
form of the self consistency conditions. This is dic-
tated by the form of the non-interacting part of the
HamiltonianH and the region of momentum summation.
In the DCA scheme the non-interacting Hamiltonian
Hk is just the tight-binding energy ǫk = −2t(cos kx +
cos ky) − 4t′ cos kx cos ky. In the self-consistency condi-
tions Eqs. (6) and (7), the summation has to be per-
formed only in the region of the patch corresponding to
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each cluster momentum K32, i.e.,

GK =
∑

k∈K

((
iω + µ− ǫk 0

0 iω − µ+ ǫk

)
− ΣK(iω)

)−1

.

(12)
The patches which correspond to different cluster mo-
mentum K are thus completely decoupled in the self-
consistency condition. Their coupling is only through

the coulomb interaction.

In the real space C-DMFT, we can still define ”or-
bitals” which correspond to cluster momenta K (see the
form of local quantities in Eq.(8)), however, these or-
bitals are coupled through both the Coulomb repulsion
U and the non-interacting Hamiltonian, which takes the
following form

Hk =




ǫ0k − µ 0 iv1
k 0 iv2

k 0 v0
k 0

0 −ǫ0k + µ 0 iv1
k 0 iv2

k 0 −v0
k

−iv1
k 0 ǫ1k − µ 0 −v0

k 0 iv4
k 0

0 −iv1
k 0 −ǫ1k + µ 0 v0

k 0 iv4
k

−iv2
k 0 −v0

k 0 ǫ2k − µ 0 iv3
k 0

0 −iv2
k 0 v0

k 0 −ǫ2k + µ 0 iv3
k

v0
k 0 −iv4

k 0 −iv3
k 0 ǫ3k − µ 0

0 −v0
k 0 −iv4

k 0 −iv3
k 0 −ǫ3k + µ




(13)

where we defined

ǫ0k = −t(2 + cos kx + cos ky) − t′(1 + cos kx cos ky)

ǫ1k = t(cos kx − cos ky) + t′(1 + cos kx cos ky)

ǫ2k = −t(cos kx − cos ky) + t′(1 + cos kx cos ky)

ǫ3k = t(2 + cos kx + cos ky) − t′(1 + cos kx cos ky)

v0
k = t′ sin kx sin ky

v1
k = sinkx(t+ t′ cos ky)

v2
k = sinky(t+ t′ cos kx)

v3
k = sinkx(t− t′ cos ky)

v4
k = sinky(t− t′ cos ky). (14)

The unit of distance choosen here is a = 1/2 such that
the summation over the reduced Brillouin zone in Eqs. (6)
and (7) simply runs over kx ∈ [−π, π] and ky ∈ [−π, π].
One can readily show that this summation leads to diag-
onal form of local quantities.

In figure 2 we compare the local spectral function of
the t-J model in the two cluster schemes. Notice the sim-
ilarities of the results in particular at low energies. The
spectral functions in both methods have a very similar
pseudogap. Hence in spite of quantitative differences,
which will not be investigated systematically in this pa-
per, the qualitative physics, which is the main focus of
this article is present in both cluster methods. Note, how-
ever that decoupling of orbitals in DCA method leads to
splitting of the Hubbard band into peaks which corre-
spond to excitations of the 2×2 cluster. These finite size
effects are strongly reduced in C-DMFT method.

Here we comment on some quantitative differences be-
tween the methods. The superconducting critical tem-
perature is highest in EDCA method and reaches the

value ∼ 0.036t while it drops to ∼ 0.026t in EC-DMFT.
When the bosonic baths is switched-off, the real space
C-DMFT maximum critical temperature in both, the t-J
model at J = 0.3 and the Hubbard model at U = 12t is
around ∼ 0.01t . Notice that this value is close to the
estimations in Ref. 34 for the critical temperature of the
Hubbard model in the thermodynamical limit for U =
4t. Namely, the Hubbard model at U = 4t within large
cluster DCA has TC ∼ 0.023t34. If we extrapolate this
value to large U = 12t treating TC ∝ J76, TC would drop
to ∼ 0.008t which is close to the C-DMFT result.

The existence of a finite transition temperature, the
trends of the superconducting transition temperature
with doping and with the strength of the superexchange
interaction is a robuts propery of plaquette DMFT and is
common to all cluster schemes. It would be interesting to
understand the convergence properties with cluster size
within the different cluster schemes for the t-J model, as
was done for the Hubbard model at intermediate U in
Ref. 34 and in the classical limit in Ref. 77.

D. Impurity Solvers

At the heart of the cluster DMFT is the solution of
the impurity problem Eq. (5). In this work, we used
two different impurity solvers both based on the expan-
sion of the impurity action with respect to hybridization
strength. The first is the non-crossing approximation
(NCA) which sums up all diagrams with no crossing and
is conveniently formulated in slave particle approach62.
The second is the recently implemented continuous time
Monte Carlo Method57,58 (CTQMC) which numerically
samples the same type of diagrams but sums up all dia-
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FIG. 2: (Color online) Comparison between the local spectral
function computed in C-DMFT and in DCA with NCA used
as impurity solver.
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FIG. 3: (Color online) Comparison of NCA and CTQMC
Green’s functions on imaginary axis for several doping levels.
We used real space C-DMFT.

grams using Monte Carlo importance sampling. Here we
assume that the weights, which correspond to a set of all
diagrams of definite perturbation order k, to be positive.

The two impurity solvers are in good agreement with
each other on the imaginary axis, but the first method
allows us to obtain real frequency correlation functions
which are unavailable in the QMC approach. Both ap-
proaches are well suited to study the regime of interme-
diate temperatures and dopings, close to the tip of the
superconducting dome, separating overdoped and under-
doped regions, which is not easily accessible with other
techniques.

Both impurity solvers used here require the introduc-
tion of the cluster eigenstates obtained by the exact diag-
onalization of the cluster, i.e., Hcluster |m〉 = Ecluster

m |m〉.
To each cluster eigenstate, a pseudoparticle am can be
assigned, i.e.,

|m〉 ≡ a†m|0〉 (15)

to recast the cluster part of the action to a quadratic
form. The constraint

Q ≡
∑

m

a†mam =
∑

|m〉〈m| = 1 (16)

which expresses the completeness of the atomic eigen-
base, has to be imposed.

The original problem can be exactly expressed in terms
of pseudoparticles am with the only non-quadratic term
of the converted action being the hybridization between
the cluster and the medium

Seff =

∫ β

0

∑

m

a†m(τ)(
∂

∂τ
+ Ecluster

m − λ)am(τ) +

∫ β

0

dτ

∫ β

0

dτ ′
∑

mnm′n′

a†m(τ)an(τ)Dmnn′m′(τ − τ ′)a†n′(τ
′)am′(τ ′).(17)

denoted here by

Dm1m2m3m4
(iω) =

∑

K

(FK†)m1m2
∆K(iω)(FK)m3m4

−
1

2
(SK)m1m2

χ−1
0 K

(iω)(SK)m3m4
(18)

where

(FK)mn = 〈m|ψ
K
|n〉 =

(
〈m|cK↑|n〉

〈m|c†−K↓|n〉

)
(19)

(SQ)mn = 〈m|SQ|n〉. (20)

Note that the effective hybridization D combines both,
the fermionic (∆K) and bosonic bath (χ−1

0 K
) into the

total effective Weiss field felt by the cluster eigenstates
(pseudoparticles). We used lagrange multiplier λ to en-
force the constraint (16).

The continuous time quantum Monte Carlo method

samples over the diagrams generated by expanding the
action

∫
D[a†a] exp(−Scluster − ∆S) with respect to ef-

fective hybridization ∆S. Here ∆S stands for the sec-
ond term in Eq. 17. The probability to visit each dia-
gram is proportional to its contribution to the partition
function which is computed by explicit evaluation of the
cluster trace

∫
D[a†a]e−Scluster(−∆S)k/k! keeping only

single pseudoparticle in the system at each moment in
imaginary time. In this way, the constraint Q = 1 is ex-
plicitely taken into account. For more details, see Ref. 58.

In the diagrammatic method, the constraint Q = 1 is
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imposed by letting the Lagrange multiplier λ approach
infinity. The physical observable can then be computed

using the Abrikosov’s trick78 〈A〉Q=1 = limλ→∞
〈QA〉
〈Q〉 .

The coupling of the cluster to the medium, which simu-
lates the rest of the lattice, causes the cluster eigenstates
to decay in time. Therefore their spectral functions carry
nontrivial frequency dependence and important informa-
tion about various physical processes such as the RKKY
interactions, the Kondo effect and d-wave superconduc-
tivity. The corresponding pseudoparticle Green’s func-
tion can be written in the form

Gmn(ω) = (ω + λ− Ecluster − Σ)−1
mn (21)

where (Ecluster)mn = (Ecluster)mδnm is the energy of the
cluster eigenstate and λ is Lagrange multiplier which will
be sent to infinity at the end of the calculation.

Although hybridization is a small quantity compared
to other scales in the problem, the perturbation is sin-
gular in the sense that at zero temperature an infinite
number of diagrams substantially contribute to the solu-
tion of the problem. In Ref. 58 we showed a histogram (a
distribution of the perturbation order) which is peaked
around 〈Ekin〉/T where Ekin is average kinetic energy

and T is temperature. An infinite resummation of dia-
grams is thus necessary and the non-crossing diagrams
are simplest to compute.

Just like in the single site Anderson and Kondo impu-
rity problem59,61, the non-crossing approximation works
well down to some breakdown temperature, which is
slightly below the superconducting transition tempera-
ture. Although NCA is not exact, this approximation
has the virtue of yielding directly real frequency infor-
mation. In Fig. 3 we present a typical comparison of
the two impurity solvers on imaginary axis for the clus-
ter Green’s functions of the t-J model in normal state
close to Tc. This comparison illustrates the degree of
agreement within the two solvers on the imaginary axis.
Notice that all the qualitative features of the evolution of
the Greens functions with doping are seen in both meth-
ods. Therefore we will use in this work, the strategy of
combining information from different solvers, in order to
draw conclusions as to the physical picture contained in
the solution of the cluster DMFT equations of the t-J
and Hubbard model thus avoiding the difficult problem
of analytic continuation of imaginary time QMC data.

In the non-crossing approximation, the pseudoparticle
self-energies are computed from

Σm′m(iω) = T
∑

iǫ,nn′

Gn′n(iǫ) {Dnmm′n′(iǫ− iω) −Dm′n′nm(iω − iǫ)} (22)

while the physical quantities like Green’s function and susceptibility are obtained by functional derivative of the NCA
Luttinger functional with respect to the hybridization term and are given by

GK(iω) = −T
∑

iǫ,mnm′n′

(FK)m′n′Gn′n(iǫ)Gmm′(iǫ− iω)(FK†)nm (23)

χαβ
Q (iω) = T

∑

iǫ,mnm′n′

(Sα
Q)m′n′Gn′n(iǫ)Gmm′(iǫ− iω)(Sβ

−Q)nm. (24)

The above equations can be projected to the physical subspace Q = 1 only on the real axis. In the limit λ→ ∞ they
take the form

Σm′m(ω) =
∑

K,nn′

∫
dξf(ξ)Gn′n(ξ + ω)

{
D̂nmm′n′(ξ) + D̂m′n′nm(−ξ)

}
(25)

GK(ω) =
∑

mnm′n′

(FK)m′n′(FK†)nm

∫
dξe−βξ

[
Gn′n(ξ + ω)Ĝmm′(ξ) − Ĝn′n(ξ)G

∗

mm′(ξ − ω)
]

(26)

χαβ
Q (ω) =

∑

mnm′n′

(Sα
Q)m′n′(Sβ

Q)nm

∫
dξe−βξ

[
Gn′n(ξ + ω)Ĝmm′(ξ) + Ĝn′n(ξ)G

∗

mm′(ξ − ω)
]

(27)

Here we used the following notation

D̂(ω) = −
1

2πi
[D(ω + iδ) −D(ω − iδ)] (28)

Ĝ = −
1

2πi
[G(ω + iδ) −G(ω − iδ)]. (29)

The pseudoparticle quantities (Green’s functions Ĝ and

self-energies Σ̂) exponentially vanish below a certain
threshold energy (they have X-ray singularity) which can
be interpreted as the effective energy of the many-body
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state associated with the pseudoparticle. These thresh-
olds can be removed by defining new quantities without
threshold79, i.e.,

G̃(ǫ) = Ĝ(ǫ)/f(−ǫ) (30)

Σ̃(ǫ) = Σ̂(ǫ)/f(−ǫ) (31)

Using these quantities we can rewrite the NCA equations
as:

Σ̃m′m(ω) =
∑

K,nn′

∫
dξ
f(ξ − ω)f(−ξ)

f(−ω)
G̃n′n(ξ)

{
D̂nmm′n′(ξ − ω) + D̂m′n′nm(ω − ξ)

}
(32)

ImGK(ω) = −π
∑

mnm′n′

(FK)m′n′(FK†)nm

∫
dξ
f(ξ − ω)f(−ξ)

f(−ω)
G̃n′n(ξ)G̃mm′(ξ − ω) (33)

Imχαβ
Q (ω) = −π

∑

mnm′n′

(Sα
Q)m′n′(Sβ

Q)nm

∫
dξ
f(ξ − ω)f(−ξ)

b(−ω)
G̃n′n(ξ)G̃mm′ (ξ − ω) (34)

At zero temperature, the combination of the Fermi func-

tions f(−ξ)f(ξ−ω)
f(−ω) = f(ξ)f(ω−ξ)

f(ω) is equal to unity in the

interval [min(0, ω),max(0, ω)] and zero outside.
These equations relate physical observables, like GK

and χQ to the pseudoparticle spectral functions. The
later represent coarse grained versions of the important
many body excitations of the system including fermionic
quasiparticles and bosonic collective modes. They have
quantum numbers describing their spin, number of parti-
cles, (which divided by the cluster size, give the density),
and a coarse grained momentum.

Relating several experimental observables such as pho-
toemission spectra, tunneling spectra, and optical spec-
tra, to the same set of pseudoparticle spectral functions,
gives additional insights into the important excitations
of the system.

III. CLUSTER ONE PARTICLE GREENS

FUNCTION, CLUSTER SELF ENERGY AND

SCATTERING RATE

In this section we discuss cluster quantities. As dis-
cussed in section II, in both C-DMFT and DCA for-
malism local quantities, such as cluster self-energies and
cluster Green’s function are diagonal in the cluster mo-
mentum basis. Consequenctly, the physical behavior of
the system within the cluster DMFT approach on a pla-
quette can be summarized in the four cluster quantities
Σ00, Σπ0, Σ0π and Σππ, corresponding to the eigenval-
ues of the matrix containing onsite, nearest-neighbor and
next-nearest neighbor cluster self-energy introduced in
reference 48. These cluster self energies in the cluster
momentum basis should not be interpreted as the lattice
self energies evaluated at 4 momentum points.

In the next few figures, we present low temperature
self-energies for the t-J model on the imaginary axis ob-
tained using CTQMC impurity solver. Figure 4 contains
the data in the normal state and Fig. 5 same quantities
deep in the superconductings state.

Starting from the low temperature T = 0.01t normal
state solution shown in Fig. 4 one notices large momen-

tum differentiation at small doping. The three orbitals
evolve very differently with changes in doping and tem-
perature as we will show in the following. The (0, 0) com-
ponent has Fermi-liquid frequency dependence with rel-
atively small scattering rate at zero frequency and small
monotonic decrease of the real part of the self-energy with
increasing doping. The two degenerate orbitals (0, π) and
(π, 0) are distinctly different from the (0, 0) orbital. The
scattering rate around optimal doping 0.12 / δ / 0.22
remains large (of order unity) even below the transition
to superconducting state T ∼ 0.01t. We notice in passing
that it becomes increasingly difficult to converge the C-
DMFT equations in the metastable normal state around
optimal doping. Critical slowing down is observed which
might be a signature of local (cluster) instability which
might occur at zero temperature and might even pre-
clude the continuation of a translationally invariant nor-
mal state solution down to zero temperature.

The (ππ) self-energy in Fig. 4 is far the largest among
all four and, except at very small and very large doping,
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FIG. 4: (Color online) C-DMFT cluster self-energies of the t-J model using CTQMC as the impurity solver. Temperature
T = 0.01t and system is in the normal state. Notice that Σ00 is Fermi-liquid like (imaginary part vanishes at zero matsubara
frequency below the coherence temperature) in the whole range of doping, Σπ0 is Fermi liquid in the overdoped and underdoped
regime while the scattering rate remains of the order of unity in the optimally doped regime. Finally, Σππ is far the largest
self-energy. Its real part is so large that the orbital is gapped in all doping range considered. The scattering rate is enormous
and a pole appears on the real axis around δ = 0.1. The pole is above EF at very small doping, crosses EF at δ = 0.1 and goes
below EF for optimally doped and overdoped regime. This causes a sign change of the real part of Σππ. The (ππ) orbital is
thus in the Mott insulating state in most of the doping range considered.

it does not show any signature of coherence. At δ ∼ 0.1
it has a clear pole at zero frequency. From the above
plot we can see that a pole is on the real axis and it is
located above the Fermi level at small doping and crosses
Fermi level around δ ∼ 0.1 and finally gets negative in
the optimal and overdoped regime. A very sharp pole on
the real axis described above is indeed confirmed by the
NCA calculation. The consequence of the pole in self-
energy is appearance of zeros of the Green’s function as
discussed in Ref. 43. Physically it means that some states
in momentum space are damped and gapped even at very
low temperature. Figure 5 at lower temperatures show
that this behavior persist to temperatures much lower
than Tc. Hence even in superconducting state the large
luttinger Fermi-surface is not recovered. The antinodal
fermions are strongly damped and gapped even in the
superconducting state. This is related to the occurrence
of Fermi arcs and lines of zeros of the Greens function80

as noticed in Ref. 43,44,81. This phenomena was first
noticed microscopic studies of coupled ladders85,86 and
related proposals also appeared in recent phenomenolog-
ical models of high Tc’s82–84. However, in these studies,
the location of the lines of zeros is tied to the unklapp
surface, while in the cluster DMFT the lines of zeros is
a dynamical object which evolves in a highly non trivial
way with doping.

The pole in (ππ) self-energy crosses the Fermi level at
a critical doping (or at least becomes very large at low

energies) that we denote by δc
1. The existence of a pole

in the self energy appears also in Hubbard model, with
an important difference. In the Hubbard model, the pole
is always below EF and therefore this ”critical” doping
δc
1 is zero. We also want to mention that at small U = 6

(below the Mott transition of the undoped system) in
the Hubbard model the above mentioned pole seems to
be absent or at least substantially reduced. This sub-
stantiates the idea that the lines of zeros in the Green
function appear only above a critical coupling.

Fig. 5 shows cluster self-energies at a lower tempera-
ture, i.e., T = 0.005t in the superconducting state. The
(0, 0) orbital does not change very dramatically execpt
that becomes more coherent. On the other hand, the
(π, 0) orbital does show a dramatic effect. The huge
scattering rate is now replaced by the large anomalous
component of the self-energy while the scattering rate
is severely reduced. The peak in anomalous self-energy
seems to track Tc and coincides with the point of max-
imal scattering rate in the normal state. We will call
this doping δc

2 since it corresponds to the avoided critical
point identified in Ref. 50. Finally, the (π, π) component
of the self-energy sharpens with reducing the tempera-
ture and the pole at δc

1 ∼ 0.1 is even more apparent.
This result is quite surprising because the superconduct-
ing state would have been expected to be more coherent.
As we show above, coherence is only restored in three of
the four orbitals, while the (ππ) orbital remains gapped.
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FIG. 5: (Color online) Same as in Fig. 4 but at lower temperature T = 0.005t in the superconducting state. The bottom row
shows the anomalouse self-energy. The (0, 0) orbital barely changes in superconducting state. On the other hand, the large
scattering rate in (π, 0) orbital is severly reduced in the superconducting state and the orbital becomes Fermi liquid like. Large
scattering rate in the normal state is now replaced by a large anomalous component of self-energy (peaked around δ ∼ 0.15
- see Fig. 18). Finally, the pole in (π, π) self-energy sharpens and the orbital remains Mott insulating in most of the doping
range considered. A pole of the cluster self-energy is accompanied by a line of zeros of the Green’s functions in certain parts
of the momentum space43,44 and persist in the superconducting state.

Hence the Fermi surface underlying the normal state does
not contain the Luttinger volume at small doping.

In Fig. 6 and 7 we show the cluster Green’s functions
of the t-J model in the normal state and the supercon-
ducting state at lower temperatures. The cluster Green’s
functions describe a coarse grained average of the lattice
Green’s function over some parts of the Brillouin zone. It
is evident from Fig. 6 that the (π, 0) orbital contains most
of the spectral weigh (largest imaginary part of Gπ0) over
the whole doping regime considered here. The (π, π) or-
bital is clearly gapped since the real part of self-energy is
too big to pick up any states inside the band as was previ-
ously observed in the extended DMFT study of the same
model60,61. The important message is contained in the
real part of (π, 0) cluster Green’s function. The real part
measures the particle hole asymmetry of the orbital. It
would vanishe if the orbital is perfectly particle-hole sym-
metric. As one can see in Figs. 6 and 7 the (π, 0) orbital
has ”more weight” below EF in underdoped regime and
more weigh above EF in overdoped regime. Remarkably
it becomes almost particle-hole symmetric in the region
of optimal doping. The exact point of particle-hole sym-

metry is close to ∼ 0.18 which is just slightly above the
point of maximal Tc and maximal anomalous self-energy.
Fig. 7 demonstrates that this remarkable symmetry per-
sist even in the superconducting state where the gap ap-
pears in all the orbitals.

We now compare the previous findings with the corre-
sponding quantities in the Hubbard model displayed in
figures 8, 9, 11 and 12. The Hubbard model at U = 12t
has roughly the same superexchange as the one used
in the previous study of the t-J model J ∼ 0.3t and
therefore we expect similar physical behaviour. We will
demonstrate below that indeed this is the case, and high-
light some quantitative differences between the two mod-
els, such as the numerical values of the critical dopings
for cluster quantities δc

1 and δc
2 .

Fig. 8 shows the four cluster Green’s functions at
T = 0.01t in the normal state. When the off-diagonal
long range order is allowed, the system starts to develop
anomalous components in the optimal doped regime at
this temperature just like in the t-J model at the same
temperature. In the metastable normal state, the (0, 0)
orbital is again most coherent orbital and not very sen-
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FIG. 6: (Color online) C-DMFT cluster Green’s functions at T = 0.01t in the normal state of the t-J model obtained by
CTQMC. The real part of the Green’s function vanishes for particle-hole symmetric situation while its positive when spectral
weight below EF has ”largest weight” and vice versa. The (0, 0) orbital does not change much with doping and remains close
to half-filling. The (π, 0) orbital gives most of the weight at the Fermi level (has largest imaginary part at zero frequency) and
remarkably becomes particle-hole symmetric at the doping level slightly larger than the optimally doped level (δ = 0.18). The
(π, π) orbital is gapped for all doping levels.
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by CTQMC. Superconducting gap opens in particular in (π, 0) orbital. Particle-hole symmetry of this orbital is again evident
from the real part of the Green’s function being close to zero around optimal doping (blue curve with triangles pointing right).
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δ ∼ 0.1) the scattering rate is largest. The important difference appears in the (π, π) orbital. The (π, π) self-energy is the
largest self-energy of the system just like in the t-J model. Contrary to the t-J model, the pole in the (π, π) self-energy on the
real axis, which appeares in the t-J model around δ = 0.1, is now at zero doping. The self-energy of the (π, π) orbital thus
monotonically grows when approaching the Mott insulator.
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FIG. 9: (Color online) Similar than Fig. 8 but at lower temperature T = 0.005t in the superconducting state. Just like in the t-J
model, the (π, 0) orbital, which is representative of the nodal part of the self-energy, becomes coherent in the superconducting
state and the anomalous self-energy is largest around δ ∼ 0.1 where the scattering rate is largest in the normal state. The
(π, π) self-energy sharpens with decreasing temperature just like in the Hubbard model showing that this orbital is in the
Mott-insulating state in the underdoped and optimally doped regime.

sitive to doping. On the other hand, the (π, 0) orbital
is clearly coherent for small and large doping and the
scattering rate around δ ∼ 0.1 is of the order unity. The
point of maximum scattering rate and maximum anoma-
lous self-energy in the Hubbard model is however slightly
shifted towards lower doping, (relative to the t-J model)
i.e., δc

2 ∼ 0.1.

The (π, π) orbital is again the one with far the largest
self-energy and scatering rate. In the Hubbard model the
pole on the real axis crosses zero exactly at zero doping,
hence δc

1 = 0. However even at optimal doping ∼ 0.1 the
real part of the self-energy is so large that the orbital is
almost completely gapped.

Fig. 9 demonstrates that the pole in Σππ does not dis-
apear in the superconducting state. This was also the
case in the t-J model, and it is therefore a robust feature
of the approach to the Mott insulator within CDMFT.
The physical interpretation is that part of the underly-
ing Fermi-surface remains gapped even in the supercon-
ducting state. The (π, 0) orbital becomes coherent when
entering the superconducting state. Its imaginary part,
at low frequencies is maximal around δc

2.

The cluster self energies in the cluster site represen-
tation contain useful information about the range. For

example, it has been argued that near the Mott insula-
tor, they become long ranged, while the cluster cumulant
remains short ranged43,44. In Fig. 10 we show the onsite,
nearest neighbor and next-nearest neighbor self-energy,
the actual output of the C-DMFT scheme. These are
related to the eigenvalues shown above through the fol-
lowing linear relation

ΣR=(0,0) =
1

4
(Σ00 + Σπ0 + Σ0π + Σππ) (35)

ΣR=(1,0) =
1

4
(Σ00 − Σπ0 + Σ0π − Σππ) (36)

ΣR=(0,1) =
1

4
(Σ00 + Σπ0 − Σ0π − Σππ) (37)

ΣR=(1,1) =
1

4
(Σ00 − Σπ0 − Σ0π + Σππ) (38)

On the heavily overdoped side of the Hubbard model
δ > 0.16 presented in Fig. 10 it is clear that the only
relevant quantity is the on-site self-energy which justifies
use of the single site DMFT in the overdoped site of the
system. In the underdoped regime, however, the nearest
neighbor as well as next-nearest neighbor self-energies
are large and give rise to qualitatively different results
than those of a single site DMFT. They renormalize the
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FIG. 10: (Color online) The on-site and short range self-energy of the Hubbard model in the superconducting state at T = 0.005t.
The on-site self-energy is the largest and its imaginary part vanishes for all finite dopings. The reason is that the pole in the
(π, π) self-energy is now at zero doping. The non-local components of the self-energy vanish rather rapidly with doping.
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nearest neighbor and next-nearest neighbor hopping and
induce a substantial next nearest neighbor hopping even
for the model with vanishing bare t′. Furthermore they
distort the Fermi surface and cause variation of coherence
across the Fermi surface as we will show below.

Finally, the cluster Green’s functions for the Hubbard
model are shown for two temperatures T = 0.01 and
T = 0.005 in Figs. 11 and 12 at U = 12t. Again we no-
tice qualitatively similar behaviour than those found in
the t-J model. The (π, π) orbital is gapped in both nor-
mal and superconducting state. The (π, 0) orbital con-
tains most of the spectral weight and becomes particle-
hole symmetric slightly above optimal doping around,
i.e., around δ ≈ 0.12. This particle hole-symmetry per-
sists in the superconducting state.

We now turn to the real frequency information. In
most of what follows, we show results for the t-J mode,
except when explicitly stated otherwise.

Figure 13 shows the evolution of the CDMFT cluster
spectral functions as a function of frequency for few dop-
ing levels. Notice that due to symmetry (π, 0) and (0, π)
spectral functions coincide. At zero doping (not shown)
all four orbitals are half-filled and the system is in Mott
insulating state.

Upon doping the system, the (π, π) orbital gets emp-
tied first but in a very unusual way. Although its oc-
cupancy gets much smaller than unity and therefore one
would naively expect large number of hole carriers in this
band, it remains basically gapped for arbitrary doping as
we have established above on the basis of the CTQMC
results. This is very unusual since one naively expects
the orbital to be gapped only at an integer filling. Only
at very large doping δ > 0.3 the self-energy of this or-
bital approaches the other three self-energies so that the
self-energy becomes momentum independent and there-
fore local. At this large doping, the (π, π) orbital is es-
sentially empty and we can think of this orbital as an
Anderson impurity model in the empty orbital regime.

The (0, 0) orbital is also very inert in the whole doping
range. Its density of states at the Fermi level is small
while its occupancy only slightly decreases with increas-
ing doping. The orbital remains close to half-filling with
very small number of charge carriers induced in this band.

Finally, the the (0, π) (and (π, 0)) components have
sharp spectral features with very strong doping depen-
dence. In going from δ = 0.3 to δ = 0.1 we observe
the narrowing of the quasiparticle width reminiscent of
the single site DMFT, however a qualitative feature of
CDMFT is that at smaller dopings this narrowing of the
width is arrested, as a result of the presence of exchange
effects as seen in slave boson studies87 and in the large
N limit of the t-J model88.

At low doping, the spectral function develops a pseudo-
gap on the scale of J with most of the coherent spectral
weight below the Fermi level and a small fraction of it
above the Fermi level. This is a general feature of the
approach to the Mott transition in cluster DMFT and
has been seen in earlier studies41,42,45,60,61.
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FIG. 13: (Color online) Evolution of the EC-DMFT cluster
spectral functions of the t-J model with doping in normal
state at T = 0.025t ∼ Tc using NCA as an impurity solver.
The upper panel shows the spectra in the interval between
[−8t, 4t] where Hubbard band is clearly observed. The lower
panel shows the region near the Fermi level.
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FIG. 14: (Color online) EC-DMFT cluster self energies on
real axis in normal state of the t-J model computed by NCA
at T = 0.025t ∼ Tc.

The important message contained in figure 13 is that
the momentum differentiation at small doping is very
large. The (ππ) orbital remains gapped at all dopings.
It is in the Mott insulating state at low doping and be-
comes empty in the overdoped regime, hence it under-
goes a band insulator to Mott insulator transition with
decreasing doping. Most of the dynamical information of
the active degrees of freedom representing the electrons
close to the Fermi surface of the lattice model is however
contained in the (0, π) and (π, 0) components.

The frequency dependence of the cluster (π, 0) self-
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energy and its evolution with doping on real axis is shown
in Fig. 14. At small doping, the hole-like scattering rate
(ω < 0) is large while the electron-like (ω > 0) is small.
Around optimal doping, the self-energy is roughly linear
in frequency, however, with large zero-frequency value.
In this regime, there is still a large particle-hole asym-
metry in the scattering rate. While the hole-like part
is linear with relatively small slope down to ω = −0.5t,
the electron part is increasing only in the small region
up to ω = 0.15t with larger slope. Only in the strongly
overdoped system, the self-energy becomes roughly par-
ticle hole symmetric at low frequency. This particle-hole
asymmetry in scattering rate can be contrasted with the
approximate particle-hole symmetry in the one-particle
green’s function at optimal doping. The combination of
the real-part of the self-energy and the band-structure,
leads to approximate recovery of this symmetry in the
local one-particle spectra at optimal doping although it
is absent in the scattering rate.

A. Zero frequency Quantities

Further insight into the nature of the CDMFT solution
can be obtained by examining the cluster self-energies at
zero frequency. In Fig. 15 we display the CTQMC self-
energy for the t-J model at the lowest Matsubara fre-
quency as a function of doping. In the overdoped side,
the real parts of all four self-energies merge therefore the
self-energy becomes local. The single site DMFT is ade-
quate. The coherent quasiparticle peak at the Fermi level
is formed and arrises mainly from the (π, 0) orbital. The
reason is that the non-interacting density of states for
(0, 0), (π, π) and (0, π) orbital extends roughly between
[−4t, 0], [0, 4t] and [−2t, 2t], respectively (see Fig. 1). For
the momentum independent self-energy, the Friedel sum-
rule dictates that the effective chemical potential µ−Σ(0)
is at the corresponding non-interacting chemical poten-
tial µ0 which is slightly below zero frequency. The (π, π)
orbital is therefore empty being a band insulator-like.
At smaller doping, this orbital acquires enormous real
part of Σ′(0) which pushes effective chemical potential
µ − Σ′(0) far below the band edge of the tight-binding
Hamiltonian. This orbital is therefore in the Mott in-
sulating state for smaller dopings. The insulating state
in this orbital does changes the nature from band-like to
Mott like insulator.

For the (0, 0) orbital, the effective chemical potential is
close to its upper band edge. The non-interacting density
of states at the band edge for this orbital is small (see
Fig. 1) and only a very small number of charge carriers
are doped into the orbital. Therefore it remains close to
Mott insulating state with small scattering rate at the
Fermi level.

The (π, 0) orbital is slightly less than half-filled in the
doping range considered here, and the real part of self-
energy smoothly increases with doping (see Fig. 15) such
that the effective chemical potential µ−Σ′(0) is positive
in the underdoped side (carriers are hole like) and neg-
ative in the overdoped side (carriers are electron like).
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CTQMC at T = 0.01t in normal state of the t-J model.
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versus doping for the four orbitals of the cluster obtained by
CTQMC within C-DMFT method in the t-J model.

Close to the optimal doping, effective chemical poten-
tial is close to zero which makes orbital approximately
particle-hole symmetric at low frequency (see Fig 13).

The (π, π) self-energy acquires a pole on real axis
around δc

1 ∼ 10% doping which can be identified in Fig.15

as a divergent point of Σ
′′

ππ(0) and zero of Σ′
ππ(0).

Figure 16 describes the low energy phase shift in each
orbital. It is defined by δK = arg(GK(i0+)). Phase
shifts are defined modulo π. Notice two important fea-
tures: at very small doping the phase shifts in all channels
are close to zero. They confirm the picture suggested
in Ref. 50 in which the cluster degrees of freedom are
weakly affected by the surroundings. It is reminiscent
of the RKKY phase of the two impurity Kondo model.
The system reaches the unitarity limit, as the phase shift
crosses π/2 in the (0, π) channel near δ = 0.18. This is
because the real part of the cluster Green’s function at
zero frequency vanishes around optimal doping as shown
in Figs. 6 and 7.

The indication for the existence of an anomaly around
δ2

c is seen most clearly in the imaginary part of the real
frequency electron self-energy at (0, π) evaluated at zero
frequency. We display EDCA-NCA calculations of it in
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lower panel: An estimation of the coherent scale in the normal
state of the t-J model (black dots) and transition temperature
to superconducting state (red dots) within EDCA using NCA
as the impurity solver.

the upper panel of Fig. 17 . At large and small doping
the scattering rate is small as expected for a Fermi liquid.
Remarkably it becomes very large in the region near op-
timal doping when the critical temperature is maximal.
This doping point corresponds to the above defined crit-
ical doping δc

2 which is in NCA around 0.18. The tran-
sition to the superconducting state severely reduces the
scattering rate eliminating the traces of the underlying
critical behavior. A coherence scale, estimated from the
scattering rate, is plotted in the bottom panel of Fig. 17
and shows it tends to vanish close to the point of maximal
superconducting transition temperature.

Figure 18 show the CTQMC results for the scatter-
ing rate within CDMFT and confirms the incoherence
of the optimally doped system. The imaginary part of
the self-energy at the first Matsubara point is small for
both, the underdoped and overdoped system, while it is
peaked at optimal doping. The peak is slightly shifted
with temperature and, if the normal state is continued
below the superconducting transition temperature, the
peak of scattering rate coincides with the maximum of
the anomalous self-energy which traces maximum of the
transition temperature (see Fig. 19). The scattering rate
is severely reduced in the superconducting state when off-
diagonal long-range order is allowed in the calculation.
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FIG. 18: (Color online) upper panel: Imaginary part of (π, 0)
cluster self-energy at the lowest Matsubara frequency iπT
versus doping for three different temperatures obtained by
CTQMC for the t-J model. The scattering rate is peaked at
optimal doping.
lower panel: The large imaginary part of self-energy of the
normal state (black curve with circles) is severely reduced in
superconducting state (green curve with squares). The scat-
tering rate is peaked at the point of maximal anomalous self-
energy (blue curve with diamonds) tracking the point of the
highest TC .

IV. SUPERCONDUCTIVITY, TUNNELING

DENSITY OF STATES, FERMI ARCS AND

NODAL QUASIPARTICLES

The superconducting state is characterized by an order
parameter 〈ck↑c−k↓〉 = Fk(τ = 0) and by the presence of
a frequency dependent anomalous component to the self
energy. In Nambu notation, the self-energy in (π, 0) and
(0, π) orbital takes the following form

ΣK(iω) =

(
ΣK↑(iω) Σan

K (iω)

Σan
K (iω) −Σ−K↓(−iω)

)
. (39)

and the corresponding Green’s functions is

GK(iω) =

(
GK↑(iω) FK(iω)

F†
K(iω) −G−K↓(−iω)

)
. (40)

The sign of the anomalous components chosen by the
system is Σan

π0 = −Σan
0π . Within C-DMFT, this is pre-

cisely the nearest neighbor self-energy and its lattice ana-
log (using the original C-DMFT periodization70) takes
the form Σk = 1

2 (cos kx − cos ky)Σan
0π .

The anomalous self-energy Σan
π0 is plotted in Fig. 19.

The upper part of the figure shows the CTQMC re-
sults within C-DMFT while the lower part shows the
NCA-results within EDCA. In both cases, the function is
monotonically decreasing with imaginary frequency and
is largest at optimal doping. Furthermore, at the low val-
ues of the Matsubara frequency the anomalous self energy
exhibits a fast upturn and sublinear frequency behavior
that gets less pronounced as the doping is reduced. This
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trend is likely due to the reduction of density of states in
the pseudogap region.

The anomalous self energy obeys a spectral represen-
tation

Σan
k (iωn) = Σan

k (∞) −

∫
dω

π

ImΣan
k (ω)

iωn − ω

The infinite frequency value of the self energy van-
ishes in the Hubbard model but is non zero in the t− J
model and is related to the order parameter of the system
Fq(τ = 0) through the following exact relation:

Σan
k (∞) = −

3

(1 + δ)2

∑

q

Jk−qFq(τ = 0). (41)

where Fq(τ = 0) = 〈cq↑c−q↓〉.
Notice that simpler mean field theories of the t-J model

such as the slave boson mean field theory89 assume only
the static, frequency independent anomalous self energy.
Other approaches based on the equation of motion for
the Hubbard operators90 capture a frequency dependent
order parameter but neglect the static infinite frequency
component. A similar analysis of the pairing interaction,
has recenty been carried out for the ladders in Ref. 91.

The existence of a finite value of the anomalous self en-
ergy of the t-J model at infinite frequency, should be in-
terpreted as the existence of a non zero value for anoma-
lous self energy in the Hubbard model at a scale of the
order U .
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FIG. 20: (Color online) Order parameter in C-DMFT com-
puted with CTQMC at T = 0.5Tcmax. The critical tempera-
ture (in units of t) for few doping values is also displayed.

The value of the anomalous self-energy at zero-
frequency and low temperature and the gap (defined as
the distance between the positive and negative energy
peaks in the tunnelling density of states divided by two)
is similar in all versions of the cluster DMFT. For the
parameters used in our study, (J/t = 0.3, near optimal
doping) the anomalous self energy is of the order of unity
at low temperature (see the upper panel of Fig. 19).

On the other hand, TC , the superconducting order pa-
rameter, and the value of anomalous Σan(∞) are more
sensitive quantities, and differ between the various clus-
ter schemes. The schemes with higher TC (extended ver-
sions of CDMFT) show slower decrease of the anoma-
lous self-energy, larger infinite frequency component of
the anomalous self energy and larger value of the super-
conducting order parameter. In C-DMFT the maximum
value of the order parameter is around 0.02 (see Fig. 20)
which is approximately 8 times smaller than maximum
achieved in EDCA . Consequently, the static pairing in
C-DMFT is very small while it reaches almost 1/3 in
extended versions of the cluster DMFT (both in EDCA
and and EC-DMFT), i.e., the magnitude of the anoma-
lous self-energy at infinity as compared to the value at
zero shown in Fig. 19.

From the anomalous Greens function we can extract
the order parameter, i.e., the anomalous Green’s func-
tion at equal time Fπ0(τ = 0). The order parameter
versus doping as obtained by the CTQMC and C-DMFT
is shown if Fig. 20. It has a dome-like shape and tracks
the value of the critical temperature, just like in BCS
theory. In the same figure, we also display critical tem-
perature TC at optimal doping. Due to critical slowing
down in the region of transition, many DMFT iterations
are needed to determine the critical temperature.

The temperature dependence of the related quantity,
the anomalous self-energy at infinity, computed with
NCA is shown in Fig. 21. It has a clear BCS-like tem-
perature dependence saturating to a value of the order
of ∼ 0.3 which is around 1/3 of the zero frequency value.

Using NCA we can we can examine directly Σ
′′

(ω) and

Σ
′

(ω) on real axis. There are several features in the fre-
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FIG. 21: (Color online) Anomalous self energy Σan(ω = ∞)
as a function of temperature within EDCA using NCA as the
impurity solver at optimal doping δ = 0.18.

quency dependence of the anomalous self energies de-
picted in figure 22 which exhibit noticeable departures
from the standard Migdal Eliashberg theory of super-
conductivity. First, the real part of the self energy does
not change sign. This indicates that the interaction is
attractive over the whole frequency range. There is no
characteristic energy corresponding to ωDebye where the
interaction turns from attractive to repulsive. Further-
more, the spectral function displays significant spectral
weight not only at a scale of order J, but also at the scale
of order t, extending all the way to very high frequencies.
Several scales can be clearly identified in the anomalous
self-energy: the size of the SC gap in one-particle spectra
∼ 0.1t (see Fig. 25 and the discussion of the figure later
in this section ), the spin exchange J , the hopping t and
a scale of the order of half the bandwidth ∼ 3t.

It is useful to momentum resolve the one particle spec-
tra at low energies to understand the origin of the low
energy quasiparticle excitations in the system. This re-
quires the choice of a periodization scheme. For simplic-
ity we use the cumulant periodization scheme introduced
in reference 23,43,44. A more detailed discussion of the
periodization problem will be given elsewhere92. Here we
focus on the temperature dependence, which require the
finite temperature techniques described in this paper.

The results are shown in Fig. 23. As shown in earlier
work47,48, C-DMFT is able to produce Fermi arcs in the
nodal region. The advantage of the CTQMC technique
relative to other solvers, is that it allows to investigate,
for the first time within CDMFT, the temperature de-
pendence of the arcs. As shown in Fig. 23 the Fermi arcs
shrink with decreasing temperature, reminiscent of recent
experiments93 on cuprates. The physical mechanism for
the formation of the arcs, and their shrinking with de-
creasing temperature is the shift in the real part of the
momentum dependent self energy, which is enhanced in
the cumulant periodization. While the validity of this
periodization down to zero temperature, with the conse-
quent formation of lines of zeros and Fermi pockets, is at
this point a conjecture that deserves further study, there
is no question that the formation of the arc and their
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FIG. 22: (Color online) Anomalous self energy on real axis
within EDCA using NCA as the impurity solver. The top
panel shows the extended region in frequency space while the
lowest panel zooms in the low frequency part.

temperature dependence, at finite temperatures is a ro-
bust property of the cellular DMFT treatment and is vis-
ible in other periodizations. Therefore, the results of this
paper together with the earlier zero temperature results
of Ref. 43 are consistent, at the qualitative level, with
both the recent De Haas Van Alven measurements94 and
photoemission measurments95. With decreasing temper-
ature the Fermi arcs, evolve into a small pocket at a finite
distance from a line of zeros which darkens one side of
the pocket.

The arcs are increased with doping and they develop
into a banana shape structure. The Fermi surface at
optimal doping in superconducting state is displayed in
Fig. 24. Notice the sharp quasiparticles in nodal region
and gap in the antinodal region.

We now turn to another observable, the superconduct-
ing tunneling density of states and its doping dependence
displayed in Fig.25. This quantitity has been extensively
investigated experimentally4. On a broad energy scale,
there is considerable particle hole asymmetry in those
curves and the positive frequency part decreases as we
underdoped. This is expected on very general grounds
for a doped Mott insulator96–100.

Remarkably, around the optimal doping δ ∼ 0.18
the curves are more particle hole symmetric at low fre-
quencies. The asymmetry in the superconducting state
evolves from the asymmetry of the underlying normal
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FIG. 23: (Color online) Momentum resolved spectral function
in underdoped regime (δ = 0.09) at zero frequency above and
below TC in (metastable) normal state. We use CTQMC and
C-DMFT.
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FIG. 24: (Color online) Momentum resolved spectral func-
tion in optimally doped regime in superconducting state
(T = Tc/2) at zero frequency. We use CTQMC and C-DMFT.

state. To confirm this we plot the density of states of the
underlying normal state with dashed lines in the lower
panel of figure 25. It is clear from figure 25 that the
same magnitude of the assymetry is present in the nor-
mal state local density of states as in the superconducting
tunneling density of states.
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FIG. 25: (Color online) Tunneling density of states (local
spectral function) in EDCA obtained with NCA at constant
T = 0.025t. The lower pannel is a blow up of the low en-
ergy regions. The dotted lines show the normal state spectral
function for the same doping and temperature.

The low energy slope of the tunnelling density of states
is only weakly doping dependent, as was shown in the
CDMFT exact diagonalization study of the Hubbard
model51.

Besides the considerable particle hole asymmetry at
low doping , there are several features in figure 25 which
are in qualitative agreement with experiments101. For
example the dip-hump feature in the tunneling density
of states, in the unoccupied part of the spectra.

Another surprising aspect of the tunneling is that the
increase in the gap with decreasing doping is correlated
with a decrease in the intensity of the coherence peaks.
This is the oppositve of what is expected for a BCS su-
perconductor where the growth in coherence peaks corre-
lates with an increase in the superconducting gap. This
observation can also be understood in terms of the two
gap picture. The gap in the tunnelling density of states,
(maximum between the coherence peaks) is controlled by
the gap originating from the normal component of the self
energy. This gap increases with decreasing doping. On
the other hand the degree of coherence is controlled by
the anomalous self energy which decreases with decreas-
ing doping as shown in fig 25.

The two gap picture of the cuprates, has re-
cently emerged from the analysis of numerous
experiments102–105. It is also part of various phenomeno-
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FIG. 26: (Color online) upper panel: doping versus the chem-
ical potential for the Hubbard model at T = 0.005t. It shows
linear dependence and downturn at small doping. This could
point to divergence of the compressibility zero doping.
middle panel: the nodal quasiparticle residue Z versus dop-
ing. It is slowly increasing in the underdoped and optimally
doped system and increases rather rapidly in the overdoped
system.
lower parnnel: fermi momentum along the nodal direction
versus doping.

logical pictures of cuprate superconductors82,83,106. This
picuture has been recently put on a microscopic basis by
Variational Cluster Approach studies52 and C-DMFT
studies of the Hubbard51.

In the optimally doped regime the gap value is of
the order of ∆ ∼ 0.09t. This value was obtained from
fig. 25 but similar values result from analytic continua-
tion of CTQMC data to real axis. As discussed above,
the critical temperature TC strongly depends on clus-
ter scheme employed. Using the maximum TC of each
scheme, we can determin the ratio 2∆/TC at optimal
doping. In EDCA TEDCA

C ∼ 0.036t and 2∆/TC ∼ 5,

in EC-DMFT TEC−DMFT
C ∼ 0.026t and 2∆/TC ∼ 7

and TC−DMFT
C ∼ 0.01t therefore 2∆/TC ∼ 18. In con-

ventional superconductors described by BCS theory, this
ratio is universaly equal to 2∆/TC = 3.5 but increases
in the strong coupling Eliashberg theory. The cluster
DMFT superconductivity is thus in the very strong cou-
pling limit when compared to conventional superconduc-
tors. Recent experiments on Bi2212107 seems to suggest
that the ratio 2∆/Tc is close to 8.0 being somewhere be-
tween the two limits of extended and non-extended ver-
sion of the CDMFT schemes.

In Figs. 27 and 26 we present some insights into the
nodal quasiparticles of the Hubbard model as obtained
from the CTQMC results shown in Figs. 9 and 12. The
self-energy in the nodal region is obtained from the self-

energy periodization70, i.e.,

Σ(k) =
1

4
[ΣR=(0,0) + ΣR=(1,0) cos kx

+ ΣR=(0,1) cos ky + cos(kx) cos(ky)ΣR=(1,1)](42)

This allows us to determine the position of the Fermi
momentum µ− ǫkF

− ΣkF
(ω = 0) = 0 and quasiparticle

renormalization amplitude Z = 1/(1 − dΣ(kF )/dω). In
Fig. 26 we plot Znodal and kF along the nodal direction in
the superconducting state where the coherence is estab-
lished and quasiparticles are well formed. Fermi surface
is close to (π/2, π/2). The renormalization amplitude Z
is very slowly increasing with doping in the underdoped
and optimally doped regime but has a fast upturn once
the normal state gets more Fermi-liquid like.

The evolution of the nodal velocities at very low tem-
peratures and its consequences for the superconducting
gap in the nodal as well as antinodal region was recently
studies in Ref. 51 using exact diagonalization as the im-
purity solver. Here we confirm all the qualitative trends
in the doping dependence of these quantities, using the
CTQMC solver.

In Fig. 27 we plot quasiparticle Fermi velocity per-
pendicular to the Fermi surface and anomalous velocity
parallel to the Fermi surface in the nodal region. The
velocities are defined by

vnodal = Znodal

(
dǫk
dk⊥

+
dΣk

dk⊥

)
(43)

v∆ = Znodal
Σanomal

k

dk‖
(44)

It is clear from the Fig. 27 that the nodal velocity is
almost constant in the underdoped, optimally doped
and lightly overdoped regime, compatible with obser-
vation in Ref. 108. The anomalous velocity, however,
is of dome-like shape and tracks the critical tempera-
ture. The anomalous velocity measures the slope of the
superconducting gap at the node and its downturn in
the underdoped regime suggest that the superconduct-
ing gap at the node decreases with decreasing doping.
This surprising result is in accordance with recent Ra-
man experiments104 and angle resolved photoemission
measurements105 showing that the superconducting gap
at the node in the deeply underdoped regime indeed de-
creases.

V. OPTICAL CONDUCTIVITY

We now turn to the optical conductivity, which we dis-
play in figure 28 for the t-J model. This quantity has been
investigated both theoretically and experimentally over
the last twenty years. For reviews see Refs. 3,8,10. The
integrated spectral weight is a measure of the number
of carriers, and its evolution with doping has attracted
considerable attention49,109–116.
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FIG. 27: (Color online) upper panel: the nodal velocity per-
pendicular to the Fermi surface versus doping. It is almost
flat in the underdoped and optimally doped system and in-
creases rapidly in the overdoped system.
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Fermi surface versus doping has a dome-like shape with the
peak around optimal doping.

The starting point of a theory of the optical conduc-
tivity is the Kubo formulae,

σ(iωn) =
1

ωn

[
ω2

pδαβ − e2
∑

kσk′σ′

vα
kv

β
k′

∫ β

0

eiωnτ 〈Tτ c
†
k,σ(τ)ck,σ(τ)c†

k′,σ′ck′,σ′〉

]
(45)

where the plasma frequency is evaluated from the expectation value of the projected kinetic energy and the operators
c and c† are projected fermions of the t-J model.

In principle the evaluation of the optical conductivity within CDMFT requires the evaluation of the vertex function,
since current vertex corrections are non vanishing in plaquette C-DMFT. However for DCA in a plaquette, we have
shown that these corrections vanish49. This suggest, that as a first step in investigating optical conductivity we can
neglect current vertex corrections, and evaluate the conductivity from a convolution of the Greens functions

σ(ω) =
iω2

p

ω
−
ie2

ω

∑

kσ

v2
k

∫
dx

π
f(x)

[
Gk(x+ ω + iδ)G

′′

k (x) + G
′′

k (x)Gk(x− ω − iδ)

+F†
k(x + ω + iδ)F

′′

k (x) + F†′′

k (x)Fk(x− ω − iδ)
]

(46)

Within C-DMFT, in the regime where the NCA solvers
can be used, the f-sum rule
∫ ∞

0

σ′(x)dx =
πe2

4

∑

k,σ,α=(x,y)

[
d2εk/dk

2
α

]
nkσ (47)

is obeyed within a few percent, suggesting, that even for
C-DMFT, where the vertex corrections are non vanish-
ing, the corrections introduced by this effect are small.
Notice that the right-hand side of the Eq. (47) is propor-
tional to the kinetic energy of the low energy model if
this model contains nearest neighbor hopping only.

Formula (46) depends on the momentum dependent
Greens function and therefore on the periodization
scheme used and the cluster method employed. The qual-
itative features discussed in this paper and the behavior
of the integrated quantities are common to all methods.

The optical conductivity has been modeled as either
a one component or a two component system via an
extended Drude analysis117,118. The two component
parametrization consists of a Drude peak and a mid in-
frared feature.

The cluster DMFT results for the optical conductivity
of the t-J model are shown in figure 28. We show the evo-
lution of the optical conductivity with doping at various
temperatures. In the very underdoped regime, there are
clearly two components to the optical conductivity with
an optical pseudogap, opening as a function of tempera-
ture. On the other hand beyond δ = 0.1 one can describe
the optics in terms of one broad feature which narrows
as the temperature is reduced.

It is customary to parameterize the optical conductiv-
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FIG. 28: (Color online) Optical Conductivity at different dop-
ings and temperatures within EDCA using NCA for the t-J
model. The optical conductivity evolves from a sum of two
distinct features at low dopings to a broad Drude feature at
high dopings.
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FIG. 29: (Color online) Integrated spectral weight in normal
state as a function of temperature in underdoped regime for
few different cutoff frequencies. EDCA and NCA was used.

ity in terms of a generalized Drude model

σ(ω) =
ω2

p

4π

1
1

τ(ω) + iωm∗(ω)
m

(48)

This parameterization relates the real and imaginary part
of the optical conductivity in a given energy range to two

functions, 1
τ(ω)ω2

p
and m∗(ω)

mω2
p

via

1

τ(ω)ω2
p

=
1

4π

σ′

σ′2 + σ′′2
(49)

m∗(ω)

mω2
p

=
1

4π

1

ω

σ′′

σ′2 + σ′′2
(50)

(51)

The quantity ω2
p is determined from a requirement in-

volving the energy range in which the parameterization
is used, namely

ω2
p

8
=

∫ Λ

0

σ′(ω)dω (52)
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FIG. 30: (Color online) effective mass and plasma frequency
as a function of doping. Obtained from optical conductivity
of Fig. 28.

where Λ is the high energy cutoff.
Figure 30 describes the evolution of the plasma fre-

quency and effective mass versus doping in the t-J model.
The plasma frequency vanishes at half-filling and lin-
early increases at low doping. The optical mass is weakly
doping dependent, and changes from approximately 3 in
overdoped regime to 5 in underdoped regime with largest
slope at optimal doping. Weak doping dependence of the
effective mass of the same magnitude was pointed out in
Ref. 118.

Given a parametrization of the optical conductivity as
a sum of a few poles, the optical mass measures the ratio
of the total spectral weight compared to the weight in
the zero energy pole, representing the Drude peak. If the
transitions between the upper and lower Hubbard band of
the Hubbard model are included in ωp, i.e., Λ > U , than
ωp is finite approaching the Mott transition and conse-
quently the optical mass diverges. On the other hand, ex-
cluding transitions between the Hubbard bands, results
in ωp vanishing as the Mott transition is approached.
In the t-J model, the upper Hubbard band is projected
out, therefore the optical mass is always finite. As long
as the transitions into the upper Hubbard band are ex-
cluded, the plasma frequency ωp of cluster DMFT and
single site DMFT are not too different. Notice, how-
ever, that m∗/m is enhanced in cluster DMFT relative
to single site DMFT (not shown) because superexchange
transfers optical weight from the low energy to the inter-
meditate energy range ∼ J .

The optical spectral weight ω2
p is in general function of

temperature and cutoff Λ, i.e.,

ω2
p

8
= W (Λ, T ) (53)

In experiment, the cutoff is usually chosen such that the
interband transitions are absent (Λ ∼ 1eV). The inter-
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FIG. 31: (Color online) The optical conductivity σ(ω) of the t-

J model is proportional to ω−2/3 in the intermediate frequency
region for optimally doped system.
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FIG. 32: (Color online) Superconducting and normal inte-
grated spectral weight (Neff ) as a function of cutoff fre-
quency. Optical spectral weight which collapses to delta func-
tion in superconducting state comes from a very extended
energy interval (∼ 3t). We employed EDCA and NCA.

band transitions or transitions into the upper Hubbard
band are absent in the t-J model therefore this require-
ment is taken into account automatically.

The optical pseudogap which separates the two com-
ponents of spectra and is seen as a dip at the scale of J in
Fig. 28 is quite large in the underdoped system δ ∼ 0.05.
One could expect that the integral spectral weight W (Λ)
for small enough Λ ∼ J might start to decrease below a
certain characteristic temperature of a pseudogap. How-
ever, as shown in Fig. 29 there is no sign of such a de-
crease for any cutoff frequency Λ or any temperature.
Although the pseudogap gap clearly increases with tem-
perature, the Drude peak more than compensates for this
spectral weigh loss and W incresases as T decresases.

Near optimal doping, the optical conductivity displays
remarkable power laws in an intermediate asymptotic
regime. These power laws were first pointed out by N.
Bontemps group in Ref. 119. The power laws, and the
possibility to a connection to an underlying quantum crit-
icality, has been a subject of several recent experimental
papers120. CDMFT provides a natural explanation for
these anomalies49. These powerlaws were seen in ex-
act diagonalization of much larger systems122, indicat-
ing again the power of the cluster DMFT when it can
be compared with available exact results. The power of
the optical conductivity is very close to 2/3 as seen in
figure 31, but an analytic derivation of this result is not
available.

0 0.05 0.1 0.15 0.2 0.25
δ

0

0.05

0.1

[W
(T

=
0)

-W
(T

=
30

0K
)]

/W
(T

=
0)

DMFT: A. Toschi et al., PRL 95, 097002 (2005)
CDMFT

FIG. 33: (Color online) Difference between the low tem-
perature and 300K optical spectral weight integrated up to
Λ = 6t. The cluster data are computed within EDCA and the
single site DMFT results are reproduced from Ref. 123). The
error bars are due to extrapolation of spectral weight to zero
temperature from finite temperature results (Tmin ∼ 0.5Tc).

A surprising aspect of the physics of strongly correlated
materials, is that low energy phenomena affects the spec-
tra of the material over a very large energy scale. This
general phenomena is illustrated in Fig. 32, which shows
the integral of optical spectral weight W (Λ) in the nor-
mal and the superconducting state. Low energy phenom-
ena like the onset of superconductivity which involves a
scale of a fraction of J , involves redistribution of opti-
cal weight of the order of 4t ≈ 1eV which is 40 times
more than the gap value. A theoretical insight from our
calculation is that the high frequency redistribution of
weight comes from the anomalous Greens function F ∗F
in Eq. (46) and hence can not be observed in the density
of states or ARPES measurements. The large range of
redistribution of spectral weight has been also measured
on cuprates and pointed out in Ref. 109,112.

It is useful to compare the results for the temperature
dependence of the integrated spectral weight of cluster
DMFT with those of single site DMFT as reported by
Toschi et.al.123 . These are displayed in figure 33. There
are two important observations, first the sign and the
order of magnitude of the effect is similar in single site
and in cluster DMFT. This indicates that local quan-
tities can be reliably computed in this framework, and
do not change dramatically as the sizes of the cluster is
increased. Second, the doping dependence of this low en-
ergy kinetic energy differenceW (0)−W (300K) has oppo-
site slope in cluster DMFT than in single site DMFT. An
interesting question is whether the existent experimental
data agrees better with the single site or cluster DMFT.
It seems that the results in Ref. 121,124,125 are in bet-
ter agreement with the plaquette DMFT, but a more
detailed comparison between theory and experiment, is
left for future studies using the more realistic band struc-
ture of each compound and a more precise periodization
scheme.

We can also compute the temperature dependent resis-
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FIG. 34: (Color online) Resistivity versus temperatures in
EDCA using NCA as the impurity solver.

tivity, using EDCA in which the vertex correction vanish

1

ρ(T )
= e2

∑

kσ

v2
k

∫
dx

π

(
−
df(x)

dx

)[
G

′′

kσ(x)
2

+ F
′′

kσ(x)
2
]
.(54)

Notice that while the scattering rates at zero frequency
tend to saturate at high temperature (see Fig. 17), the
resistivities do not as seen in Fig 34.

Notice that the scaling of the resistivity with the num-
ber of holes is approximately obeyed, and that the maxi-
mum amount of linearity is obtained near optimal doping.
More detailed comparison with experiments will require
a more realistic modelling of the band structure and a
detailed investigation of the dependence of this quantity
on periodization sheme used.

Finally, since we have access to both the real and imag-
inary part of the optical conductivity we can compute
the superconducting stiffness, defined as the strength of
the delta function peak in the superconducting state. Its
temperature and doping dependence close to Tc is dis-
played in figure 35. In optimal and overdoped regime,
stiffness is linear function of temperature close to the
transition while it is substantially reduced in the under-
doped regime due to opening of the pseudogap. Similar
trend was found in cuprates as pointed out in Ref. 126.

With NCA, we are not able to reach sufficiently low
temperatures to address the crucial issue of the doping
dependence of the linear term of the superfluid stiffness.
Instead we use the techniques of section IV to evaluate
the low temperature behavior of this quantiy

ρs(0) − ρs(T ) =
b

π
T = e2

2 log 2

π2
(kBT )

Z2
nv

2
0

vF v∆
(55)

where Zn, v∆, and vF were evaluated in section IV and
v0 is the band fermi velocity. The coefficient b can be
evaluated directly from imaginary axis data of CTQMC
and is plotted in Fig. 36.

CDMF captures the weak dependence of b on dop-
ing, which was a subject of intensive experimental
investigations127,128. More detailed studies of this quan-
tity in C-DMFT, including vertex corrections, and more
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FIG. 35: (Color online) Superconducting stiffness versus tem-
perature, as obtained from optical conductivity using NCA
and EDCA.
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FIG. 36: (Color online) Coefficient of the linear term of the
superconducting stiffness π(ρs(0) − ρs(T ))/T versus doping
for the Hubbard model using CTMQC.

investigations of the periodization dependence of this
quantity, as well as the related B1g slope of the Raman
scattering104 is certainly warranted.

VI. MAGNETISM SUPERCONDUCTIVITY

AND SPIN RESONANCE

In this section we turn to the magnetic properties,
starting from the cluster magnetic quantities8,129,130. As
in the rest of the paper, we confine ourselves to the study
of minimal models, in this section the t-J model with
t′ = 0. Notice however, that it is known from numerous
studies that the presence of a next nearest neighbor hop-
ping t′ affects significantly the region of stability, of the
magnetism, and can suppress it altogether48.

The static cluster susceptibilities are displayed in fig-
ure 37. These are coarse grained versions of the momen-
tum dependent magnetic susceptibility, over the different
regions of the Brillouin zone of the size of one quarter
of the first Brillouin zone. While the cluster suscepti-
bilities are relatively smooth functions of doping, they
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FIG. 37: (Color online) The cluster spin susceptibilities of
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FIG. 38: (Color online) The Q = 0 cluster spin susceptibil-
ity versus temperature at different dopings for the t-j model
within EDCA.

clearly demonstrate that the spin fluctuations in differ-
ent regions of the Brillouin zone have dramatically differ-
ent behavior with doping and temperature. The (π, π)
component, dominated by the χππ susceptibility strongly
increases as we approach half filling. In contrast the uni-
form component, χ00 decrease as doping is reduced, a
signal of the opening of the pseudogap. The same is true
of χπ0. Hence, an interesting property of the pseudogap
state is the increase of staggered magnetic fluctuations
with the opening of the pseudogap. A similar contrast
between the staggered and uniform response, is seen in
their temperature dependence. We see that while the
uniform response decreases with temperature in the un-
derdoped regime, the staggered response increases.

We now proceed to uniform spin susceptibility shown
in Fig. 38. The q = 0 susceptibility at zero doping
displays the characteristic behavior of the Heisenberg
model, with a Curie like behavior at high temperatures
and a broad maximum at a scale of the order of J , as
the spins begin to form singlets. The main effect of dop-
ing is to reduce the effective exchange. Experimentally
the shift of the minima in the susceptibility is seen131,132,
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FIG. 39: (Color online) The dynamical spin susceptibility at
q = (π, π) for few different doping levels and three differ-
ent temperatures: superconducting state, normal state at the
transition temperature and at room temperature. The pro-
nounced peak is formed in SC state at 0.16t ≈ 48 meV and
a broad peak in normal state is around 100 − 140 meV. Sus-
ceptibility at normal temperature is much smaller and the
peak moves to higher frequencies. The resonance is strongest
at the optimally doped system. It disappears quickly in the
overdoped side and somewhat more slowly in the underdoped
side. Results are obtained with EDCA and NCA.

but it occurs faster than in figure 38. The effective spin-
exchange will be reduced by the addition of a negative
next-nearest neighbor hopping t′ to the model.

We now turn to the frequency dependence of the imag-
inary part of the (π, π) susceptibility probed in neutron
scattering experiments. As shown in figure 39, a pro-
nounced peak in the (π, π) spin response at frequency
0.16t in the optimally doped regime can be observed
when entering the superconducting state. The position
of the peak is temperature independent, but depends
weakly on doping tracking the critical temperature. Our
results are in qualitative agreement with experiment, for
example the resonance energy scales with doping like 5Tc

and its position does not depend on temperature129. In
addition we see a broader peak around 0.35 − 0.45t ex-
tending to very high frequencies of order of t ≈ 300 meV
which also gains some weight when entering the super-
conducting state.

Cluster methods coarse grain the momentum depen-
dence. In the plaquette case, the coarse graining is done
over 1/4 of the Brillouin zone centered at (π, π) there-
fore it is reasonable to compare our results with the q

integrated susceptibility from Ref. 133 where the two fea-
tures, present in the mean field theory, 35 meV resonant
peak as well as broader peak around 75 meV extending
up to 220 meV were observed.

The exchange energy of the t-J model can be expressed
as an integral of the spin susceptibility134

Exc =
3J

π

∫
d2q dω b(ω)Im[χ(q, ω)](cos qx + cos qy)

(56)
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FIG. 40: (Color online) The exchange energy versus temper-
ature for few doping levels obtained by the NCA in EDCA.
The lower panel is a blowup of the low temperature regime.
The dotted lines correspond to metastable normal state be-
low Tc while the full lines continue into the superconducting
state.

Using this equation, one can elucidate the origin of the
superconducting condensation energy, and the relative
contribution of the different features of the spectral func-
tion.

Clearly, an important contribution to superconducting
condensation energy arises from the incoherent features
of the spin spectral function (around the frequency 0.4−
0.5t) rather than from the spin resonance.

The exchange energy as a function of temperature is
shown in Fig. 40. At high temperature, spins are disor-
dered and the exchange energy is negligible. At temper-
ature below J the singlets are formed and the exchange
energy noticeably decreases, especially in the underdoped
regime. At Tc the exchange energy decreases further
and gives far the largest contribution to the condensa-
tion energy of the t-J model, as shown in Ref. 49. The
exchange energy mechanism, observed in cluster DMFT
study, is thus in agreement with the strong coupling mag-
netic mechanism for the superconductivity.

The spin resonance has been viewed from two differ-
ent perspectives (see Ref. 129 and references therein): i)
starting from electronic quasiparticles and their residual
interactions in a d-wave superconductor, residual inter-
actions form a particle hole bound state with spin one,
which is identified as the spin resonance. ii) Alterna-
tively starting from a disordered quantum spin system,
one can identify the spin resonance as a massive spin one
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FIG. 41: (Color online) left: Pseudoparticle spectral func-
tions for the three most important pseudoparticles: ground
states for N=4, N=3 and N=2 sectors. Right-top: Sketch of
pseudoparticle threshold energies which can be interpreted as
the effective many-body levels in normal and superconduct-
ing state. Right-bottom: Pseudoparticle occupancies versus
doping for most important pseudoparticles. The full lines cor-
respond to the normal state while the dashed lines correspond
to the superconducting state.

excitation, which becomes massless as one approaches the
magnetically ordered phase.

The cluster EDMFT equation 7 reconciles both points
of view in a unified approach, since the equations for the
spin susceptibility contain both the exchange interaction
characteristic of the insulator J(q), as well as the quasi-
particle contribution described by the spin cumulant M
Eq. 7.

The appearence of the spin resonance requires the dra-
matic decrease of the anomalously large scattering rate in
the normal state which is strongly reduced when the elec-
trons condense to form d-wave pairs, avoiding criticality
at low temperatures. The resonance, however, appears
only in the superconducting state and is not present in
the normal state.

VII. PSEUDOPARTICLE INTERPRETATION,

CONNECTION WITH OTHER MEAN FIELD

THEORIES

In this section we give interpretation of physical ob-
servables in terms of pseudoparticle (eigenstates of the
cluster) spectral functions. This is an alternative insight
into a rich physics contained in the solution of cluster
DMFT equations on a plaquette.

Pseudoparticle creation and annihilation operators
were introduced as mathematical entities representing
the atomic eigenstates of the plaquette immersed in the
Cluster DMFT medium. We have found that out of the
large number (34) of pseudoparticles that we introduced,
very few of them are important for reproducing the low
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energy part of physical observables. For example, more
than 95% of the one-particle spectral function at the
Fermi level comes from a few convolutions of pseudopar-
ticles in Eq. (33), within NCA approach. This constraint
is however not present for high energy part of the spec-
tra such as Hubbard bands where contribution of most of
pseudoparticles can be identified. The ground state and
the low laying excitations are much more restricted and
are a superposition of only a few atomic states. In the
plaquette these important states are:

Γ4 = |N = 4, S = 0,K = 0〉 (57)

Γ4′ = |N = 4, S = 1,K = (ππ)〉 (58)

Γ3σ(π0) = |N = 3, S = 1/2, Sz = σ,K = (π, 0)〉(59)

Γ3σ(0π) = |N = 3, S = 1/2, Sz = σ′,K = (0π)〉 (60)

Γ2 = |N = 2, S = 0,K = 0〉 (61)

where N is the number of electrons in the cluster eigen-
state, S and Sz are the total spin and its z component of
the cluster eigenstate, and K is momentum of the cluster
eigenstate.

Notice that although only few cluster eigenstates con-
tribute to the ground state, the wave function is still
highly nontrivial since it is a product state of an infi-
nite number of states in the bath with the few atomic
eigenstates of the impurity. This surprising result of re-
striction to a few cluster eigenstates could be beneficial to
devise useful approximations while extending C-DMFT
to larger clusters in the future. In this paper we exploit
this fact to give a simple interpretation of the different
doping regimes of the t-J model.

Fig. 41-left shows the evolution of the three most im-
portant pseudoparticle spectral functions from the un-
derdoped to the overdoped regime.

At small doping, the cluster is mostly occupied by the
singlet state with one particle per site and zero momen-
tum Γ4 = |N = 4, S = 0,K = 0〉, (half filled singlet).
This pseudoparticle has the largest occupancy as shown
in Fig. 41. It describes a system locked in a short range
singlet state as a consequence of the strong superex-
change interaction.

The cluster electron spectral function describes the
process of addition and removal of an electron from the
cluster at frequency ω. Within NCA, it is constructed
from the convolution of two pseudoparticles with differ-
ent cluster occupation N and N + 1, or N − 1 , with
the frequency restricted between zero and ω as described
by Eq. (33). The necessary condition for a peak of
the one-particle spectral function at the Fermi level is
that at least two pseudoparticle spectral functions share
a common threshold and are strongly peaked at the same
threshold.

In the underdoped regime, the thresholds of all other
pseudoparticles except Γ4 are significantly shifted with
reference to the half filled singlet, a pseudogap results in
the one particle spectra in the underdoped regime. This
gap in threshold energies severely limits the possible de-
cay processes of the electron resulting in a low electronic

scattering rate. This is the plaquette-impurity model of
a few holes propagating in a sea of singlets.

At large doping, i.e. in the overdoped regime, where the
Kondo scale is dominant we obtain the standard DMFT
description of a strongly correlated Fermi liquid. As is
well known from the study of the Fermi liquid regime of
the single impurity Anderson model, all pseudoparticles
develop thresholds (X-ray singularity) at the same fre-
quency which is related to the Kondo temperature of the
problem. In our plaquette DMFT, all three important
pseudoparticles (half-filled singlet, doublet with one hole
per plaquette Γ3σK and singlet with two holes per plaque-
tte Γ2) have a power law divergence at the same thresh-
old frequency at zero temperature (Fig. 41) which is a
standard signature of the Kondo effect. Hence, the one
particle spectral function begins to develop the Kondo-
Suhl resonance at the Fermi level since the convolution
between the doublet Γ3σK and half-filled singlet Γ4 (or Γ2

singlet) state is large at low frequency. The one-particle
spectral function is peaked slightly above the Fermi level.
Notice that while we cannot follow the formation of the
Kondo resonance to very low temperatures due to the
well known NCA pathologies, we can clearly see the on-
set the Fermi liquid behavior in Fig. 13. The overdoped
regime characterized by the common threshold of pseu-
doparticles is distinctively different from the underdoped
regime, where only important state is the half-filled sin-
glet Γ4 and the Γ3σK doublet. The latter has a very little
spectral weight in the region of the singlet peak.

The Transition Region, Normal State: In the optimal
doped regime, the Kondo scale and the superexchange
compete giving rise to a regime with very large scattering
rate and consequently a small coherence scale.

Surprisingly the evolution of the spectral function with
doping is such that the optimally doped regime is approx-
imately particle hole symmetric. As shown in Fig. 41-
right-top the threshold of the N=2 cluster ground state
and N=3 cluster ground state (doublet) merge first re-
sulting in a Kondo-like contribution to the electron spec-
tral function. This contribution is peaked above the
Fermi level in a one band model below half-filling, in
a Fermi liquid regime. The half-filled singlet however
remains the lowest state in energy and still gives a sig-
nificant contribution to the electron spectral function.
The later contribution is peaked below the Fermi level
and keeps a pseudogap-like shape. Adding the two con-
tributions to the electron spectral function restores the
particle-hole symmetry in the density of states both in
normal and superconducting state at optimal doping (see
Fig. 13g and 25). The approximate restoration is impor-
tant, because it is known that cluster of impurities such
as the two impurity Kondo model135, have a critical point
only in the particle hole symmetric case136.

Notice that the point of maximum scattering rate in
Fig. 17 coincides with the merging of the thresholds of
the pseudoparticles (see Fig 41). Around the same dop-
ing level, an approximate particle hole symmetry is re-
stored in one-particle Green’s function (see Fig. 6 and
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13). Hence the term avoided cluster quantum multicrit-
icality describes better the phenomena observed in this
study since to reach the quantum critical point both the
particle hole symmetry and the ratio of Kondo to RKKY
coupling need to be varied.

Transition into the superconducting state: The degen-
eracy responsible for the strongly incoherent metal with
large scattering rate at the Fermi level is lifted by the
superconductivity avoiding the critical point. This dra-
matic reduction of scattering rate in going from the nor-
mal to the superconducting phase, depicted in figures 17
and 18, highlights how anomalously incoherent the nor-
mal state at optimal doping is, and how those anomalies
are removed by superconductivity.

This fact has also a natural interpretation in terms
of pseudoparticles. Fig. 41-left shows that both impor-
tant singlet pseudoparticles (for Γ4 and Γ2) develop a
very sharp peak at the same threshold frequency and,
at the same time, their occupancy increases (see Fig. 41-
bottom) upon condensation, indicating that electrons are
locked into singlets with zero momentum. A gap opens
between the singlets and doublets which gives the gap
in the one-particle density of states. Because of this
gap in the pseudoparticle thresholds, the large imaginary
part of the electron self-energy does not persist in the
superconducting state (see also Fig. 17). Notice how-
ever that in superconducting state the pseudoparticles
are strongly mixed and the off-diagonal spectral func-
tion AΓ4Γ2

also develops a pole at the same threshold as

AΓ4
and AΓ2

. The off-diagonal spectral function AΓ4Γ2

describes the creation of a Cooper pair on the cluster

GΓ4Γ2
= 〈0|a†Γ4

(τ)aΓ2
|0〉 and therefore diverges at low

temperature at the same threshold frequency.

Since the density of states is composed of two almost
equally important contributions, i.e., the convolution of
the doublet with both singlets (Γ4 and Γ2), the super-
conducting gap is almost particle hole symmetric in the
optimally doped regime with half-width of the order of
0.1t. When the doping value is changed from its critical
value, the asymmetry in the superconducting density of
states appears. The magnitude of the asymmetry is the
same as the asymmetry of the corresponding normal state
spectra and comes from the fact that the occupancy and
therefore importance of the Γ4 singlet exceeds the impor-
tance of the Γ2 singlet (see Fig. 41-bottom).

Finally we comment on the role of the triplet pseu-
doparticle. The spin susceptibility comes almost entirely
from the convolution of the half-filled singlet with the
half-filled triplet (Γ4 with Γ4′). The later develops a peak
at an energy 0.16t upon condensation which results in the
resonance in the spin susceptibility shown in Fig. 39.

It is interesting to derive the form of a low energy
Hamiltonian involving the pseudoparticles in question.
The conservation of charge, spin and cluster momentum
considerably restricts the form of this Hamiltonian. If
we assume it is of the Kondo form, it takes the following
form

H =
∑

Γ

ǫΓa
†
ΓaΓ +

∑

kQσ

ǫkQc
†
kQσckQσ + J1a

†
Γ4
aΓ2

∑

kk′Qσ′σ

ǫσ,σ′ckQσckQσ′ + h.c (62)

+J2

∑

kσk′σ′,K,K′∈[(0,π),(π,0)]

a†Γ3σK
aΓ

3σ′K′
c†k′K′σ′ckKσ + h.c.+ λ

∑

Γ

(a†ΓaΓ − 1)

where Γ runs over the relevant low energy pseudoparti-
cles. ǫσ,σ′ is an antisymmetric tensor and the Q runs

over cluster momenta. Here c†kQσ operators create an
electrons in the bath with cluster momenta Q and spin

σ. The operators a†Γ create a pseudoparticle on the clus-
ter (see Eq. 15).

This Hamiltonian contains the competition of the par-
ticle hole and particle particle channels for pairing with
the baths of conduction electrons, and the approach to
criticality is controlled by the variation of the on site
energy ǫΓ which should be identified with the pseudopar-
ticle thresholds. It would be very intersting to inves-
tigate this impurity model with the tools and the per-
spective of Ref. 137. It is clear that superconductiv-
ity will add magnetic field like terms proportional to

〈a†Γ4
aΓ2

〉
∑

kk′Qσ′σ ǫσ,σ′ckQσckQσ′ . These terms should
be strongly relevant, and moves the system away from

criticality.
Within CDMFT, the cluster of few sites (2 × 2 in our

case) hybridizes with the Weiss field ∆, defined in Eq. (6).
In single site DMFT, this effective medium drives the
Mott transition. On the Bethe lattice within single site
DMFT, it is proportional to the local Green’s function
∆ = t2G and therefore becomes gapped in the Mott insu-
lating state while it remains gapless in the metallic phase.
Hence due to the DMFT self-consistency condition this
quantity shows a very strong doping dependence.

Within cluster DMFT the effective medium is only
weakly doping dependent and the evolution with doping
is smooth (see Fig. 42) in the doping range considered
here. Moreover, this quantity shows very mild momen-
tum dependence as opposed to strong momentum depen-
dence of self-energy shown in Fig. 5. For examples, the
(0, 0) and (π, π) Green’s functions show almost no spec-
tra at low frequency (are almost gapped) while the hy-
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FIG. 42: (Color online) First panel: Imaginary parts of the
cluster hybridization functions for various dopings in normal
state at T = 0.01t using C-DMFT and CTQMC. Second
panel: Real parts of the same hybridization functions in nor-
mal state at T = 0.01t. Third panel: Imaginary parts of
the same hybridization functions in superconducting state at
T = 0.005t. Fourth panel: Real part of the same hybridiza-
tion functions in superconducting state at T = 0.005t. The
self-energies of the cluster show strong momentum depen-
dence while hybridizations are only weakly momentum de-
pendent. Furthermore, there seems to be no indication of any
criticality in the hybridization functions such as the formation
of a gap.

bridization functions of these two orbitals are very similar
to (0, π) hybridization function which contains most of
the low frequency spectral weight. The mild and smooth
doping dependence of hybridization functions leads us to
believe that the proximity to quantum cluster criticality,
which manifests itself in large scattering rate and van-
ishing coherence scale, is driven by the impurity model
itself rather than the self consistency condition.

The picture here, is based entirely on a finite tempera-
ture analysis, and is in the spirit of the DMFT approach,
where we approach the strong correlation problem start-
ing from high temperatures.

It is important to continue the normal solutions of the
plaquette DMFT equations to very low temperature to
clarify the mathematical source of the criticality that we
observe at higher temperatures. The critical point could
occur exactly at T = 0, as proposed by Capone et. al.63

in the context of the two band Hubbard model with in-
verted Hund rule exchange, and by us in ref50. The quan-
tum critical point may exist in a impurity model with a
fixed bath or might require the DMFT self consistency
condition. Alternatively, there may be a finite second
order endpoint of a first order line, as found in DMFT
lattice models related to the two impurity model138. No-
tice also that power laws in an intermediate asymptotic
regime, without an obvious underlying quantum critical
impurity model have also been found in impurity model
related to frustrated magnets139.

Still, the precise nature of the low temperature normal
state phase below Tc is not essential for the validity of
the CDMFT description. What matters is that at very
high temperature T > J single site DMFT is a good de-
scription of the system, and as we lower the temperature
we find a broad region of temperatures where the pla-
quette reference frame correctly captures the physics of
the problem with its apparent criticality, even though at
much lower temperatures a more non local description
will be needed. It is even possible that the zero temper-
ature solution of the DMFT equations do not exist, in
which case, unlike the standard BCS theory where the
superconductivity is viewed as an instability of a normal
phase, we would have a superconducting state that exist
without an underlying normal state.

There is an important distinction between our views
and those of local quantum critical scenario based on
single site EDMFT scenario140. In the latter case, the
locality of the quantum critical theory of the lattice is
asserted to be reliable at T = 0, while the results of the
EDMFT equations in two dimensions are known to be
less reliable as temperature is raised141 . On the other
hand, the results of plaquette DMFT are expected to
become more accurate as the temperature is raised.

VIII. CONCLUSION AND DISCUSSION

In this paper we developed and applied a plaquette Dy-
namical Mean Field Theory to understand the nature of
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the superconductivity near the Mott transition. In rela-
tion to earlier works, we focused of low but finite temper-
atures to allow a comparison with the underlying normal
phase. For this purpose advanced impurity solvers were
brought to bear on the solution of the CDMFT equations.

The idea of using a plaquette in a self consistent
medium as a reference frame to reconstruct physical cor-
relations functions on a lattice, while appealing, has sev-
eral different implementations through different cluster
schemes. Here, we stressed the numerous qualitative fea-
tures which are common to all methods while pointing
out the few significant quantitative discrepancies that we
found among the different cluster methods in the course
of our investigations.

The low temperature landscape of strongly correlated
electron systems can have many competing phases, for
example conmensurate and incomensurate condensates
of charge spin and current. A first step towards under-
standing this landscape is to follow the evolution of well
defined phases as a function of control parameters. In
this paper we focused on the superconducting and nor-
mal phase. Other phases and the competition with su-
perconductivity can be studied with CDMFT techniques,
as was done for example in Ref. 37 for the conmensurate
antiferromagnetism.

We find that the normal state in the mean field theory
has two distinct regimes, which are naturally character-
ized in terms of the regimes of the impurity model. At
low doping, in the immediate proximity of the Mott in-
sulating state, we have a realization of the RVB picture
of holes propagating in a sea of spins with strong singlet
correlations. In the impurity model language that corre-
sponds to the RKKY phase of the two impurity model
and its generalization to a plaquette. At high doping,
we have a regime with well formed quasiparticles with a
Fermi surface containing 1− δ electrons. In the impurity
model language this corresponds to the Kondo regime of
the one impurity model, and single site DMFT provides
an adequate description of its properties.

Plaquette CDMFT has three independent cluster self
energies. For very large doping, only the local cluster
self energy is non zero, indicating the validity of single
site DMFT. As doping is reduced, Σππ(iω) acquires a
large real and imaginary part. This is controlled by the
existence of a pole which approaches zero frequency at
certain doping δc

1 (δc
1 ∼ 0.1 in the t-J and δc

1 = 0 in
the Hubbard model). When combined with the cumu-
lant periodization, this anomalous growth, gives rise to a
topological transition associated to the formation of line
of zeros in the Greens function (line of poles in the self
energy) at zero temperature discussed in Ref. 43. We
call the doping at which the topological transition of the
Fermi surface happens δc

3. Notice however, that from a
CDFMT perspective which focus on the finite tempera-
ture description, an infinite self energy is not necessary,
and all that is required to generate the pseudogap regime
with its concomitant formation of Fermi arcs, is a self en-
ergy which exceeds the bandwidth.

We identified another critical doping, δc
2 associated

with a maximum in the scattering rate of the third clus-
ter degree of freedom Σ0π. This is an example of cluster
quantum multicriticality. Namely, a mapping of a lattice
model onto a quantum impurity model with a critical
point. This critical point satisfies the following condi-
tions: a) it requires a cluster of impurities for its exis-
tence, hence it has no analogy in single site DMFT, and
b) has at least two unstable (relevant) directions (for ex-
ample the ratio Jkondo/JRKKY and particle hole sym-
metry breaking in the two impurity model Varma Jones
critical point135).

At a critical doping δc
2, there is an avoided critical

point in the normal phase, which is near the doping level
with the highest superconducting transition temperature.
Since δc

2 > δc
1, δ

c
2 may lie very close to δc

3 if one adopts a
periodization scheme along the lines of the cumulant pe-
riodization, but this issue is left for future studies since
it strongly depends on the periodization scheme. Look-
ing at the scattering rate and coherence temperature in
the normal state solution of CDMFT equations, we thus
identified a critical doping δc

2, which could be related to
the hidden quantum critical point which has been hy-
pothesized by many authors based on a large body of
experimental data135,142.

We have not analyzed the properties of the CDMFT
quantum impurity model describing the normal state at
zero temperature. It is even possible that the normal
state solution simply does not exist at T = 0. These
points are largely academic from the point of view of
the finite temperature physics which we want to describe
with CDMFT. The manifestations of the possible quan-
tum criticality are rapidly removed by the onset of super-
conductivity. The electronic lifetime on the Fermi surface
controlled by ImΣ(0, π) is dramatically reduced as the
system goes superconducting.

One then arrives at a superconducting state, which
inherits the normal state gap, largely caused by Σππ,
but with coherent nodal quasiparticles characterized by
a weakly doping dependent velocity perpendicular to the
Fermi surface. The velocity along the Fermi surface
v∆ has a dome like shape and decreases in the under-
doped regime providing further support to the two gap
picture of the superconducting state of the underdoped
cuprates51,52,102,104,105.

The superconducting phase is stabilized by the gain
of superexchange energy, namely improved spin-spin sin-
glet correlations. We resolved the frequency dependence
of the anomalous Greens function and the anomalous self
energy, and found them to have a structure very different
from conventional phonon mediated superconductivity in
the Migdal Eliashberg theory. Since the superconducting
state restores coherence, long lived sharp excitations, Bo-
golubov quasiparticles and a sharp spin mode which re-
sembles the neutron ”40 meV resonance”, emerge below
TC .

We extracted different observables such as tunneling
density of states, optical conductivity, optical mass and
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plasma frequency, integrated optical spectral weight su-
perfluid stiffness and spin susceptibility which compare
well at a qualitative level with experimental data on cop-
per oxide materials.

We have shown that at δc
2 (which occurs very near the

maximum in Tc) the coherence energy vanishes and the
scattering rate is maximal. At this doping, an approx-
imate particle-hole symmetry in the one electron spec-
tra is recovered, and approximate power laws in physical
quantities (σ ∝ ω−2/3) emerge in an intermediate fre-
quency range.

Upon periodization, the large value of the non local
self energies turn Fermi surface into Fermi arcs43, and we
studied the evolution of the fermi arcs with temperature.
We showed that within C-DMFT fermi arcs shrink with
decreasing temperature.

Our solution of the CDMFT on a plaquette, has many
similarities with the earlier studies of Anderson’s Res-
onating Valence Bond theory of high temperature super-
conductivity in the slave boson mean field theory for-
mulation. This approach, correctly predicted the d-wave
symmetry of the superconducting order parameter and
the presence of a pseudogap with the same symmetry
well above Tc

18.

The similarity between the results of the CDMFT and
slave boson approaches is not accidental. Both methods
are mean field techniques based on order parameters that
can be defined within a plaquette, and capture the effects
of the proximity to a Mott insulating state using a small
set of short range degrees of freedom.

Compared with slave boson mean field theory, CDMFT
has additional flexibility both in the frequency of the
one electron spectral function as well as in its momen-
tum dependence. One crucial difference, is a much more
pronounced momentum space differentiation with very
different electronic properties at the nodes and at the
antinodes. This anisotropy, with the concomitant ex-
istence of two energy scales in the superconductor, re-
solves the earlier problems of the RVB theory related to
the doping dependence of the linear term of the pene-
tration depth143. The need for the introduction of more
anisostropy in the microscopic theory had been antici-
pated by experiments, and by the phenomenological anal-
ysis of Ioffe and Millis144–146. Recent phenomenological
models82,83 have also generated a more pronounced mo-
mentum dependence of the one particle spectra, and in-
corporated in their approach a v∆ that decreases with
decreasing doping. The main differences between these
phenomenological approaches and the more microscopic
C-DMFT reside in the location of the lines of zeros of
the Green function. While in Refs. 82,83 the lines of zero
lie on the the umklapp surface, in C-DMFT the lines of
zeros are dynamical entities with a location that evolve
with doping.

CDMFT is an extension of single site DMFT an ap-
proach that has been very successful in describing many
aspects of the finite temperature Mott transition. Using
a single impurity in a medium, this method, has been

able to describe several regimes near a Mott transition.
A Fermi liquid regime, at small U and temperature, a
bad metal at temperature larger than a characteristic
temperature Tcoh(U), a Mott insulator at large U and
low temperature, and a bad insulator when the temper-
ature is high enough that the Hubbard bands begin to
merge.

By construction, single site DMFT assigns the same
self energy to the electronic states on the whole fermi
surface. Hence at a given energy and temperature, either
all the states at all k points are coherent, or they are all
incoherent. This is not a good description of the high
temperature superconductors, which therefore cannot be
described with single site DMFT.

On the other hand, CDMFT allows the states in the
nodal region to be coherent quasiparticles while at the
same time the states in the antinodal region are highly
incoherent and have a pseudogap, i.e., Tcoh(nodal) ≪
Tcoh(antinodal). The self energy in the nodal region
could be compared to a single site DMFT in the Fermi
liquid regime with U < Uc2 and Tc < Tcoh(U) while the
antinodal self energy is more of a single site DMFT in the
bad insulator regime U > Uc2 and Tc > Tcoh(U). Pla-
quette DMFT, offers a mean field picture of the lattice
problem, whereby the different cluster self energies and
cumulants describe different regions of momentum space
with distinct physical properties. A nodal region which
is closest to a Fermi liquid, an antinodal region which ex-
hibits a pseudogap, and an intermediate region between
the two, described by the (0, π) self energy, which exhibits
the maximum scattering rate at criticality.

This qualitative picture is only a crude caricature of
the full CDMFT solution, but it is a useful qualitative
guide to understand how the Fermi arcs originate from
the proximity to the Mott insulator, and above all, high-
lights why single site DMFT is inadequate in this situa-
tion.

The objective of this work was to advance our under-
standing of the t-J and Hubbard model as a ”bare bones”
model of the density driven Mott transition. Important
open problem is to incorporate and understand how other
effects, such as the effects of more realistic band struc-
ture in the multi band model, the disorder and the elec-
tron phonon interaction, which play an important role in
cuprates, can effect the solution of the model,

We presented a qualitative comparison with several ex-
periments in the copper oxide based materials, and given
the limitations of the model and of the methodology used,
this comparison is very encouraging and warrant future
studies including more accurate modeling and further
methodological improvements.

Future studies should include a realistic band struc-
ture of the copper-oxygen planes and additional Coulomb
terms beyond the local Hubbard U , that can be accomo-
dated on the plaquette. In addition to dx2−y2 copper
band, it would be desirable to include another copper
band, namely, dz2 band which is coupled to apical oxy-
gen. Although the latter band is filled in the band struc-
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ture calculation, it comes close to the Fermi level.
Another important direction is to better momentum

resolve one particle and two particle quantities. The
latter will require advances in the analytic continuation
techniques of QMC data, as well as a better understand-
ing of how to convert cluster quantities into lattice ob-
servables in C-DMFT. Furthermore within a cluster size,
it is important to implement an optimal choice of orbitals
in CDMFT describing different momentum patches in the
Brillouin zone. Functional approaches23,147 as well as
CDMFT inspired, modeling of experimental data along
the lines of Ref. 148 can provide useful guidance in this
direction.

Mean field approaches clearly separates the short dis-
tance effects contained in the theory, from long distance
effects which will require the introduction of fluctuations
due to vortices and pair fluctuations. The Tc vs δ line
in CDMFT should be interpreted as being close to the
Nerst line in the cuprate phase diagram149. On the other
hand, the true superconducting critical temperature line,
is strongly reduced relative to the CDMFT on the un-
derdoped side of the phase diagram to the effects of long

wavelength fluctuations of the order parameter, which re-
quire long wavelength field theoretical techniques along
the lines of Ref. 150

Finally other inhomogeneous phases, such as stripes,
charge, bond, pair density waves, and other broken sym-
metries can appear as secondary instabilities, and can be
studied with our methods by inserting a relatively local
(restricted to a plaquette), but site dependent self ener-
gies into the CDMFT functional.
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