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Many-Body Electronic Structure of Americium Metal
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We report computer based simulations of energetics, spectroscopy, and electron-phonon interaction of
americium using a novel spectral density functional method. This approach gives rise to a new concept of
a many-body electronic structure and reveals the unexpected mixed valence regime of Am 5f6 electrons
which under pressure acquire the 5f7 valence state. This explains the unique properties of Am and
addresses the fundamental issue of how the localization delocalization edge is approached from the
localized side in a closed shell system.
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Artificially produced from plutonium-239 in 1944, and
widely used in smoke detectors, Americium is the first
transuranic actinide where 5f6 electrons become localized
and form a closed relativistic subshell. Its recent high-
pressure studies [1] have drawn a lot of attention because
understanding the volume behavior in actinides systems
has important consequences on their storage and disposal.
They have revealed that Am undergoes a series of struc-
tural phase transitions (denoted hereafter as I, II, III, and
IV) and reproduces at least two of the structures of another
mysterious element, plutonium, which links the physical
behavior of all actinides materials to our fundamental
understanding of bonding between their 5f electrons. At
ambient pressure, Am I behaves as an ordinary metal with
slightly enhanced electrical resistivity ��T � 300 K� �
68 �� cm and no sign of ordered or disordered magne-
tism. This is commonly understood as a manifestation of
the 7F0 ground state singlet of a 5f6 atomic configuration.
However, the resistivity of Am raises almost an order of
magnitude and reaches its value of 500 �� cm at the
orthorhombic structure of Am IV which is realized at
pressures P above 16 GPa. The most prominent feature
of the pressure P vs volume V behavior is the existence of
two distinct phases: the ‘‘soft’’ one, which occurs in Am I–
III, as well as another ‘‘hard’’ phase, realized in Am IV. On
top of that, a superconductivity in Am was first predicted
[2] and then discovered [3] with Tc raising from 0.5 K in
Am I to 2.2 K in Am II, falling slightly in Am III, and then
exhibiting a sharp maximum in phase IV [4].

Understanding this unique behavior is a fundamental
challenge in searching for a unified theory of actinides as
the pressure driven delocalization of electrons is ap-
proached here from the localized side which is very differ-
ent from Pu where originally delocalized electrons become
localized with increasing volume. Thus, simple model
Hamiltonians which contain qualitative features to produce
complex energy landscapes with multiple solutions in open
shell systems cannot be employed for studies of closed
shell materials: without incorporating realistic structures in
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the calculation, there is no hint of bistability in the model
Hamiltonian approach.

To address these issues, in this work we introduce a
novel many-body electronic structure method which al-
lows us to uncover the physics of Am. It is based on
dynamical mean field theory (DMFT), a modern many-
body technique for treating strongly correlated electronic
systems in a nonperturbative manner [5] and at the same
time has computational efficiency comparable with ordi-
nary electronic structure calculations thus allowing us to
deal with complicated crystal structures of real solids by
self-consistent many-body calculations. Our new method
considers the local Green function Gloc�!� as a variable in
the total-energy functional and can be viewed as spectral
density functional theory [6–8]. The advantage of such
formulation as compared to original density functional
theory [9] is a simultaneous access to energetics and local
excitation spectra of materials with arbitrary strength of the
local Coulomb interaction U.

The DMFT-based spectral density functional approach
requires self-consistent solutions of the Dyson equations
�!�H0�k� � ��!��G�k; !� � 1 for the one-electron
Green function G�k; !�. The poles of its momentum inte-
gratedGloc�!� contain information of the true local spectra
of excitations. Here H0�k� is the effective one-electron
Hamiltonian, while ��!� is a local self-energy operator
whose energy dependence makes the solution computa-
tionally very expensive. This so far has restricted applica-
tions of this promising many-body approach to either non-
self-consistent determinations of spectra [10] or materials
with simple crystal structures [7,11,12].

Our new approach greatly improves the speed of the
calculation by recognizing that a signature of strong cor-
relation effect results in the appearance of several distinct
features or satellites in the excitation spectrum. The exact
self-energy of an interacting system can always be repre-
sented by a pole expansion of the form

��!� � ��1� �
X
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where weights V�i and Vi and poles Pi are matrices. Remarkably, that such form of the self-energy allows us to replace the
nonlinear (over energy) Dyson equation by a linear Schrödinger-like equation in extended subset of ‘‘pole states.’’ This is
clear due to a mathematical identity
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FIG. 1 (color online). Calculated many-body set of energy
bands (left) which models the one-electron density of states
(right) of Americium metal. Experimental photoemission spec-
trum [17] is also shown by open circles.
which relates our original matrix inversion required to find
G�k; !� (first element in the matrix from the right) to the
matrix inversion in the extended ‘‘pole space.’’

The key insight is that the above form of the self-energy
with a few poles captures [8,13] all the central features of a
correlated system. This has an important implication for
the calculation of the electronic structure of the strongly
correlated material: once pole expansion of the self-energy
is established, the spectral density functional theory re-
duces to solving a ‘‘Kohn-Sham–like’’ system of equations
in an augmented space. The eigenstates here describe
major atomic multiplet transitions as well as delocalized
parts of the electronic states by separate auxiliary wave
functions. Each wave function is not normalized to unity
since it describes only part of the spectral weight for the
electron living in the vicinity of a given energy; however,
the integral spectral weight over all energies is correctly
normalized to one. While a self-energy with a small num-
ber of poles may not capture the subtle physics of damping
important for incoherent excitations, the method gives us
directly the dispersions of these spectral features, which
are measurable in angle resolved photoemission. Thus, the
concept of the electronic structure is generalized to a
strongly correlated situation. It ideally suits the description
of such subtle regime as the proximity to the Mott tran-
sition where atomic multiplet structure appears simulta-
neously with strongly renormalized quasiparticle bands, a
regime where traditional electronic structure methods fail.

Here, we study the properties of Am under pressure
using this newly implemented matrix expansion algorithm
for spectral density functional calculations within a full
potential version of the linear muffin-tin orbital (LMTO)
method [14]. In this approach, the s; p; d electrons are
assumed to be weakly correlated and well described within
such popular approximations to the density functional
theory as the local density approximation (LDA) or gener-
alized gradient approximation (GGA). The correlated f
electrons require dynamical treatment using DMFT. Both
the spin-orbit as well as the Hund’s couplings are compet-
ing in Americium and need to be taken into account. The
former is a one-body term and enters through the LDA
Hamiltonian, while the second is contained in the local
Coulomb repulsion, which is conveniently expressed via
Slater constants F�i�. The value of the most important term
F�0� � U is around 4.5 eV, which is suggested from various
atomic spectroscopy data and our previous studies of plu-
tonium. For the remaining constants, we take the atomic
values F�2� �7:2 eV, F�4� �4:8 eV, and F�6� �3:6 eV [15].
03640
For the purpose of the total-energy calculation, the
f-electron self-energy is approximated by its atomic value,
which is obtained by the exact diagonalization technique.
This is known as the Hubbard I approximation [16], and the
probabilities to find the f shell in its given many-body state
are directly accessed within this method, giving us the
insight into valence of the material. Within the atomic
picture, excitations from the f6 configuration contain
many multiplet transitions, but clustered around three en-
ergies and we can further approximate the self-energy by
the two-pole approximation. Thus, we can utilize the al-
gorithm described by Eqs. (1) and (2). In practice, the
positions of the self-energy poles Pi and their weights
V�; V become functionals of the positions of the f levels
which are obtained by our LDA� DMFT calculations and
adjusted during iterations towards self-consistency.

Our calculation reproduces the well-known fact that the
f electrons in Am at zero pressure exists in a f6 7F0
configuration. This is illustrated in Fig. 1 by plotting the
density of states (DOS) and energy bands reflecting the
atomic multiplet transitions which demonstrate our novel
matrix expansion algorithm. Our calculated density of
states shown on the right consists of several distinct fea-
tures related to �f6 ! f5�=�f6 ! f7� electron removal/
addition processes. One can see that the occupied part of
the spectrum is well compared with the available photo-
4-2
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emission experiments [17], thus advancing previous bulk-
surface interpretation [18] as well as density functional
based calculations [19]. The idea of our new method is to
model three major satellites related to 7F0 !

6H5=2, 7F0 !
8S7=2, and 7F0 !

6P7=2 transitions with the two-pole self-
energy and resolve them as many-body energy bands. (We
deduce the character of these transitions by comparing
with corresponding atomic Green’s function calculations.)
This is illustrated in the left part of Fig. 1 where the method
is seen to capture the spectral weight related to electron
removal and addition processes by a set of eigenstates
located near �3 eV binding energy and by two sets of
eigenstates located at �1 and �3 eV. Because of hybrid-
ization, the poles in spectral function get smeared out and
we get broad Hubbard bands, which, in particular, results
in slight mixing in their characters—a genuine band struc-
ture effect in the many-body spectrum. A simplified fcc
structure with equilibrium atomic volume of Am I was
used to generate the data in Fig. 1.

The computational speed gained by this algorithm al-
lows us to study complicated crystal structures of Am. In
particular, the existence of soft and hard phases in its
equation of state can be predicted via our self-consistent
total-energy calculations. This is illustrated in Fig. 2 where
P�V� behavior reconstructed from the total-energy data of
phases I through IV is plotted and compared with the recent
experiment. For Am I we predict the equilibrium volume
equal to 27:4 �A3=atom, which is only 7% less than the
experiment together with the bulk modulus equal to
450 kBar close to the experimentally deduced values lying
within 400– 450 kBar. The pressure ranges of all other
structures are correctly reproduced. Compressibility of
the highly pressurized Am IV structure is found to behave
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FIG. 2 (color online). Calculated equation of state for various
crystal structures of Am metal. Experimental data [1] are shown
by solid circles.

03640
similarly to an experimentally observed hard phase, which
indicates that f electrons start participating in bonding.
Some discrepancy between the calculated and the mea-
sured compressibility of Am III can be observed in Fig. 2.
This is likely to be due to simplified Hubbard I impurity
solver or due to the uncertainties in the estimates of the U.

To gain further theoretical insight we now discuss the
behavior of the electronic structure under pressure. To see
how the increase of hybridization among f electrons af-
fects the physical properties of Am, we carry out subse-
quent refined calculations, by replacing the Hubbard I
approximation by a more precise one-crossing approxima-
tion [12,20]. Because of numerical complexity of the ap-
proach, we calculate only spectral functions using the fcc
structure of Am and omit self-consistent determination of
the energy. We, however, include all multiplet transitions
within this method without exploring an approximation
(1).

Figure 3 shows the density of states for Am at three
different volumes, V � V0, V � 0:76 V0, and V �
0:63 V0, which cover the lattice spacing of the entire phase
diagram discussed above. Upon compression, the remark-
able effect is observed as a peak near the Fermi level gets
pushed down while a resonance (small shoulder) starts
forming at Ef and becomes more pronounced with increas-
ing pressure. The f6 ground state of the atom starts admix-
ing an f7 configuration with a very large total momentum
of J � 7=2. Because of hybridization with the spd bands,
this large spin gets screened, thus lowering the energy of
the system. This is the famous Kondo mechanism, and the
energy gain increases as the hybridization increases by
applying pressure.

The admixture of the f7 configuration is counterintui-
tive. Naively, one expects that the application of pressure
results in lowering the Fermi level in the spd band (which
contains only 3 electrons), which then moves towards the f
level. This reduces the occupancy of the f, admixing an f5
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FIG. 3 (color online). Pressure dependence of Am density of
states calculated using the one-crossing approximation method.
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configuration, an effect that is known to induce mixed
valence in Sm compounds [21]. Our first principles calcu-
lations reveal that while the position of the bare f level in
Am indeed moves upwards relative to the Fermi level,
application of pressure also reduces the energy of the f7

by the gain in hybridization, and this is sufficient to com-
pensate the increase in the distance between the bare f and
the Fermi levels. This confirms the attribution of the rise in
resistivity to mixed valence.

It is interesting to compare our predictions with density
functional calculations. The nonmagnetic GGA calculation
falls catastrophically in reproducing the equilibrium vol-
ume of the soft phase by about 50%. When spin polariza-
tion is allowed, the GGA eventually recovers most of this
error but converges to the wrong magnetic state with its
total (spin plus orbital) moment of about 6 Bohr magneton
[19]. This prediction is at odds with the experimentally
established f6 ground state 7F0. Similar findings have been
reported when applying a disordered local moment method
[22]. This error is the result of neglecting a correlation
effect. The Kohn-Sham spectrum of Am describes an f
level with a small spin-orbit splitting between f5=2 and f7=2

(of the order of 1 eV), which leads to two energy bands
located just near Ef and which are unstable against mag-
netism. The Coulomb interaction increases this splitting by
the value of U (of the order of 4 eV) and leads to the
atomiclike 7F0 many-body state.

We finally estimate the superconducting critical tem-
perature by computing from first principles [23] the
electron-phonon coupling of the electrons in the presence
of correlations. For this purpose we have extended a newly
developed dynamical mean field based linear response
method, which has previously proven to provide accurate
phonon spectra in correlated systems [24]. We estimate the
coupling constant, which comes out to be sufficiently high
(�0:5) to predict superconductivity of the order of 1 K. The
occurrence of the first maximum in experimental Tc vs
pressure dependence can then be understood as the result
of the variation of the spd density of states which first
increases as a result of a band structure effect but then
eventually decreases as the hybridization with the f elec-
tron grows with the increase of mixed valence. As we be-
lieve the location of the Mott transition is near the Am III to
Am IV boundary, the raise of Tc in Am IV can then be
attributed to the departure from the Mott transition point
which is then decreased as the kinetic energy gets larger.

To summarize, here we provided a first many-body
description of electronic properties of Am metal, but the
necessity of its further extensions to evaluate the electron-
phonon and the Coulomb interactions among quasipar-
ticles in a full fledged mixed valence state together with
the Kondo resonance is apparent and will be carried out in
the future work.
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