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An intricate interplay between superconductivity, pseudogap, and Mott transition, either bandwidth driven

or doping driven, occurs in materials. Layered organic conductors and cuprates offer two prime examples.

We provide a unified perspective of this interplay in the two-dimensional Hubbard model within cellular

dynamical mean-field theory on a 2� 2 plaquette and using the continuous-time quantum Monte Carlo

method as impurity solver. Both at half filling and at finite doping, the metallic normal state close to the Mott

insulator is unstable to d-wave superconductivity. Superconductivity can destroy the first-order transition

that separates the pseudogap phase from the overdoped metal, yet that normal state transition leaves its

marks on the dynamic properties of the superconducting phase. For example, as a function of doping one

finds a rapid change in the particle-hole asymmetry of the superconducting density of states. In the doped

Mott insulator, the dynamical mean-field superconducting transition temperature Td
c does not scale with the

order parameter when there is a normal-state pseudogap. Td
c corresponds to the local pair formation

temperature observed in tunneling experiments and is distinct from the pseudogap temperature.

DOI: 10.1103/PhysRevLett.108.216401 PACS numbers: 71.27.+a, 71.10.Fd, 71.10.Hf, 71.30.+h

The proximity between a Mott insulator and a supercon-
ductor is one of the most intriguing puzzles in condensed
matter physics [1]. Indeed, in a Mott insulator, strong
Coulomb repulsion between electrons is at the origin of
the phenomenon, while superconductivity is usually as-
sociated with effective attraction. In half-filled band lay-
ered organic superconductors, pressure induces a first-
order transition between a d-wave superconductor and a
Mott insulator. This is a bandwidth-induced transition. The
maximum superconducting transition temperature Tc is
at the first-order phase boundary [2]. On the contrary, in
high-temperature superconductors, while superconductiv-
ity emerges upon doping a Mott insulator, Tc has a dome
shape and disappears before the doping driven Mott
transition [3]. In addition, the normal state near the Mott
insulator exhibits a pseudogap [4].

Weak coupling approaches to the simplest model that
includes screened Coulomb interaction and band structure
effects, the Hubbard model, show that d-wave
superconductivity can arise as a secondary effect from
exchange of antiferromagnetic fluctuations [5–10]. At
strong coupling, renormalized mean-field theory [11–13],
slave particle [14,15], and variational approaches [16,17]
also suggest the presence of d-wave superconductivity.
However, to study both the Mott transition and d-wave
superconductivity, one must resort to cluster versions of
dynamical mean-field theory [18–21]. Up to now, results
have been obtained mostly at zero temperature [22–31].
There are also a few results on the transition temperature
[32–35] but there is no systematic study of the interplay of

superconductivity and pseudogap with both bandwidth-
driven and doping-driven Mott transitions at finite tem-
perature. This is the problem that we solve in this Letter by
studying the two-dimensional Hubbard model with cellular
dynamical mean-field theory on a plaquette [20,21] using
the state of the art continuous-time quantum Monte Carlo
method as impurity solver [36–39]. Notice that quite gen-
erally [40] there is no continuous symmetry breaking in
two dimensions at finite temperature. This is true for
d-wave superconductivity as well [41]. However, it is still
physically meaningful to study the superconducting phase
at the dynamical mean-field level since the corresponding
transition temperature Td

c indicates where the supercon-
ducting fluctuations begin to develop. Three-dimensional
effects eventually allow true long-range order at lower
temperature. Competition with other long-range ordered
phases [42], which are influenced by many factors includ-
ing frustration, will be considered in future work.
After we present the model and method, we discuss in

turn the bandwidth-driven and the doping-driven cases be-
fore we provide a unified view and discussion of the results.
Model and method.—We consider the two-dimensional

Hubbard model on a square lattice,

H¼�X
ij�

tijc
y
i�cj�þU

X
i

ðni" �1=2Þðni# �1=2Þ��
X
i�

ni�;

(1)

where cþi� and ci� create and annihilate an electron of spin
� on site i, ni� ¼ cþi�ci�, t is the nearest neighbor hopping
amplitude, � is the chemical potential, and U is the
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screened Coulomb repulsion. We solve this model using
cellular dynamical mean-field theory (CDMFT) [20,21].
This approach takes a cluster of lattice sites, here a 2� 2
plaquette, out of the lattice, and embeds it in a self-
consistent bath of noninteracting electrons. The action of
the plaquette coupled to the bath reads

S ¼ Sc þ
Z �

0
d�

Z �

0
d�0c yð�Þ�̂ð�; �0Þc ð�0Þ; (2)

where Sc is the action of the cluster and �̂ the hybridization
matrix. From now on, the symbol ^ indicates a matrix in

cluster indices. The hybridization �̂ is determined by the
self-consistency condition

�̂ði!nÞ ¼ i!n þ�� t̂c � �̂cði!nÞ � Ĝði!nÞ�1; (3)

which states that the infinite lattice and plaquette have
the same self-energy and the same Green’s function on

the plaquette. Here �̂c is the cluster self-energy, t̂c the

cluster hopping, and Ĝði!nÞ ¼ P
~k

1

i!nþ��t̂ð~kÞ��̂cði!nÞ
,

where ~k is the superlattice momentum. We solve the im-
purity (plaquetteþ bath) problem of Eq. (2) using the
continuous-time quantum Monte Carlo method [36,39],
which sums all diagrams obtained by the expansion of

the action of Eq. (2) with respect to the hybridization �̂.
For the superconducting state in the cluster momentum
basis, the cluster Nambu Green’s function reads

GKð�Þ ¼
GK"ð�Þ FKð�Þ
Fþ
K ð�Þ �G�K#ð��Þ

 !
; (4)

where F is the anomalous Green’s function. For d-wave
superconductivity, Fð�;0Þ ¼ �Fð0;�Þ is the only nonzero

component. To determine the parameter space where the
superconducting phase is allowed by the CDMFT equa-
tions, we monitor the superconducting order parameter
� ¼ hFð�;0Þð� ¼ 0þÞi.

Superconductivity and interaction-driven Mott
transition.—First, consider the normal state of the half-
filled two-dimensional Hubbard model. Previous work
revealed a first-order transition at moderate interaction
between a correlated metal and a Mott insulator [43–45].
As shown in Fig. 1(a), in the (U, T) plane there is a
hysteresis region (in red or light gray) where two mean-
field solutions can be obtained. This region is bounded by
the spinodals Uc1ðTÞ and Uc2ðTÞ (red lines with triangles)
where the double occupation shows sudden jumps. The
first-order metal-insulator transition lies within this region
and starts at the critical Mott end point ðUMIT; TMITÞ �
ð5:95t; 1=12tÞ.

Next we allow for d-wave symmetry breaking in the
CDMFT equations and perform scans as a function of U
for different temperatures. As input seed of the CDMFT
iterative procedure we use the normal state converged
solution, and we add a small perturbation in the anomalous
component of the hybridization matrix. We obtain a

converged superconducting solution, characterized by a
nonzero �, close to the Mott transition. No superconduct-
ing solution is found if we use the metastable insulating
solution as seed. Figure 1(b) shows the order parameter �
for the low temperature T=t ¼ 1=100. Within our numeri-
cal precision, as a function of U, the order parameter
exhibits two jumps: one at UðT=t ¼ 1=100Þ � 5:45 where
there is a transition from the metal to the superconductor,
and one at Uc2ðT=t ¼ 1=100Þ � 5:65 where the transition
is between the superconductor and the insulator.
By performing the above procedure for different

temperatures, we obtain the superconducting region in the
(U, T) plane [blue or dark gray region in Fig. 1(a)], defined
as the region where � � 0. With decreasing temperature,
the superconducting phase emerges from the normal state
metal close to the Mott transition, i.e., for U <Uc2, and
rapidly disappears below Uc1. The largest superconducting
transition temperature Td

c ðUÞ occurs, along with the largest
order parameter, around the first-order boundary with the
insulator, as in the organics [2].
Physically, the CDMFT superconducting transition tem-

perature Td
c is the temperature below which Cooper pairs

FIG. 1 (color online). (a) Temperature T versus interaction
strength U phase diagram of the half-filled two-dimensional
Hubbard model obtained by CDMFT. Three phases can be dis-
tinguished: correlated metal, Mott insulator, and super-
conductor. In the normal state, there is a first-order transition
at finite temperature between a correlated metal and a Mott
insulator, bounded by the spinodals Uc2ðTÞ and Uc1ðTÞ, defined
as the loci where the double occupation shows a jump. The
superconducting phase (blue or dark gray region) is defined by
the loci where j�j � 0 (filled blue circles) and is delimited by
the superconducting transition temperature Td

c . Extrapolations to
T ¼ 0 are a guide to the eye. On the right vertical axis we convert
to physical units by using t ¼ 0:35 eV. Inset: zoom on the super-
conducting phase. (b)d-wave superconducting order parameter�
as a function ofU at half filling and for T=t ¼ 1=100. (c) Density
of states �ð!Þ forU ¼ 5:6t and T=t ¼ 1=100 for the normal-state
Mott insulator, the normal-state metal, and the superconductor
(dotted, dashed, and solid lines, respectively).
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form within the cluster. Previous work [33] suggests that
Td
c converges to a finite value with cluster sizes up to 26

sites. Long-wavelength thermal and quantum fluctuations
in the magnitude [46] and phase of the order parameter
[47–50] will lead to an actual superconducting transition
temperature Tc smaller than Td

c . Long-wavelength antifer-
romagnetic fluctuations on the other hand can increase Td

c ,
as seen in weak-coupling calculations [5–9]. Competing
long-range order would reduce or eliminate Td

c [42].
Nevertheless, Td

c informs us on the regime of temperature
where strong coupling and short-range nonlocal correla-
tions lead to pairing. These effects lead to a strong d-wave
pairing gap in the density of states of Fig. 1(c).

Superconductivity and doping-driven Mott transition.—
We turn to the doped Mott insulator. Previously, we ex-
plored the normal-state phase diagram [51,52] and dem-
onstrated that the first-order transition at half filling
naturally extends at finite doping, and that it can take place
between two metallic states: a correlated metal at large
doping and a pseudogap [53]. Figure 2(a) shows the (�, T)

plane at U ¼ 6:2t > UMIT. The spinodals �c1ðTÞ and
�c2ðTÞ, determined by the jumps in the doping � (see
inset), envelop the transition and terminate at the critical
point (�p, Tp), which is the extension of the Mott critical

point away from half filling. The value of (�p, Tp) moves

to larger dopings and smaller temperatures as U increases.
At U ¼ 6:2t, Tp is sufficiently large to be accessible by

simulations. Associated with the critical point (�p, Tp)

there is a Widom line [54], and the pseudogap temperature
T�ð�Þ occurs along this line [53].
Next we study the superconducting phase as a function

of doping. The superconducting order parameter is shown
in Fig. 2(b) for different low temperatures. In the Mott
insulator at zero doping,� ¼ 0 and thus there is no super-
conductivity. Upon hole doping, � increases, reaches a
maximum for a doping near the normal-state first-order
transition between the pseudogap and correlated metal,
and, with further doping, decreases.
By monitoring �ð�Þ for different temperatures, we can

construct the superconducting region in the (�, T) plane
[blue or dark gray region in Fig. 2(a)]. The transition
temperature Td

c is higher than the critical temperature Tp,

and superconductivity eliminates the first-order transition
of the underlying normal state. Indeed, the �ð�Þ curve in
the inset of Fig. 2(a) is continuous. Td

c is zero at � ¼ 0, but
it is finite for � ! 0þ and does not show large variation
when there is a pseudogap in the underlying normal state.
In particular, Td

c ð�Þ does not appreciably increase as we
approach half filling while the pseudogap temperature T�
does, showing that the two phenomena are distinct, as also
found in high-field transport measurements [55,56]. With
further doping, when the superconductivity evolves from a
correlated metal, Td

c decreases and vanishes at large dop-
ing. Therefore, our results imply that Mott physics causes
� to drop at small doping, but does not produce a fall in Td

c .
Td
c corresponds to Cooper pair formation within the

plaquette. We associate Td
c to the temperature at which a

superconducting gap appears in tunneling experiments
[57,58] without long-range phase coherence. Experi-
mentally, in the doping range where there is a normal-state
pseudogap, that temperature scale is smaller than T� and
larger than the actual Tc. The small value of � suggests
that the actual Tc of the system will vanish at small doping
due to competing order [42], or to disorder [59,60], or to
long wavelength (classical and quantum) fluctuations of
the magnitude [46], or of the phase [47–50] of the order
parameter.
Even though superconductivity eliminates the first-order

transition in the underlying normal state, signatures of that
transition remain in the dynamics of the superconducting
state. This is shown by the evolution of the density of states
with doping in Fig. 3 where the solid line is for the super-
conducting state and the dashed line for the normal state.
At low doping, superconductivity originates from the pseu-
dogap and the superconducting density of states inherits its

FIG. 2 (color online). (a) Temperature T versus doping �
phase diagram at U ¼ 6:2t > UMIT, obtained by CDMFT. Four
phases can be recognized: in the normal state, there is a first-
order transition at finite temperature between a pseudogap and a
correlated metal, bounded by the spinodals �c1ðTÞ and �c2ðTÞ
(up and down triangles, respectively). A crossover takes place
above the critical end point (�p, Tp) and defines the pseudogap

temperature T� [53], determined by max d�ð! ¼ 0Þ=dT. The
third phase is the Mott insulator at � ¼ 0 (green solid line). The
fourth phase, the superconducting one, is delimited by Td

c ð�Þ,
i.e., the temperature below which j�j � 0. Extrapolations to
T ¼ 0 are a guide to the eye. Inset: chemical potential � versus
doping � ¼ 1� n at T ¼ 1=100 for the normal state (triangles)
and the superconducting state (circles). The jump in the dopings
identify the spinodal points between the two normal-state metals,
i.e., the pseudogap (PG) and the correlated metal (CM). The
transition is removed by the superconducting state: �ð�Þ does
not show any sign of hysteresis. (b) d-wave superconducting
order parameter � as a function of doping for temperatures
T ¼ 1=64> Tp and 1=100< Tp. On the right vertical axis we

convert to physical units by using t ¼ 0:35 eV.
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large particle-hole asymmetry [34], as found in experi-
ments [61]; On the other side of the transition, at large
doping, superconductivity emerges from the normal-state
correlated metal, and the superconducting density of states
at low frequency close to the normal-state transition is
particle-hole symmetric. Our contribution is to link the
features of the superconducting density of states to the
underlying normal-state first-order transition.

Superconductivity from Mott physics.—The above
analysis shows that superconductivity arises by approach-
ing the Mott insulator as a function of both the interaction
strength and the doping. The two routes to create super-
conductivity are related, as sketched by the (U,�, T) phase
diagram in Fig. 4. The critical end point (�p, Tp), hidden

by the superconducting phase in the (�, T) plane of that
figure, is connected to the familiar Mott end point (UMIT,
TMIT) at half filling (see dotted line in Fig. 4). The latter
appears above the superconducting phase. Recent work at
half filling [35] did not find a direct transition between the
superconductor and the Mott insulator.

Previous CDMFT works [25,27–29,31,34,62] at zero
temperature reported a doping dependence of the order
parameter � similar to the one found here, but the doping
dependence of Td

c could only be surmised. Our contribu-
tion is to show that Td

c does not scale with �ð�Þ when a
pseudogap is the underlying normal state. Td

c remains finite
as the Mott insulator is approached, implying that Mott
physics does not suppress Td

c even though it suppresses the
order parameter. In the region where there is a normal-state
pseudogap, Td

c represents a local pair-formation [57,58]
temperature scale that is distinct from both T� and the

actual superconducting long-range phase coherence Tc.
In addition, we find that a classical, not quantum, critical
point at finite temperature between a pseudogap and a
correlated metal [51–53] continues to control the distinct
pseudogap physics above Td

c , even though the supercon-
ducting phase replaces the normal-state first-order transi-
tion at low temperature. This finding has to be contrasted
with the quantum critical point reported in previous work
[63]. Because those calculations were limited to high
temperatures, they did not detect the normal-state first-
order transition.
The phase diagram as a function of interaction strength,

doping, and temperature that we found shows that a tran-
sition directly to the superconducting state from a Mott
insulator is possible at the dynamical mean-field level,
whether the transition is bandwidth or doping driven.
Since Td

c is finite at infinitesimal doping, the transition
appears as first order in both cases. Hence, the experimen-
tally observed drop of Tc at low doping must come from
mechanisms not included here, such as long wavelength
fluctuations [46–50], competing order [42], or disorder
[59,60]. Long-wavelength fluctuations should be important
near the Mott transition because the order parameter de-
creases rapidly with decreasing doping, contrary to Td

c , yet
Td
c retains a role as a local pair formation temperature

FIG. 3 (color online). Low frequency part of the local density
of states �ð!Þ atU ¼ 6:2t, T=t ¼ 1=100 for the normal state and
the superconducting state (red dashed and blue solid lines). For
� � 0:01, 0.03, 0.04 [panels (a), (b), (c), respectively] the super-
conducting state emerges from the underlying normal-state
pseudogap metal. It inherits a strong particle-hole asymmetry.
For � � 0:06 the superconducting state emerges from a corre-
lated normal-state metal, and the density of states, near the
transition, approximately recovers particle-hole symmetry at
low frequency.

FIG. 4 (color online). Schematic temperature—chemical-
potential—interaction strength phase diagram based on
CDMFT solution of the two-dimensional Hubbard model. Cuts
at particle-hole symmetry (� ¼ 0) and at constant U >UMIT are
shown. Since we set t0 ¼ 0, the phase diagram is symmetric with
respect to the � ¼ 0 plane. The first-order transition between a
metal and a Mott insulator in the � ¼ 0 plane is connected with
the first-order transition between the pseudogap and a correlated
metal in the U >UMIT plane [51,52]. Tp begins at TMIT. The

superconducting temperature Td
c , delimiting the region where �

is nonzero, is also shown. In the phase diagram, the super-
conducting phase emerges from the normal state metal close
to the Mott insulator.
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[57,58] and is distinct from the pseudogap temperature T�.
For sufficiently large U the superconducting state destroys
the underlying first-order transition between the pseudogap
and the correlated metal, but signatures of this transition
remain in the dynamical properties of the superconductor.
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