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For doped two-dimensional Mott insulators in their normal state, the challenge is to understand the evolution
from a conventional metal at high doping to a strongly correlated metal near the Mott insulator at zero doping.
To this end, we solve the cellular dynamical mean-field equations for the two-dimensional Hubbard model
using a plaquette as the reference quantum impurity model and continuous-time quantum Monte Carlo method as
impurity solver. The normal-state phase diagram as a function of interaction strength U , temperature T , and filling
n shows that, upon increasing n toward the Mott insulator, there is a surface of first-order transition between two
metals at nonzero doping. That surface ends at a finite temperature critical line originating at the half-filled Mott
critical point. Associated with this transition, there is a maximum in scattering rate as well as thermodynamic
signatures. These findings suggest a new scenario for the normal-state phase diagram of the high temperature
superconductors. The criticality surmised in these systems can originate not from a T = 0 quantum critical point,
nor from the proximity of a long-range ordered phase, but from a low temperature transition between two types
of metals at finite doping. The influence of Mott physics therefore extends well beyond half-filling.
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I. INTRODUCTION

The discovery of quantum oscillations in layered high-
temperature superconductors1–6 has brought renewed atten-
tion to the normal phase below the superconducting dome.
The challenge posed is to understand how these systems
evolve as a function of carrier concentration in the absence of
the superconducting phase.7 At large doping, the copper-oxide
layers are metallic. However, at zero doping these systems
are Mott insulators,8,9 i.e. systems that are insulating due to the
strong screened Coulomb interactions between the electrons.
Thus, as a function of the carrier concentration, a Mott
metal-insulator transition (MIT) occurs, i.e. a transition driven
by the on-site Coulomb repulsion between the electrons.10,11

We are challenged to understand the Mott transition driven by
carrier concentration in the normal phase.12

At the theoretical level, to address this physics we need
to study the competition between the kinetic band effects,
that delocalize the electrons in the lattice, and the effects
due to screened interactions that localize them. These two
ingredients are present in the Hubbard model, which contains
a kinetic energy term that describes the band structure, plus
an interaction term that represents the screened local Coulomb
repulsion between electrons occupying the same site of the
lattice. More than 50 years of intense research shows that this
simple model has a surprisingly rich set of solutions that may
help capture the complex behavior observed in nature with
minimal assumptions.

Even the simple-looking Hubbard model poses a
formidable challenge to theory. Dynamical mean-field theory
(DMFT) has played a central role in advancing our knowledge
of the physics contained in the Hubbard model and has proven
to be a useful method to investigate the Mott metal insulator

transition. In essence, dynamical-mean-field theory embeds a
single site13,14 or a cluster15–17 in an infinite self-consistent
bath of non-interacting electrons. The latter problem is then
amenable to accurate numerical solutions. This approach can
also be justified from a variational perspective.18 DMFT with a
single site immersed in a bath is exact in infinite dimension13,14

and provides a quite accurate mean field description of
materials16 and of the Mott transition19 in three dimensions.
The picture is that the Mott insulator can be driven toward
a correlated metallic state through a first-order transition by
tuning correlation strength, or temperature, or doping.13,20–26

Here the fundamental unifying concept is the first-order
transition. That transition dominates the entire normal phase
diagram of the model, and is relevant at finite temperature
even if the actual Mott transition is hidden by the onset of
some long-range order.

Something similar occurs in the Fermi liquid description
of the normal state of weakly correlated materials. There,
the zero-temperature Fermi liquid fixed point can be masked
by a long-range ordered state that is the true ground state.
Nevertheless, as long as one is not too close to the transition
to long-range order, the normal state is well described by
the finite temperature Fermi liquid that emerges from the
zero-temperature Fermi liquid fixed point. While the Fermi
liquid provides a mean-field description of a phase where the
self-energy is analytical (Im� ∝ ω2), DMFT also allows a
phase, such as the Mott insulator, where the self-energy is not
an analytical function of frequency.27

For strongly-interacting layered materials, such as the
previously-mentioned cuprate high temperature superconduc-
tors, or for the layered organic conductors, the description
provided by the single-site DMFT solution of strongly corre-
lated electron models is valid only at very large doping or at
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temperatures that are in fact much too large to be interesting.
This is because single-site DMFT neglects spatial fluctuations,
and for these systems the short-range correlations play an im-
portant role due to their low dimensionality. For example, the
observed pressure-driven first-order Mott transition in organic
superconductors of the BEDT family28–31 has the wrong slope
in the pressure-temperature plane when compared with the
single-site DMFT solution. This is corrected32,33 by cluster
extensions of DMFT15–17,34–36 that incorporate short-range
magnetic correlations in the theoretical description. Similarly,
quantum Monte Carlo calculations on the square lattice at
half-filling show that a Mott gap opens up at finite temper-
ature independently of antiferromagnetism starting around37

U ≈ 6t , with U the interaction strength and t nearest-neighbor
hopping. It is only with extensions of DMFT on a plaquette
that this result is recovered.38–40 We stress that as larger and
larger cluster sizes are considered,41 the description of the
normal state will become more and more accurate at lower
temperature, but it will also fail when long-range order sets in.
Hence, we argue that calculations, such as ours, that are based
on a plaquette and reproduce the U ≈ 6t result mentioned
above are an accurate mean-field description of the normal
sate. Hence, this is the type of approach that we adopt in the
present paper.

Cluster extensions of DMFT are however computationally
more expensive than their single-site counterpart. Neverthe-
less, useful physical insights on the phase diagram of the
Hubbard model have been obtained within that framework
and have helped elucidate some important properties of
the copper oxide superconductors. Among the main results,
we mention pseudogap formation at low doping,42–45 the
presence of antiferromagnetism and superconductivity,35,46–53

and the momentum dependence of the electronic properties
along the Fermi surface.43,54–58 We caution that cluster
extensions of DMFT come in two varieties: The Dynamical
Cluster Approximation34 (DCA) and cellular DMFT.35,36 For
simplicity we did not distinguish between both approaches
in the previous discussions. They generally give qualitatively
similar results. Here we shall employ cellular DMFT.

Returning to the normal state, the overall picture for the
Mott transition in cluster extensions of DMFT have been
lacking because cluster methods, as already mentioned, are
computationally expensive. However, a few years ago there
was a breakthrough. The continuous-time quantum Monte
Carlo technique in the hybridization expansion59–62 now
provides us with the possibility to explore the fullphase
diagram of the model within the cluster DMFT method. This is
because this algorithm considerably reduces the computational
time, allowing both unprecedented accuracy and studies over
a wider range of parameters. Recent investigations using
this method and other continuous-time quantum, Monte
Carlo techniques,63 have determined the interaction driven
Mott MIT, revealing sharp modifications to the single-site
picture.38,39,41 The transition driven by carrier concentration,
more relevant for the high-temperature superconductors, is
also currently under intense investigation.39,41,53,58,64–69 Moti-
vated by the physics of the cuprates, most studies focus on the
large interaction regime where the Mott gap is well developed
and they consider the effects of different band structure
parameters to capture the striking particle-hole asymmetry

observed in those compounds. This direction of research
produced several important results, however a unified scenario
for the Mott transition realized in cluster extensions of DMFT
for the Hubbard model was still missing.

In our recent work70 and in the present study, we take a
different approach to address this problem. Instead of focusing
on a region of the parameter space where the interaction
strength is large, we map out the whole normal-state phase
diagram of the two-dimensional Hubbard model as a function
of interaction, temperature and doping. To capture the general
features of the localization delocalization Mott physics, we
simply consider nearest-neighbor hopping.

Our strategy is motivated by one of the key lessons of
the single-site DMFT solution of the Hubbard model: A
first-order transition governs the entire phase diagram of the
model. We ask whether the Mott transition still dominates
the phase diagram and how it is modified by the short-
range correlations taken into account through cellular DMFT.
As previously mentioned, in the Hubbard model the Mott
transition can be tuned by temperature, by the interaction
strength (interaction driven MIT, relevant for the layered
organics) and by the carrier concentration (doping driven MIT,
relevant for the cuprates). Fundamentally, one is exploring
the same strong coupling physics from different perspectives.
At half-filling, the cluster DMFT solutions of the model do
display a first-order transition, as a function of the interaction
strength, between a correlated metallic state and a Mott
insulator.38–40

What is the fate of this first-order transition as a function of
the carrier concentration? As reported in our recent work70

and in great detail here, the full mapping of the normal-
state phase diagram reveals that upon increasing the carrier
concentration toward the Mott insulator, there is indeed a
surface of first-order transition. This is distinct from the surface
of first-order transition found at fixed U as a function of
second-neighbor hopping in earlier work.68,71 Thus, as in the
single-site case, in cellular DMFT the finite temperature Mott
transition provides the key to understand the whole phase
diagram. In addition, contrary both to single-site DMFT and
to conventional wisdom, the first-order transition, emerging at
the half-filled Mott critical endpoint, progressively moves to
large doping as the interaction strength increases. Hence the
transition can occur between two metallic states, one of which
evolves continuously from the Mott insulator, a surprising
effect brought about by the short-range correlations.

The first-order transition and the associated critical line
that we find are not only new, they also provide a unified
picture for a host of previously known results. For example,
the first-order transition was not detected at large values
of the interaction by previous works most likely because
the critical line moves rapidly to lower temperature with
increasing interaction strength, falling below the temperatures
accessible to date. Hence, previously reported features of
the phase diagram of the Hubbard model,45,58,64–69 whether
it is thermodynamic properties, scattering rate, momentum
differentiation or other, appear in a different light. As we
shall see, our analysis allows one to identify these features
as precursors of the first-order transition, hence calling for
their reevaluation. It is in this decisive sense that our work
goes beyond, and is compatible with, previous studies.
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Compared to our recent letter,70 the present work extends
and provides further results on the thermodynamics, on the
spin susceptibility, on results for other values of the parameters
and many additional details and a refined interpretation. In
Sec. II we briefly discuss the model and method. The peculiar
normal-state phase diagram of the two-dimensional Hubbard
model is the topic of Sec. III. In Sec. IV we discuss the
first-order transition that controls the physics of the phase
diagram. Section V contains the thermodynamic properties of
the phases separated by the transition. The characterization of
these phases continues in Sec. VI where a signature of critical
behavior through a large scattering rate is found near the transi-
tion. We identify the physical origin of this critical behavior in
the Sec. VII. In Sec. VIII we reexamine the phase diagram and
propose a possible new scenario for the surmised criticality in
high-temperature superconductors. It can originate not from a
quantum critical point, nor from the proximity of a long-range
ordered phase, but from a finite-temperature transition at finite
doping coming from the influence of Mott physics well beyond
half-filling.

II. MODEL AND METHOD

The Hamiltonian for the two-dimensional Hubbard model
on a square lattice reads

H = −
∑
ijσ

tij c
†
iσ cjσ + U

∑
i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)

−μ
∑
iσ

niσ . (1)

Here ciσ and c+
iσ operators annihilate and create electrons on

site i with spin σ , and niσ = c+
iσ ciσ is the number operator.

In this article we focus on the physics arising from the
proximity to a Mott insulating state, so we use a simple
hopping amplitude tij between nearest neighbors only, so that
the bare dispersion, obtained from the Fourier transform of
tij , is given by ε(k) = −2t[cos(kx) + cos(ky)]. U is the energy
cost of double occupation at each site of the lattice, μ is the
chemical potential which, for a given value of U , controls
the occupation n = 1/N

∑
iσ 〈niσ 〉 where N is the number of

sites.
We solve this model using cellular dynamical mean-field

theory.15,16,36 This approach maps the lattice problem Eq.
(1) onto a quantum impurity problem consisting of a cluster
of sites, here a 2 × 2 plaquette, embedded in a bath that is
determined self-consistently in such a way that infinite lattice
and plaquette have the same self-energy. The action of the
quantum impurity problem (plaquette coupled to the bath) is
given by16

S = Sc +
∫ β

0
dτ

∫ β

0
dτ ′ ∑

RR′
ψ

†
R(τ )	̂RR′(τ,τ ′)ψR′(τ ′), (2)

where Sc is the action of the cluster, R labels the cluster
sites, and 	̂ is the 4 × 4 bath hybridization matrix. The

self-consistency condition that fixes the bath hybridization
matrix 	̂ is

	̂(iωn) = iωn + μ − t̂c − �̂c(iωn)

−
[ ∑

k̃

1

iωn + μ − t̂(k̃) − �̂c(iωn)

]−1

, (3)

where �̂c is the cluster self-energy matrix, t̂c is the plaquette
hopping matrix, t̂(k̃) is the lattice matrix of hopping in the
supercell notation and k̃ runs over the reduced Brillouin zone
of the superlattice.

There are a variety of techniques to solve the quantum
impurity problem Eq. (2).15–17 Here we use the recently devel-
oped continuous-time quantum Monte Carlo method.59–61 This
approach relies on the Monte Carlo summation of all diagrams
generated by the expansion of the cluster-bath (impurity)
action Eq. (2) with respect to the hybridization 	̂. Ref. 61
contains the details of the present implementation.

The CTQMC method is a powerful and perfectly adapted
technique to map out the phase diagram of the Hubbard model,
because it permits to readily access all regions of doping, from
large doping down to the Mott insulating state, the intermediate
to low temperature regime that have so far proven inaccessible
with usual Hirsch-Fye quantum Monte Carlo72 for instance,
and a large range of U with high efficiency.73 In addition, this
method is statistically exact and does not have errors associated
with time discretization or bath parametrization, and therefore
we can determine the phase diagram of the Hubbard model
with unparalleled accuracy.

To obtain high quality data, required to determine the phases
of the system, we typically perform 5 × 106 Monte Carlo
sweeps per processor, averaged over 40 processors. When
necessary, for example close to phase boundaries, we may
do up to 107 sweeps per processor averaged on 64 processors.
Cellular DMFT is an iterative approach, and in generic regions
of parameter space we have studied the cluster observables
converge in less then 20−30 iterations, but hundreds may be
necessary close to phase boundaries.

In the actual CTQMC implementation, it is useful to write
cluster quantities, such as the hybridization 	̂ that appears in
Eq. (2), the cluster self-energy, or the cluster Green function,
in a diagonal form. Because cellular DMFT applies open
boundary conditions on the cluster, the cluster momentum K

is not in general a good quantum number. However, in a 2 × 2
plaquette, one still has C4v symmetry and the one-dimensional
irreducible representations of the subgroup C2v , equivalently
noted by K , can be used. Then the cluster quantities take
a diagonal form with indices (0,0), corresponding to the
representation A1, (π,π ) corresponding to the representation
A2 and (π,0), (0,π ) corresponding to the representations B1

or B2. For example, the bath hybridization function in cluster
momentum basis reads:

	̂ =

⎛
⎜⎜⎜⎝

	(0,0) 0 0 0

0 	(π,0) 0 0

0 0 	(0,π) 0

0 0 0 	(π,π)

⎞
⎟⎟⎟⎠ . (4)

The diagonal elements are the eigenvalues of the matrix
containing the on site, nearest neighbor, and next-nearest
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FIG. 1. (Color online) Non-interacting local density of states
ρK (ω) = −1/π ImGK (ω) of the orbitals K = (0,0),(π,0),(π,π )
(solid, dashed and dot-dashed lines respectively).

neighbor cluster quantities in real space. Physically they can
be thought as an average of the lattice quantity over a coarse
grained approximation of the Brillouin zone. In analogy with
multiband models, we refer to these cluster momenta K as
“orbitals”. When exploiting this interpretation, one should
keep in mind, however, that in the cellular DMFT scheme
the cluster momenta K are coupled through both the on-site
interaction U and the hopping matrix t , which in cluster
momentum basis takes the form:

t̂(k̃) =

⎛
⎜⎜⎜⎝

t11 t12 t13 0

t∗12 t22 0 t13

t∗13 0 t33 t12

0 t∗13 t∗12 t44

⎞
⎟⎟⎟⎠ , (5)

where t11 = −t[2 + cos(2kx) + cos(2ky)], t22 = t[cos(2kx) −
cos(2ky)], t33 = −t[cos(2kx) − cos(2ky)], t44 = t[2 +
cos(2kx) + cos(2ky)], t12 = it sin(2kx), t13 = it sin(2ky), and
kx,ky ∈ [−π/2,π/2]. For reference, the non-interacting local
density of states on the orbitals obtained from

Ĝ(ω) =
∫

dk̃[ω + μ − t̂(k̃)]−1 (6)

is shown in Fig. 1.
CTQMC is an imaginary time technique, thus for the

interacting case the local density of states is not directly
accessible and has to be computed by analytical continuation
schemes that rely on additional approximations. Nevertheless,
the characterization of the phase diagram of the normal phase
of the Hubbard model, which is the topic of this study,
can unequivocally be determined from observables directly
measured in the CTQMC method, like the particle density
n, the cluster Green’s function and self-energy in Matsubara
frequency. Here we restrict our study to that kind of quantities.
From a methodological viewpoint, this is a necessary step
before using other methods to extract additional information.

III. PHASE DIAGRAM

In this section we describe the normal-state phase diagram
of the two-dimensional Hubbard model determined in detail
by cellular DMFT calculations.70

The parameter space is three dimensional and consists of all
possible values of the interaction strength U , the temperature
T and the chemical potential μ (or, equivalently, the doping δ

defined as δ = 1 − n). To identify the different phases and
locate their boundaries or crossover lines, one must scan
the phase diagram with an adapted fine grid. Despite the
algorithmic breakthroughs described in the previous section,
that have become available only in the last few years, it took
several million of CPU hours to be able to determine the whole
normal-state phase diagram of the two-dimensional Hubbard
model.

Specifically, we carried out scans at constant values of
U across the Mott transition, varying the chemical potential
for several temperatures. Because the system is particle-hole
symmetric (t ′ is set to zero), we limited our study to hole doping
only (μ < 0, δ < 1). For each value of U , we performed
calculations in a wide doping range, between 0 and roughly
25%. We found that scanning doping in intervals sometimes
smaller as 0.002 was necessary to identify the sequence of
phases that occur upon doping the Mott insulator. As far
as temperature is concerned, we mostly focused on the low
temperature regime in the decade 1/100 < T/t < 1/10.

We summarize our results in the temperature T versus
interaction strength U and chemical potential μ phase diagram

FIG. 2. (Color online) Chemical potential μ, interaction U ,
temperature T phase diagram of the two-dimensional Hubbard model
obtained by cellular DMFT. Because of particle-hole symmetry it
is symmetric with respect to the μ = 0 plane. Cross-sections at
constant U are shown. Dark-gray (blue) shaded regions represent
the coexistence of two phases. Light-gray (yellow) areas denote
the onset of the Mott insulator state (MI), characterized by a
plateau in the occupation at n = 1. When these two regions overlap,
a metal-insulator transition takes place (different shade of gray).
Otherwise, the coexistence regions occur between two different
metals. Projections on T = 0, and μ = 0 planes are also shown (full
lines and dashed lines respectively). Open dots mark the extrapolated
T = 0 values of Uc1 and Uc2. A critical line Tcr (dotted line) originates
at the half-filled Mott critical endpoint UMIT (full dot) and moves to
progressively low temperatures and high doping as U increases.
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FIG. 3. (Color online) Phase diagram in the temperature T versus chemical potential μ plane for different values of the interaction strength
U . Each panel corresponds to a cross-section at constant U of the previous figure. As before, light gray (yellow) area represents the Mott
insulating phase (MI). Dark grey (blue) area represents the coexistence of two phases and is bounded by the spinodal lines μc1(T ) and μc2(T ).
A star symbol marks the end of the coexistence region at finite temperature; by following this point as a function of U gives rise to the dotted
line Tcr of Fig. 2. Other symbols denote some of the points actually computed in our study. Three phases can be distinguished: Overdoped phase
(open circles), Mott insulator (crosses), underdoped phase (filled squares). The former is metallic. In the latter some regions of the Brillouin
zone are gapped and others gapless, and the system is compressible.

shown in Fig. 2. The scans at constant U that we use to explore
the three dimensional parameter space are visible as cross
sections in the phase diagram and correspond to the distinct
T − μ planes presented in Fig. 3.

The figures show two colored (shaded) regions in cross
sections at constant U in (U,T ,μ) space. The first region (light
gray/yellow) corresponds to the onset of the Mott insulating
phase, characterized by a plateau in the occupation at n = 1.
Just outside this region there is a metallic state. The second
region (dark gray/blue) is the portion of parameter space
where two different phases coexist. By interpolation between
the distinct planes at constant U , one can therefore obtain
the volume of both the Mott phase and the phase coexistence
region.

It is important to understand that what we mean by
coexistence region is a region where, in addition to the
thermodynamically stable phase, a metastable phase can exist.
Because we do not have access to the free energy, we cannot
determine precisely the first-order boundary, so instead we
draw the region where metastable states exist. In practice, if
we change chemical potential slowly from small to large values
or vice-versa, we can end up in different phases, one of which
is thermodynamically unstable.

Going back to our phase diagram, let us first concentrate on
the Mott phase. Two basic features emerge. First, as expected
on physical grounds, a threshold value for the correlation
strength, called Uc1, is a prerequisite for the emergence of
Mott insulating state. We estimate this point at (U,T ,μ) ≈
(5.3t,0,0). Second, the projections on T = 0 plane (marked
as light gray/yellow line on the 3D phase diagram) reveal the
characteristic V shape onset of the Mott insulating state, where

the tip of the V shape is Uc1 (only half of the V shape is shown
in Fig. 2 because of particle-hole symmetry).

Our most surprising results come, however, from the full
mapping of the region (dark gray/blue) where two phases
coexist in the (U,μ,T ) space. We begin with a description
of the peculiar shape of this region. Let us first consider the
μ = 0 plane, where the model is half filled. In that plane,
the coexistence region has a triangular shape that bends as
U is increased. The boundaries are the spinodal lines Uc1(T )
(thick dashed blue line), where the metastable insulating phase
disappears, and Uc2(T ) (thin dashed blue line), where the
metastable metallic phase ceases to exists. These spinodals
end at a critical value of U , called UMIT, with coordinates
(U,T ,μ) ≈ (5.95,0.08,0). In the μ = 0 plane, the region of
coexistence marks a portion of parameter space where the
Mott insulator coexists with a metal.

Surprisingly, this is in general not so in the 3D phase
diagram where the coexistence region is not fully included
in the region where the Mott phase exists. To show this, let
us consider scans at constant U . The region where two phases
coexist naturally extends from the μ = 0 plane to finite values
of the chemical potential μ and is enclosed by the spinodal
surfaces μc1(U,T ) and μc2(U,T ) that end at a critical line
Tcr (dotted blue line in Fig. 2). That line is the continuation
of the critical point (U,T ,μ) ≈ (5.95,0.08,0) from half filling
to finite doping. The dark grey (blue) shaded areas in the
phase diagrams correspond to the intersection between the
volume delimited by these surfaces and the cross sections at
constant U .

Let us look in more detail at the coexistence regions. In
Fig. 3 we show constant U cuts of Fig. 2. For values of
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FIG. 4. (Color online) Occupation n versus μ for several values of interaction strength U . The data shown are for temperatures T/t = 1/10
(blue triangles), 1/25 (green squares), 1/50 (red circles), 1/100 (black diamonds). When two solutions are found to coexist, the solutions
obtained following the metallic and the insulating solution are indicated as full and open symbols respectively. μc1 marks the vanishing of
the underdoped phase. μc2 signals the disappearance of the overdoped phase. The arrows indicate the values of μc1 and μc2 at the lowest
temperature shown in the panel. The plateau in the occupation at n = 1 signals the onset of the incompressible Mott state. Note that μc1 in
general occurs at finite values of doping. The inset in the panel for U = 6.2t shows the n(μ) curves for temperatures T/t = 1/40 (orange down
triangles), 1/50 (red circles), 1/60 (magenta left triangles), 1/64 (violet right triangles), which are above the second-order critical temperature
Tcr ∼ 1/65t at which the two phases merge. Note the sigmoidal shape of the n(μ) curves as Tcr is approached from above.

the interaction strength U larger than UMIT, the region of
coexisting phases displays again a triangular shape bending
toward the Mott insulator (i.e., toward low doping). As we
discuss in the next section, two metallic phases coexist in
that region. The coexistence begins at the temperature Tcr,
marked by a star symbol in Fig. 3, and is delimited by
the spinodals μc1(T ) and μc2(T ). This is apparent from the
scans at U/t = 6.0,6.2. For larger U , the coexistence region
narrows and drops to temperatures lower than our current
numerical capabilities. On the other hand, as the interaction
strength U decreases toward UMIT, the triangular region grows
and approaches the μ = 0 plane and its summit at the top
reaches that plane at UMIT. As U is further decreased in
the range Uc2(T = 0) < U < UMIT, the coexistence regions
show a rainbow-like shape (cf scan at U = 5.8t) with the
μc1(T ) line on the outer part of the arc and the μc2(T ) line
on the inner part of the arc. Further lowering U in the region
Uc1(T = 0) < U < Uc2(T = 0), only the spinodal μc1 exists
until Uc1(T = 0) where it vanishes.

Our results can be summarized as follows. First, within
the volume in (U − μ − T ) parameter space enclosed by the
spinodal surfaces μc1(T ,U ) and μc2(T ,U ), one can obtain
two solutions of the cellular DMFT equations. Therefore a
first-order transition surface has to occur in the blue region. The
precise location of the first-order surface can be computed by

comparing the free energy of the two solutions, a task beyond
the present work.

Second, the two solutions merge at a finite temperature Tcr

where the spinodal surfaces μc1(T ,U ) and μc2(T ,U ) end. This
implies that a second-order transition line (dotted blue line in
Fig. 2) exists at the end of the surface of first-order transition.
Except for the critical Mott endpoint UMIT, the second-order
critical line takes place outside the Mott insulating phase, so
it occurs for finite values of doping.

Third, our most striking finding is the nature of the
phases that are found to coexist. The first-order transition
surface originates at the half-filled Mott critical endpoint and
moves progressively away from half-filling as the interaction
U increases. Therefore the first-order transition can occur
between a metallic phase and a Mott insulating phase, or,
unexpectedly, between two metallic phases, one of which
evolves continuously from the Mott insulator. The former case
(metal to insulator transition) occurs whenever the volume of
the Mott insulating phase intercepts the volume of the phase
coexistence in the (U,μ,T ) parameter space. As discussed
previously, this occurs at the μ = 0 plane (i.e., at half filling),
where the metallic and the insulating solutions of the cellular
DMFT equations coexist. In the T − μ planes too, the Mott
insulator can coexist with a metal, as indicated in Figs. 2
and 3 by different shade of gray (corresponding to the light
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gray/dark gray – yellow/blue overlap) for U/t = 5.6,5.8. Even
though in some region of the phase diagram the first-order
transition occurs between a metal and a Mott insulator, this is
generally not the case. For sufficiently large U (U > UMIT),
there is a first-order transition between two metals, as can
be seen in Fig. 2 where for U > UMIT there is no intercept
between the coexistence region (dark gray/blue) and Mott
region (light gray/yellow). In all cases shown in the phase
diagram, however, the μc2(U,T ) spinodal surface denotes the
vanishing of a metallic solution, while the μc1(U,T ) spinodal
surface does not necessarily coincide with the end of Mott
insulating phase.

In the following, we refer to the metallic phases separated by
the first-order transition as underdoped (UD) and overdoped
(OD) phase. Here these terms indicate whether the level of
doping of the phase is below or above the level of doping
at which the first-order transition occurs. The underdoped
phase is closest to the Mott insulator. The connection of these
names to the maximum of the superconducting dome will be
discussed in Sec. VIII.

IV. FIRST-ORDER TRANSITION AT FINITE DOPING

The most important results in the normal-state phase
diagram surveyed so far is the first-order transition surface
in the 3D parameter space (U,T ,μ) with the different phases it
separates. The focus of this section is a systematic analysis of
this first-order transition. We begin with the numerical results
that demonstrate the existence of such a transition, and then
turn to the thermodynamic behavior of several observables
near its boundary.

Figure 4 demonstrates the existence of a finite T first-order
transition. We plot the occupation n as a function of the
chemical potential μ for a wide range of temperature and
eight values of U . It is important to stress that each curve
n(μ) is obtained by keeping all model parameters fixed
except μ. A plateau in the curves at n(μ) = 1 appears above the
critical coupling Uc1(T ) and signals the incompressible Mott
insulating phase. The marked temperature dependence of the
n(μ) curves in the UD phase, as opposed to the OD phase,
demonstrates that the effects of strong correlations manifest
themselves at low energy in the UD phase.

For U/t = 5.6,5.8,6.0,6.2 and low temperatures, the oc-
cupation clearly shows hysteretic behavior as a function
of μ, an unequivocal fingerprint of the first-order nature of
the transition. To find the hysteresis loop, we use an iterative
procedure on a fine grid of μ points, where a converged
solution is used as seed for the next value of μ. We obtain the
lower branch of the hysteresis cycle by increasing μ starting
from large enough doping. This branch corresponds to the
metallic branch of the overdoped phase and is indicated by
full symbols in Fig. 4. For U/t = 5.6, which lies in the region
Uc1(T = 0) < U < Uc2(T = 0), this branch continues up to
half filling, at μ = 0. In contrast, for U larger than Uc2(T = 0),
the metallic branch of the OD phase shows an upward jump at
finite doping. The OD metallic branch endpoint defines μc2. To
compute the upper branch of the hysteresis loop, we decrease
μ starting from the Mott insulating solution at half filling. This
branch is indicated by open symbols in Fig. 4. As μ varies in
the Mott plateau, this branch remains constant at n = 1, then

it evolves continuously into a compressible metal (i.e., the
underdoped phase), and subsequently undergoes a downward
jump at finite doping. The endpoint of the upper branch defines
μc1.

The hysteresis region delimits a region of space parameters
(U − T − μ) where two solutions of the cellular DMFT
equations coexist. The crossing of the free energy of the two
solutions in this volume bounded by μc1(T ,U ) and μc2(T ,U )
defines the first-order transition surface. Determining this
surface and finding out which is the most stable phase in the
coexistence region necessitates to compute the free energy.
This task requires a large investment in computing time and is
beyond the scope of the present work.

The continuous evolution from the Mott plateau to the
compressible UD phase seems to occur toward a discontinuous
change in the compressibility (first derivative of n(μ)) at
T = 0 which would correspond to a second order transition, or
quantum critical point. This is apparent especially at large U .
At finite temperature, only higher order derivatives are perhaps
discontinuous.

The μc2(T ,U ) surface always coincide with the vanishing
of the metallic state (namely, the OD phase), as revealed by the
jump of the lower branch at finite doping. In sharp contrast, the
μc1(T ,U ) surface does not in general mark the vanishing of
the Mott insulating state: As shown in Fig. 4, the sudden jump
at μc1 occurs at finite doping. These two observations lead to
the conclusion that the first-order transition can actually occur
between two types of metallic phases. Because these phases
have the same symmetry, the first-order surface can end at a
critical line at finite temperature Tcr (dotted blue line in the 3D
phase diagram of Fig. 2). As Tcr is approached from below,
the hysteresis loop narrows and vanishes at Tcr. By contrast,
as Tcr is approached from above, the curves show a sigmoidal
profile, a clear signature of proximity to a second-order critical
point. The inset of Fig. 4 (e) reveals this remarkable feature.

Hysteresis in the occupation curves n(μ), found for U/t =
5.6,5.8,6.0,6.2, and low temperatures, provides a direct
demonstration of the first-order nature of the transition. The
curves at U/t = 7.0,9.0,12.0 do not show hysteresis down to
T/t = 1/100, but several signatures indicate that the system
is getting close to the transition and hence suggest that
the hysteresis loop falls below the lowest temperature we
investigate. To reach this conclusion, first we notice that a
close inspection of the n(μ) curves at U/t = 6.0,6.2, which
lie above the critical interaction UMIT ≈ 5.95t , shows that
the temperature Tcr dramatically decreases as U increases.
Indeed, the critical line begins at the Mott point at T/t ∼ 0.08
and decreases to T/t ∼ 0.015 in going from UMIT ≈ 5.95t

to U = 6.2t . Second, by examining the high-temperature
precursors of the transition, we can infer about the existence of
the first-order transition at large values of U . A thermodynamic
indicator that signals the proximity to the second-order
transition line is a peak in the compressibility (dn/dμ)|T
as a function of doping that develops at temperatures well
above Tcr and reaches its maximum at Tcr (see also discussion
of Fig. 16). We found this precursor of Tcr for all values
of U > UMIT at progressively larger doping as U increases.
Another signature that can be identified as a precursor of
the transition is the approximate vanishing of the expansion
coefficient (dn/dT )|μ = 0 (crossing point of the isotherms
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in Fig. 4). This signal occurs close to the spinodal line μc2(T )
and extends to temperature well above Tcr. This feature occurs
for all values of U > Uc2 and at progressively larger doping
as U increases.

Our results show these high temperature precursory signa-
tures of the transition (other indicators will be discussed is
Sec. VIII) for all values of the correlation strength U > UMIT

and hence point toward a critical temperature decreasing with
U and occurring at progressively larger doping as U increases.
We estimate that the critical doping at which Tcr occurs
moves from zero doping at the Mott point UMIT ≈ 5.95t , to
n ≈ 9.95 at U = 6.2t , and to ≈ 0.88 at U = 12.0t . Some of
the thermodynamic effects close to Tcr will be analyzed in
more detail in the next section. Here we note that the physics
arising from the second-order critical line strongly modifies
not only the thermodynamic response, but also the dynamics:
As we shall see in Sec. VI, there is a funnel-shaped region
above the critical line where scattering is anomalously large.

Such precursory signals strongly indicate the occurrence of
the first-order transition surface ending at a finite temperature
second-order transition line for U > UMIT and thus also for
U > 6.2t for temperature lower than the range we explored.
In addition, these precursory signals take place not only for
all values of U > UMIT, but also without apparent qualitative
change. This suggests to disfavor other interpretations where
a qualitative change in these high temperature signatures is
expected, like the possibility that the critical line ending
our first-order transition becomes a quantum critical line or
point,74,75 or a tricritical point at some U .

Additional support for the approach of a finite T second-
order transition line follows from the critical slowing down
observed in our CTQMC calculations close to that line. Critical
slowing down is a widespread and standard indicator76 that
the system is near a critical threshold. We find enhancement of
Monte Carlo fluctuations and also enhancement of the number
of the cellular DMFT iterations to attain self-consistency as
the model parameters approach Tcr. To obtain reliable results,
a large number of Monte Carlo samplings and of the order of
hundreds of iterations are used in our numerical simulations.
This effect is well documented in single-site DMFT studies
of the Mott transition.24,77 In cellular DMFT investigations,
it is reported in Ref. 53 at U = 12.0t around n ∼ 0.88; here
we detect this phenomenon down to UMIT at progressively
smaller doping, hence linking the critical slowing down to
Mott physics.

V. THERMODYNAMICS OF THE TRANSITION

Having established the first-order character of the transition,
we now focus on the thermodynamic properties of the phases
that this transition separates. We discuss four basic features.

First we prove that these phases are thermodynamically
stable. We start from the fundamental thermodynamic relation

dE(S,n,U ) = T dS + μdn + DdU, (7)

where it is understood that energy E, entropy S, number of
particle n, and double occupancy D are normalized per lattice
site. The model parameters are T ,μ,U , so it is natural to use

the grand canonical potential 
. The appropriate Legendre
transform leads to

d
 = d(E − T S − μn) = −SdT − ndμ + DdU. (8)

From the expression for d
 in Eq. (8) and dU = 0 from now
on, we have(

∂


∂T

)
μ

= −S ;

(
∂


∂μ

)
T

= −n. (9)

The concavity of the entropy implies that the grand canonical
potential is minimum at equilibrium. Thus:

d2
 =
(

∂2


∂T 2

)
μ

(dT )2 + 2

(
∂2


∂T ∂μ

)
dT dμ

+
(

∂2


∂μ2

)
T

(dμ)2

= (
dT dμ

)⎡⎣
(

∂2

∂T 2

)
μ

(
∂2


∂T ∂μ

)
(

∂2

∂T ∂μ

) (
∂2

∂μ2

)
T

⎤
⎦( dT dμ ) < 0.

(10)

If we consider a constant T plane the last relation is obeyed if(
∂2


∂μ2

)
T

= −
(

∂n

∂μ

)
T

< 0, (11)

i.e., if the compressibility is positive. In the general case, we
need to add the requirement that the eigenvalues of the above
matrix be negative, i.e, that the determinant be positive:(

∂2


∂T 2

)
μ

(
∂2


∂μ2

)
T

−
(

∂2


∂T ∂μ

)2

> 0. (12)

Notice that the specific heat

−T

(
∂2


∂T 2

)
μ

= T

(
∂S

∂T

)
μ

(13)

must be positive as a consequence of the above two inequali-
ties. Given (

∂2


∂T ∂μ

)
= −

(
∂n

∂T

)
μ

(14)

and the expression for dE, Eq. (7), we can extract the specific
heat from our data since it has the equivalent expression:

T

(
∂S

∂T

)
μ

=
(

∂E

∂T

)
μ

− μ

(
∂n

∂T

)
μ

. (15)

Clearly Fig. 4 shows that dn/dμ > 0. For example, we
display these quantities for a few points in Table I to
demonstrate that the stability condition is satisfied. The data
are for U = 6.2t > UMIT and T/t = 1/70 which lies below
Tcr ≈ 1/65. The determinant Eq. (12) and dn/dμ are positive
for all values displayed.

Second, the surprising result that emerges from our cal-
culations is the possibility of a first-order transition between
two paramagnetic metallic phases. The filling n is one direct
way to discriminate the two phases that coexist below the
second-order transition line: The OD phase at lower filling
and the UD phase at higher filling.
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TABLE I. Particle density n, compressibility dn/dμ|T , expansion
coefficient dn/dT |μ, derivative of total energy dE/dT |μ and the
determinant Eq. (12). The first (last) two lines correspond to values of
n in the UD (OD) phase. Other data parameters are: U = 6.2t > UMIT,
and the derivatives are taken at T/t = 1/70 which lies below Tcr. The
determinant is positive, implying the thermodynamic stability of both
the UD and OD phases.

n
(

∂n

∂μ

)
T

(
∂n

∂T

)
μ

(
∂E

∂T

)
μ

det

0.982 0.201 −0.632 −1.237 4.420
0.971 0.272 −0.943 −1.899 6.944
0.941 1.146 0.116 0.585 3.170
0.921 0.128 0.055 0.648 4.725

Third, the Clausius-Clapeyron relations reveal that the UD
phase has smaller entropy and smaller double occupancy than
the OD phase. The proof works as follows. Along the first order
transition boundary, the grand potential 
 is identical in the
two phases. This means that if we move along the first-order
transition line on either side, the change in 
 is the same in
both phases: d
UD = d
OD. If we consider a constant U plane
(dU = 0) and indicate by subscript c quantities measured
along the first order transition line, it immediately follows
that

dTc

dμc

= nUD − nOD

SOD − SUD
. (16)

Our calculation shows that Tc increases as μc increases (i.e., the
first-order line bends toward the Mott insulator). This implies
that the UD phase has a lower entropy than the OD phase. In
an analogous way, by taking a constant T plane, one obtains

dUc

dμc

= nUD − nOD

DUD − DOD
. (17)

Our calculations show that μc decreases as Uc increases.
Hence, the UD phase has lower double occupancy than the
OD phase. This is as expected and suggests again that in the
UD phase the correlations are stronger.

Finally, it is important to stress that the entropy exhibits
a maximum as a function of doping or chemical potential in
close proximity to the spinodal surface μc2(U,T ) and its high
temperature crossover. This can be seen as follows. Above
the critical coupling Uc2(T ), and for the temperature range
explored in our work, the isotherms in the n − μ plane in Fig. 4
approximately cross at a finite value of doping. That doping
where the isotherms cross increases with U . The crossing of
the isotherms translates into a vanishing expansion coefficient
(dn/dT )μ = 0 and thus into an extremum in the entropy
(dS/dμ)T = 0 because from the grand potential Eq. (8) we
have the Maxwell relation

(∂S/∂μ)T ,U = (∂n/∂T )μ,U . (18)

As long as the compressibility (∂μ/∂n)T ,U is not singular, this
also implies (∂S/∂n)T ,U = 0 because from S = S(T ,μ,U ) we
can write

dS = (∂S/∂T )μ,UdT + (∂S/∂μ)T ,Udμ + (∂S/∂U )T ,μdU

(19)

that in turn leads to

(∂S/∂n)T ,U = (∂S/∂μ)T ,U (∂μ/∂n)T ,U . (20)

The extremum of entropy as a function of filling is reported also
in Refs. 44, 68, and 78. The physical origin of a peak of entropy
as a function of doping will be discussed in Sec. VII. Here
we can anticipate that this feature results from reorganization
of the basic electronic excitations of the systems across the
OD-UD transition.

VI. PHASES CHARACTERIZATION: CLUSTER
QUANTITIES

Our results show that the normal-state phase diagram of
the two-dimensional Hubbard model is controlled by a first-
order transition between a metal and either a Mott insulator
or another metal that evolves continuously from the Mott
insulating state. The phases separated by this transition have
the same symmetry but different thermodynamic properties,
like density, compressibility, entropy, and double occupancy.

In this Section we further characterize the nature of the
sequence of phases that arises upon doping. We discuss
the cluster Green’s function and the cluster self-energy that
contain direct information about the effects of electronic
correlations. Our main finding is that critical behavior, as seen
in a large scattering rate, originates from the spinodal surface
μc1(U,T ) that delimits the under-doped phase. As the carrier
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FIG. 5. (Color online) Real and imaginary parts of the cluster
Green’s function GK (iωn) at U = 7.0t and low temperature T/t =
1/100 for several dopings. Left panels show the results for the
orbital K = (0,0), central panels for K = (π,0), and right panels for
K = (π,π ). The finite (zero) value of the imaginary part of the cluster
Green’s function at ωn → 0 indicates the metallic (insulating) char-
acter of the solution. Accordingly, three regimes can be distinguished:
Metal (circles), insulator (crosses), and a strong cluster momentum
differentiation, with orbital K = (π,π ) gapped and K = (0,0), (π,0)
gapless. The first and the last behavior characterize respectively the
overdoped and the under-doped phases. The dopings on the figure cor-
respond to μ = −2.0,−1.5,−1.3,−1.2,−1.15,−1.05,−0.2, and 0.0.
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concentration moves away from that transition, toward both
low or high doping, coherent electronic behavior is recovered.

A. Green’s function

We begin with a specific example. Figure 5 shows the real
and imaginary parts of the cluster Green’s function for several
dopings at U = 7t , above UMIT, and at low temperature T/t =
1/100. As discussed in Sec. II, in the 2 × 2 plaquette scheme
the cluster Green’s function in cluster momentum basis is a
diagonal matrix with diagonal entries G(0,0), G(0,π), G(π,0), and
G(π,π). These elements can be thought to represent a coarse
grained average of the lattice Green’s function over part of the
Brillouin zone. The curves display a systematic evolution as
the Mott insulating state is approached.

Let us analyze the low frequency behavior of the real
and imaginary parts of the cluster Green’s function. The
extrapolated value of ImGK (ω → 0) is an estimate of the local
density of states at the Fermi level, a quantity accessible in
photoemission experiments. For all dopings shown, the (π,0)
component carries most of the spectral weight at the Fermi
level. At large values of doping, the imaginary part is finite
in all orbitals (orbitals refer to K values), showing that the
system is metallic (see curves with circles). This behavior
distinguishes the overdoped phase. On the contrary, at zero
doping, the imaginary part goes to zero for all orbitals, so
it indicates insulating Mott behavior for all cluster momenta
(see curves with crosses). In between these two regions, the
imaginary part remains finite in the orbital (π,0) and (0,0),
whereas it shows a clear tendency to go to zero in orbital
(π,π ) (see curves with square symbols). This implies that the
former two orbitals are metallic and the latter is insulating, in
striking contrast with the OD and noninteracting cases. This
phenomenon of strong momentum space differentiation64–66,69

characterizes the UD phase and has a transparent physical
interpretation: Doping the Mott insulator occurs gradually in
certain cluster momenta, leading to emergence of metallic
behavior in some regions of the Brillouin zone but not in others.
Physically, this feature is the coarse-grained manifestation
of the continuous appearance of the Fermi surface out of
the Mott insulating state. In the 2 × 2 plaquette scheme, the
cluster momentum differentiation in the UD phase found in
the low frequency behavior of ImGK (ωn) is compatible with
arc or pocket formation on the Fermi surface. Distinguishing
between these scenarios falls outside the scope of the present
study. One has to rely on periodization schemes to obtain the
lattice Green’s function.43,56–58 Another possibility, recently
explored in the context of DCA calculations, is to consider
progressively larger clusters.41,64,69 Other band structure ef-
fects not included here can also be important.43

Let’s now study the real part of the Green’s function,
displayed in the top panels of Fig. 5. Amongst other things,
this quantity encodes information about the particle-hole
symmetry of the orbital at low frequency as follows from the
spectral representation of the Green’s function,

G(iωn) = −
∫

dω

π

ImG(ω)

iωn − ω
. (21)

In all the doping range, ReG(0,0)(ω → 0) is positive, implying
that the largest spectral weight at low frequency lies below

the Fermi level. The opposite sign is found for the orbital
(π,π ), meaning that it has most of the low frequency spectral
weight above the Fermi energy. In sharp contrast, the plot
of ReG(π,0)(iωn) reveals a change of sign at a characteristic
doping. This means particle-hole symmetry of the (π,0) orbital
at that doping, which is remarkably close to the doping where
the above mentioned strong momentum space differentiation
in ImG(π,0)(iωn) sets in. We shall see in Sec. VIII that this
property is closely associated with the large scattering rate
found near the critical transition line.

So far we have given a qualitative overview of our data
for a single value of U and a single low temperature that is
nevertheless higher than first-order transition line Tcr. This set
of results points to the following picture. Metallic behavior in
all orbitals characterizes overdoped phase. Strong modulation
of spectral weight at the Fermi level, where (π,0) and (0,0)
orbitals are metallic and (π,π ) is gapped or damped, signals
the onset of the underdoped phase. In between these two
phases, the (π,0) orbital becomes strikingly symmetric at low
frequency.

To understand if these are genuine properties of the phase
diagram, we compile the zero-frequency extrapolation of the
imaginary and real parts of the cluster Green’s function for a
large range of dopings and temperatures. We first discuss the
behavior of ImGK (ω → 0) as a function of doping, shown in
Figs. 6(a)–6(h) for different values of U . To emphasize the
cluster momentum differentiation, each figure has two panels
containing data for the orbital K = (π,0) (curves with circles
in the upper panel) and (π,π ) (curves with triangles in the
lower panel). The (0,0) orbital behaves similarly to the (π,0)
one and is not shown. The (π,0) orbital contains most of
the spectral weight at the Fermi level and shows the largest
temperature variation. Below the second-order critical line,
two solutions of the cellular DMFT equations coexist for each
orbital K . In the overdoped phase ImGK (ω → 0) goes to a
finite value for all orbitals K , revealing the metallic nature
of this phase. By contrast, in the underdoped phase the (π,0)
and (0,0) components of ImGK (ω → 0) go to a sizable value,
except asymptotically close to zero doping, while the (π,π )
orbital remains basically gapped or with a very small value.
The gray (orange) background in the lower panels highlights
this region for the lowest temperature shown. At the spinodal
surfaces μc1(T ,U ) and μc2(T ,U ) these two solutions exhibit
an abrupt jump in each orbitals: From essentially zero to a
finite value in the case of K = (π,π ), and from a finite value
to a larger value in the case of K = (π,0) and (0,0) (see
U/t = 5.6,5.8 and 6.0). Above the critical end line the two
solutions merge and the transition between the two phases
occurs as a crossover.

Because Tcr decreases with increasing U , an immediate
implication of our results is the following: A study focusing
only on a large interaction strength U will detect the changes in
ImGK (ω → 0), but not the underlying transition between two
metals at finite doping, due to the low energy scales involved
(see U/t = 7.0,9.0,12.0). On the contrary, our exhaustive scan
of the 3D phase diagram allows us to show a direct link between
the momentum differentiation and the finite doping first-order
transition.

We note that in the UD phase, ImG(π,π)(ω → 0) does
not actually seem to extrapolate exactly to zero, but rather
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FIG. 6. (Color online) Extrapolated zero frequency value of the imaginary part of the cluster Green’s function, −ImGK (ω → 0), as a
function of doping δ = 1 − n, for several values of the interaction strength U . For each figure, the upper panel shows cluster momentum
K = (π,0) (circles) and the lower panel displays K = (π,π ) (triangles). Note the difference of scale of the y-axis. The data shown are for
temperatures T/t = 1/10 (blue dotted), 1/25 (green dashed), 1/50 (red solid), and 1/100 (black dot-dashed). When two solutions are found
to coexist, the solutions obtained following the metallic and the insulating solution are indicated as full and open symbols respectively. This
observable measures the density of states at the Fermi energy averaged in a coarse-grained cluster momentum region. Doping of the Mott state
occurs gradually in cluster momentum, with the metallization that starts first in the orbital K = (π,0) and (0,0) whereas K = (π,π ) remains
insulating. This behavior characterizes the underdoped phase and is highlighted by the gray (orange) background for the lowest temperature
displayed. The transition between the underdoped and overdoped phase can be first-order or it can be a crossover depending on U and T . In
the latter case, for concreteness we define the boundary, illustrated in the figure for T/t = 1/50, by -ImG(π,π )(ω → 0) = 0.05.

to a vanishingly small value. Even if the extrapolated value
decreases as T is lowered, and turns from sublinear to
overlinear dependence on doping, we rationalize this feature
by the fact that in cellular DMFT the orbitals K are coupled
through both the Coulomb interaction U and the hopping,
making difficult a sharp decoupling among the orbitals at finite
temperature. The latter behavior is found for example in DCA
calculations,41,64–66,69 where the coupling among the orbitals
occurs through the interaction U only.

Figure 7 shows the extrapolated values of the real part of
the cluster Green’s function, ReGK (ω → 0), a measure of
the particle-hole symmetry of the orbitals at low frequency.
Here the most striking feature is the change of sign in
the (π,0) component that occurs, apart from the obvious
particle-hole symmetric line μ = 0, at δ = 0, at the spinodal
surface μc2(U,T ) that signals the disappearance of the OD
phase. This feature is not restricted to temperatures below
the critical line Tcr but also continues for temperatures
above it.

B. Self-energy

Precious information about the nature of the two phases
separated by the first-order transition follows from the analysis

of the cluster self-energy. In Fig. 8 we present a selection of
self-energies for the same parameter values as in Fig. 5.

An instructive way to look at the data is to consider
the concept of Fermi liquid coherence within the cluster
momentum. In Landau’s Fermi liquid theory the low energy
excitations of an interacting system can be described as long-
lived particles, called quasiparticles. This Fermi liquid regime
applies below a characteristic temperature, the coherence
temperature, and a necessary condition for its existence is that
the imaginary part of the self-energy goes to zero as ω → 0
with the form � ≈ iωnA + B with A negative.

The self-energy of both the (0,0) and (π,π ) orbitals in
Fig. 8 obeys this relation for all the metallic states (circles
and squares) of the doped Mott insulator, revealing Fermi
liquid coherence of the electronic excitations. Note that
the linear low frequency behavior of Im�(0,0) and Im�(π,π)

persists in the Mott insulating state (lines with crosses),
where the particles are localized. There the system is gapped
[see the corresponding low frequency vanishing behavior of
ImG(0,0)(ωn) and ImG(π,π)(ωn) in Fig. 5)].

In contrast, the imaginary part of the (π,0) self-energy
shows a nonmonotonic behavior as a function of doping.
The metallic state at both large and small doping displays
Fermi liquid coherence [Im�(π,0)(ωn → 0) goes linearly to
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FIG. 7. (Color online) ReGK (ω → 0) as a function of doping δ, for several values of the interaction strength U . Circles indicate the
data for the K = (π,0) orbital, triangles for the K = (π,π ). The data shown are for temperatures T/t = 1/10 (blue dotted), 1/25 (green
dashed), 1/50 (red circles), and 1/100 (black dot-dashed). When two solutions are found to coexist, the solutions obtained following the
metallic and the insulating solution are indicated as full and open symbols respectively. The assignment of symbols is the same as in Fig. 6.
This observable measures the low frequency asymmetry of the orbitals. The (π,0) orbital crosses zero at a characteristic doping close to the
underdoped-overdoped transition.

zero], but at intermediate doping, at the crossover between
the underdoped-overdoped phases, the large finite intercept
indicates a sudden drop of electronic coherence (see curves for
δ = 0.05,0.06). Finally, the Mott insulating state is reached
and a clear pole appears in the imaginary part of the (π,0)
self-energy at δ = 0 and μ = 0.

The main results of the above analysis are a buildup of
incoherent metallic behavior close to the first-order transition
and its high temperature crossover. It is of key importance to
investigate if this picture survives in the whole phase diagram.
To this end, we show in Fig. 9 the effective chemical potential,
which corresponds to the chemical potential renormalized by
correlation effects, and is defined by μK

eff = μ − Re�K (ω →
0). In Fig. 10 we plot the scattering rate �K , estimated from the
zero-frequency extrapolation of the imaginary part of the clus-
ter self-energy = −Im�K (ω → 0). Although these quantities
are not strictly equal, we will use them interchangeably. We
use a linear interpolation and we have verified that a quadratic
interpolation gives qualitatively similar results. For clarity we
show results only for the orbitals K = (π,0) (circles) and (π,π )
(triangles).

The most important result, shown in the upper panels of
Fig. 10, is a large scattering rate −Im�(π,0)(ω → 0) for a
finite range of dopings peaked at the first-order transition
between two types of metals. A large scattering rate is in
conflict with Fermi liquid theory and indicates that short-lived
(i.e., incoherent) excitations, and not long-lived quasiparticle,
produce the metallic behavior in that regime. Nevertheless, if

one goes away from the transition, the scattering rate rapidly
drops to small values and thus crosses over to a conventional
Fermi liquid with small intercept. The overall behavior of
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FIG. 8. (Color online) Real and imaginary part of the cluster self-
energy �K (iωn) at U = 7.0t and the low temperature T/t = 1/100
for several dopings. Left panels show the results for the orbital K =
(0,0), central panels for K = (π,0), and right panels for K = (π,π ).
The assignment of symbols is the same as in Fig. 5.
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FIG. 9. (Color online) Effective chemical potential μK
eff = μ − Re�K (ω → 0) renormalized by the electronic correlation versus δ. Data

are shown for the cluster momenta K = (π,0) (circles) and K = (π,π ) (triangles) and are obtained for temperatures T/t = 1/10 (blue dotted
line), 1/25 (green dashed line), 1/50 (red solid line), 1/100 (black dot-dashed line). Note that μ

(π,0)
eff crosses zero at a characteristic doping

close to the OD-UD transition, or more precisely at the spinodal μc2(U,T ) and its high temperature crossover. The hatched grey lines indicate
the region where μ

(π,π )
eff exceeds the noninteracting bandwidth of the (π,π ) orbital.

−Im�(π,0)(ω → 0) unequivocally shows that the source of
scattering comes from the transition between the underdoped
and the overdoped phase. Some recent studies, using different
cluster methods, already reported a peak in the scattering rate
at finite doping, associating it to a pseudogap phenomenon,45

to a competing superexchange and Kondo scale,53,65 or to a
selective metal-insulator transition.65,69 Our contribution is
two-fold: First, we link this feature to the spinodal δc1(T )
and its high temperature precursor; second, by tracking this
feature in the (U − T − δ) phase diagram, we show that it
is connected to the Mott endpoint UMIT, hence unveiling its
unexpected origin in the Mott physics.

Let us study in detail the behavior of the self-energy in
the two phases. The overdoped phase has a rich behavior as
doping is reduced toward the first-order transition surface. At
large doping, far from the transition, the effective chemical
potential of all orbitals merges, as demonstrated in Fig. 9.
This is clear at large U [cf., Figs. 9(g) and 9(h)] and indeed
occurs at smaller values of U for similar dopings (not shown).
Hence, the self-energy is local (momentum independent) and
the single-site DMFT solution captures the physics of the
problem. As the transition is approached, μK

eff for different
K separate. Similar trend has been found in DCA calculations
for different sizes of cluster.69 The corresponding scattering
rate �K in Fig. 10 is quite small, decreases with decreasing T

and monotonically increases as the doping is reduced toward
the first-order transition surface. Eventually, at the spinodal
δc2(U,T ), � shows a sudden jump (Figs. 9 and 10) and

interestingly the effective chemical potential of the orbital
that carries most of the spectral weight at the Fermi level,
μ

(π,0)
eff , changes sign. The overall low frequency behavior of

Im�K within the overdoped phase indicates that the system is
a strongly interacting Fermi liquid and the effects of electronic
correlations dramatically increase as the first-order transition
or its high temperature crossover are approached.

Let’s now turn to the underdoped phase that originates
from the Mott insulator. The analysis of the cluster Green’s
function revealed that the (π,π ) orbital is gapped but the other
orbitals are gapless. Close to the Mott insulator and at low
enough temperature, the scattering rate �(π,0) is small and
decreases as T decreases. As the the boundary with the first-
order transition to the overdoped phase is approached, �(π,0)

increases and eventually reaches its maximum close to the
spinodal surface μc1(U,T ) or near the crossover line above
the critical line. A further confirmation of this picture emerges
from the striking temperature evolution of �(π,0) displayed in
Fig. 10. As the temperature increases, the value of �(π,0) at its
maximum increases as does its width in doping. Interestingly,
the lower is Tcr the higher is the temperature range at which
the value of the (π,0) scattering rate displays a maximum with
doping. Note that the overall maximum as a function of U

peaks around UMIT, relating directly this phenomenon to Mott
physics.

In contrast, the (π,π ) orbital is insulating and therefore
�(π,π) looses its usual meaning of a scattering rate. In search
for a possible explanation, we note that, in the temperature
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FIG. 10. (Color online) Extrapolated zero-frequency value of the imaginary part of the cluster self-energy, −Im�K (ω → 0) as a function
of doping δ and for several values of the interaction U . For each figure, the upper panel shows cluster momentum K = (π,0) (circles) and
the lower panel displays K = (π,π ) (triangles). This quantity is proportional to the scattering rate �K . The data shown are for temperatures
T/t = 1/10 (blue dotted line), 1/25 (green dashed line), 1/50 (red solid line), and 1/100 (black dot-dashed line). −Im�(π,0)(ω → 0) is peaked
close to the spinodal surface μc1(U,T ) of the first-order transition and to its high temperature crossover. That peak reaches its overall maximum
in the 3D phase diagram at the Mott end point UMIT ≈ 5.95 and δ = 0 [see Figs. 10(c) and 10(d)]. As the temperature increases, the value of
-Im�(π,0)(ω → 0) at its maximum increases as it does its width in doping. The peak in −Im �(π,0)(ω → 0) then disappears at a characteristic
temperature which is progressively higher as U increases.

range explored, μ
(π,π)
eff has a large value, that can even exceed

the noninteracting bandwidth for sufficient large U , as marked
by the hatched grey lines in Figs. 9(f)–9(h). It has also been
discussed, in the context of DCA framework and for U = 7t ,
that a pole in the self-energy is responsible for the insulating
behavior.41,64,69 Our cellular DMFT results for U = 12.0t can
be compatible with the existence of that pole, however for
smaller values of U that pole seems not to be present or
is strongly reduced, as was already pointed out in Ref. 53.
Even if this mechanism remains to be better clarified, our
contribution is to track the origin of the large scattering rate
to the spinodal surface μc1(T ,U ) and its high temperature
crossover.

Finally, we stress that the coherence of the (π,0) orbital
in the underdoped phase at low doping, as signaled by the
vanishing of the corresponding scattering rate in Fig. 10, does
not imply that the system as a whole is a Fermi liquid. As
discussed before, the (π,π ) orbital remains gapped in this
phase suggesting a “small” Fermi surface compatible with arc
or pocket formation. In other words, it is more likely that
in the underdoped phase electronic coherence does not result
from quasiparticle propagation but from another mechanism
yet to be identified. In the next section we shall argue that
coherence behavior is associated to hole doped carriers moving
in a background of spin singlets formed by the superexchange
mechanism.

What picture emerges from the analysis of cluster quan-
tities? Breakdown of Fermi liquid behavior, revealed by a
dramatic enhancement of scattering rate �(π,0), is realized over
a large region of the phase diagram close to the first-order
transition between the underdoped and overdoped metals and
reaches its overall maximum at the Mott endpoint UMIT. Thus
our results pin down that incoherent states come from Mott
physics, even for regions way beyond half filling. As we
move away from the transition, the lifetime of the low energy
excitations of the metallic state sharply increases.

Fermi liquid breakdown beyond half filling is unambigu-
ously tied to Mott physics. The last piece of this puzzling
scenario is to identify the physical mechanism driving this
unconventional behavior. This is the focus of the next section.

VII. ROLE OF SHORT-RANGE SPIN CORRELATIONS

To shed light on the physical origin of the incoherent
metallic behavior associated with the first-order transition, we
now turn to the analysis of the short-range spin correlations.
In fact, cellular DMFT takes into account on equal footing
local quantum fluctuations and finite length spatial fluctuations
(within the cluster size, here a 2 × 2 plaquette). The inclusion
of spatial correlations manifests itself mathematically in the
non locality of the self-energy.16,36 In this section we first
compare our cellular DMFT phase diagram with that of
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single-site DMFT, where magnetic correlations in space are
absent. The differences between the two phase diagrams
directly reveals the effects of the short-range correlations. Then
we characterize the phases that occur across the transition
in terms of these fluctuations. As we shall see, in the Mott
insulating state the electrons are localized due to strong
screened Coulomb interaction and their spins lock into singlet
states due to the superexchange mechanism. In the UD phase,
i.e., the metallic state that evolves out of the Mott insulator, the
system is still dominated by singlet states and metallic behavior
is associated with doped charge carriers that propagate in a
background of spins with strong singlet correlations due to
superexchange. Finally, in the OD phase, the basic excitations
of the system are quasiparticles due to conventional Kondo
screening. There are analogies with the suggestion of Ref. 53.

A. Comparison with the single-site DMFT phase diagram

A natural way to understand the effects of the short-range
spin correlations on the Mott transition is to compare our
cellular DMFT phase diagram, (Fig. 2) that accounts for these
magnetic correlations, with that of single-site DMFT, where
those correlations are absent.

Sustained investigations have firmly set the single-site
scenario for the Mott transition in the single band Hubbard
model13,20–24,79–81 and the resulting phase diagram as a func-
tion of chemical potential, interaction strength and temperature
can be found for instance in Ref. 24. Here the key phenomenon
that governs the whole phase diagram is a finite temperature
first-order transition originating at the finite temperature Mott
critical point. This transition occurs between a Mott insulator
and a correlated metallic state, and can take place as a function
of either U , T , or μ.

Similarly to the single-site DMFT case, a first-order
transition dominates the normal-state phase diagram also in
the cellular DMFT case, as we demonstrated in the previous
sections. But the nature of this first-order transition is different
and the fundamental difference comes from short-range spin
correlations considered in cellular DMFT.

Three main effects can be identified. First, they reduce the
value of the Mott endpoint UMIT. This is as expected because
the threshold to open a Mott gap increases as the frustration at
short-distance increases.38,82,83

Second, the short-range magnetic correlations change
the shape of the spinodal lines.38,70 In single-site DMFT
the boundary of the first-order transition bends toward the
correlated metallic state (as a function of either the interaction
strength U or the chemical potential μ), so that the insulating
phase can be reached upon increasing the temperature of the
system. According to the Clausius-Clapeyron equation this
comes from the fact that the correlated metallic state has
lower entropy than the Mott insulating state. This behavior
occurs in several correlated systems, like close to the first-order
transition line in V2O3 (Refs. 19 and 84). Physically, this
is because in taking the large lattice connectivity limit to
justify single-site DMFT, the magnetic exchange coupling
between two neighboring spins drops out, thus resulting in
a paramagnetic Mott insulator with large spin degeneracy of
order N log 2 (where N is the number of lattice site).13 As
discussed in Sec. V, the opposite behavior occurs in cellular

DMFT, where the first-order transition bends toward the Mott
insulating state. This reveals that the UD state (and its parent
Mott insulating phase) has lower entropy than the OD metallic
state as a consequence of short-range singlet formation that
lifts the 2N degeneracy due to the spins of the localized
electrons.38,40 The shape of the phase boundary of cellular
DMFT at half-filling is observed in low-dimensional correlated
systems, such as the organic conductors.28,85

The third and arguably the most surprising effect brought
about by the short-range magnetic correlations is the mere
appearance of the UD phase in the cellular DMFT phase
diagram. In both single-site and cellular DMFT solutions, the
μc2(U,T ) surface marks the vanishing of a correlated metallic
solution. However, the spinodal μc1(U,T ) always marks the
vanishing of the insulating solution within single-site DMFT,
whereas (as we demonstrated in Sec. IV), this is generally
not the case within cellular DMFT. Doping instead proceeds
gradually in certain cluster momenta. We stress that the
apparent gradual doping of the Mott insulator observed over an
extremely narrow range of dopings (0.002, i.e., at least 10 times
smaller than what we find) in single-site DMFT is purely a
finite temperature effect. In our case, short-range magnetic
correlations do have the effect of shifting the spinodal surface
μc1(U,T ) to finite values of doping, implying that the first
order transition can take place between two metallic phases
(the UD and OD phases) instead of between an insulator and
a metal. Thus the UD phase occurs only in the cluster DMFT
case and traces its roots to the short range-singlet formation.

B. Plaquette eigenstates

Having established the basic effects of the short range-
spatial correlations on the structure of the phase diagram, we
now concentrate in the relative importance of various many
body states in the cellular DMFT solution of the Hubbard
model. To address this issue we scrutinize the relative statistical
weight of the eigenstates |m〉 of the plaquette Hamiltonian
Hplaquette. In the context of DMFT calculations, the analysis of
the eigenstates of the quantum impurity problem has proven
to lead to useful insights on the role of short-range spatial
magnetic correlations38,39,53,61,65,66 and also helped to construct
a physical picture of the nature of the doped carriers.53,86

Cellular DMFT maps the lattice onto a 2 × 2 cluster
of sites immersed in a self-consistent bath. The quantum
impurity problem defined by Eq. (2) has a simple physical
interpretation: As a function of imaginary time, the plaquette
undergoes transitions between the 44 possible quantum states
by exchanging electrons with the rest of the lattice represented
by the surrounding bath. The bath hybridization function 	̂(ω)
encodes the dynamics of these processes. It is possible to
compute the statistical weight Pm of the eigenstates |m〉 of
the plaquette (see Ref. 61 for a rigorous definition). It can be
interpreted as the relative time that the plaquette spends in the
cluster eigenstate |m〉 and is the quantity we focus on.

The plaquette eigenstates |m〉 can be labeled by their
number of electrons N , their total spin S and their cluster
momentum K and physically can be thought of as representing
a coarse grained approximation of the many body excitations
of the system.
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FIG. 11. (Color online) Statistical weight P of the following
cluster eigenstates: the singlet S |N = 4; S = 0; K = (0,0)〉, triplet T
|N = 4; S = 1; K = (π,π )〉, and doublet D |N = 3; S = 1/2; K =
(π,0)〉, where N , S, and K are the number of electrons, the total spin,
and the cluster momentum of the cluster eigenstate. The remnant
statistical weight is summed up in the histogram R. Data are obtained
at U = 12.0t and shown at T/1 = 1/10 (left) and 1/50 (right). The
value of doping is (a) δ = 0, representative of the Mott insulating
phase, (b) δ = 0.02, corresponding to the UD phase, and (c) δ = 0.25,
in, the OD phase.

In Fig. 11 we plot the probability of the plaquette eigenstates
for U = 12.0t for values representative of the Mott insulating
state [Fig. 11(a)], the UD phase [Fig. 11(b)], and the OD
phase [Fig. 11(c)]. Results are shown for the high temperature
T/t = 1/10 and the low temperature T/t = 1/50 (left and
right respectively). Focusing on the region of parameters close
to the first-order transition, we find that there are only a
few plaquette eigenstates with large probability. They are the
singlet with four electrons in the cluster momentum K = (0,0)
(black portions of the diagram):

|N = 4,S = 0,K = (0,0)〉, (22)

the triplet with four electrons and K = (π,π ) (red portion of
the diagrams):

|N = 4,S = 1,K = (π,π )〉, (23)

and the doublet with three electrons and K = (π,0) and the
degenerate K = (0,π ) (blue portion of the diagrams),

|N = 3,S = 1/2,K = (π,0)〉. (24)

We sum up the probability of the remnant states (green portion
of the diagrams).

The distribution of the statistical weight in the Mott
insulator and UD phase is similar as does its evolution with
temperature. This is expected because the UD phase evolves
out of the mother Mott insulating phase. Let us now summarize
the three main differences between the two metallic phases.
First, in the UD phase the plaquette electrons are locked into
one prevailing configuration (half-filled singlet), whereas in
the OD phase they fluctuate among several states. Second, the
temperature evolution of the plaquette eigenstates qualitatively
differs in the two phases. Although charge excitations are
weakly T dependent in both phases, the basic effect of
decreasing the temperature strongly suppresses the spin triplet
excitations in favor of the spin singlet ones, especially in the
UD phase. This has to be associated with the T dependence of
the local density of states at Fermi level shown in Fig. 6. Third,
the mechanism behind coherence is also qualitatively different
in the two phases. In the OD phase we associate the onset
of coherence to standard Kondo screening of the conduction
electrons of the bath in which the plaquette is immersed. In
contrast, coherent propagation in the UD phase occurs when
doped holes move in a magnetically well defined environment
characterized by spins bounded into short-range singlet corre-
lations via the antiferromagnetic superexchange mechanism.

Taking the perspective of the quantum impurity model
immersed in a self-consistent bath is the best way to show
this point. In Fig. 12 we show the statistical weight of
the main plaquette states as a function of doping and for
several temperatures. In Fig. 13 we show the extrapolated
zero-frequency value of the imaginary part of the cluster
hybridization function as a function of doping and for different
temperatures. The onset of the Mott insulating state (δ = 0
for U > UMIT) is signaled by a dramatic growth of the half-
filled singlet probability (black circles). In the Mott state the
half-filled singlet dominates and its probability increases with
increasing interaction strength U . The cluster hybridization
function represents the effect of the bath in which the plaquette
is immersed and with which electrons are exchanged. It
is gapped at the Fermi level for all cluster momenta [i.e.,
Im	K (ω → 0) → 0]. Together, the insulating character of the
reservoir and the single dominant plaquette eigenstate indicate
that the electrons of the lattice are localized and bound into
short-range singlets due to superexchange interaction.

In the UD phase, the 2 × 2 plaquette is still mostly occupied
by the half-filled singlet (black squares), revealing that this
phase evolves out of the parent Mott insulator. However,
doping the Mott state populates other plaquette eigenstates
and the system begins to fluctuate between the half-filled
singlet and other configurations. Not surprisingly, the primary
fluctuations introduced by doping are charge excitations, as
shown by the increase of the weight of the doublet at N = 3
(blue circle) with increasing doping. In a smaller measure,
the probability of the spin triplet excitations (red triangles)
also grows with doping. Interestingly, spin excitations (both of
singlet and triplet type) show a larger temperature dependence
than the charge excitations. Note also that the probability of
the half-filled singlet saturates below a characteristic tempera-
ture. The previous sections have demonstrated the metallic,
compressible character of the UD phase. The fluctuations
among various plaquette configurations are allowed by the
self-consistent bath, which in this phase is metallic (Fig. 13)
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FIG. 12. (Color online) Statistical weight P of the following cluster eigenstates as a function of doping δ, for several values of U : The singlet
|N = 4,S = 0,K = (0,0)〉, the triplet |N = 4,S = 1,K = (π,π )〉, and the doublet |N = 3,S = 1/2,K = (π,0)〉 (black squares, red triangles,
and blue circles respectively) where N , S and K are the number of electrons, the total spin, and the cluster momentum of the cluster eigenstate.
The data shown are for temperatures T/t = 1/10,1/25,1/50 (dotted, dashed, and solid line respectively). The statistical weight P of the
half-filled singlet crosses 1/2 (green solid horizontal line) roughly at the transition between the UD and OD phase, suggesting competing
singlet spin versus other spins and charge fluctuations at the transition.

and depends only weakly on the cluster momentum, consistent
with singlet states within the plaquette that dominate the
behavior of the system.

Our results thus suggest to consider the UD phase as a
phase in which the doped-hole carriers propagate into a sea of
spins bounded into a N = 4 short-range singlet state (a similar
interpretation for low doping phase of the t − J model was
suggested in Refs. 53 and 87). We can therefore rationalize
why this phase is coherent at low T , as revealed by the small
scattering rate in Fig. 10: As soon as the spins pair up into
singlet pairs, the doped holes have no difficulty to delocalize
coherently into the background of singlet states.

We now examine the OD phase. Here there is no dominant
plaquette eigenstate, and the electrons within the plaquette
fluctuate among several states. Electrons spend comparable
time visiting the doublet at N = 4, the half-filled singlet and
triplet. Also important are other types of excitations. At large
doping, the charge excitations becomes important, so the prob-
ability of the doublet at N = 3 is the largest. As the transition is
approached, the weight of these excitations decreases, whereas
that of the singlet increases. The temperature dependence
of the plaquette eigenstates is weak and mostly confined to
excitations of spins (both singlet and triplet). To complete our
survey of the OD phase we analyze the effect of the bath
in which the plaquette is immersed, Fig. 13. We find that
the cluster hybridization function displays metallic behavior

and weak cluster momentum differentiation, especially as the
finite-doping transition is approached. These results for the OD
phase support a qualitatively different picture compared with
the UD phase. At the level of the quantum cluster impurity
problem, the OD phase is characterized by the electrons of
the plaquette fluctuating among several configurations in a
conducting bath. Here the bath plays a central role, because
the electrons of the metallic bath screens the fluctuating
moments via the Kondo effect. The objects that delocalize
in the lattice are both spin and charge excitations compatible
with Landau quasiparticles that carry both spin and charge. As
a further support to this picture, we stress that at large doping,
far from the transition, we recover the results of single-site
DMFT, where the spatial fluctuations are absent and where
the Kondo screening mechanism controls the physics of the
model.

The central question then is: How can the system go from
the OD phase to the UD phase? At the level of the plaquette, the
transition between the two phases results from the competition
between singlet spin excitations and spin triplet plus charge
excitations. A simple way to quantify the increased importance
of spin triplet-charge fluctuations at the expense of the singlet
across the transition, is to monitor when the probability of the
singlet state equals the probability of other plaquette states,
i.e., when Ps = 1/2 (green solid line in Fig. 12). This occurs
roughly at the UD-OD transition.
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FIG. 13. (Color online) Extrapolated zero-frequency value of the imaginary part of the cluster hybridization function, −Im	K (ω → 0),
for cluster momentum K = (π,0) (circles), and K = (π,π ) (triangles) as a function of doping, for different values of the interaction strength
U . The data shown are for temperatures T/t = 1/10 (blue dotted line) 1/25 (green dashed line), 1/50 (full red line), and 1/100 (black
dot-dashed line). This observable measures the density of states of the conduction bath at the Fermi level averaged in the coarse grained
cluster momentum region. Note the weakly cluster momentum dependence in the underdoped phase, to be contrasted with the strong cluster
momentum differentiation of both the cluster Green’s function and self-energy.

The competing spin-charge excitation close to the tran-
sition was already reported in our recent study.70 There,
we emphasized the interplay between the doublet and
the spin excitations. Close to the critical coupling UMIT

[cf., Figs. 12(b)–12(e)] we linked the coexistence region to the
crossing of the probability between the triplet and the doublet
states. In the present study, which explores a larger region of
interaction strength U and temperatures, we rather highlight
the competing singlet spin versus triplet-spin and charge
fluctuations. This aims to refine our previous study because
the crossing Ps = 1/2 tracks both the first-order transition at
low temperatures and its high temperature crossover providing
a more general framework for interpreting our results in the
whole range of U and T explored.

We can now address the crucial question of the origin of
large scattering rate close the the μc1(T ,U ) surface and its high
temperature crossover analyzed in Sec. VI. The results of the
plaquette eigenstates describe competing87 superexchange and
Kondo interactions that give rise to unquenched short-range
magnetic fluctuations of the electrons within the plaquette.
This identifies the source of scattering close to the transition
between the UD and OD phase.

The above description takes the point of view of the
cluster coupled to a bath. The cellular DMFT results have
also a complementary interpretation in terms of the lattice.
In the OD phase the electrons on the lattice are coherent
because they fill the available k states as in a Fermi liquid.88

At zero temperature, this quenches the entropy. Here the k

space picture is appropriate. By contrast, in the UD phase the
electrons pair up into short-range singlets and doped charge
carriers can move coherently into a background of singlet
bonds. Here a real-space picture is more appropriate. Starting
at large doping and reducing δ toward the transition to the
UD phase, the electrons reorganize their motion according
to the strength of short-range magnetic spin correlation that
increase as the Mott state at δ = 0 is approached. Breaking
of the electrons as entities carrying both spin and charge
occurs at the finite doping transition. This releases entropy as
confirmed in Sec. V. Once the new excitations in the form of
short range singlets are formed, and the system get settled into
a magnetically stable configuration at low T , the system can
acquire again coherence. This perspective identifies the reorga-
nization of the basic excitations of the system at the transition
between the OD and UD phase as the source of scattering.
Such reorganization also occurs in some recent theoretical
proposals that envision a fractionalisation of the electrons.89,90

A different type of reorganization occurs in the charge 2e boson
theory.27

Further support for our scenario follows from the the
zero frequency cluster susceptibility χ0 = ∫ β

0 〈Sc
z (τ )Sc

z (0)〉dτ ,
where Sc

z is the projection of the total spin along the z direction
of the 2 × 2 plaquette, shown in Fig. 14 as a function of doping
for several values of U and T . In the Mott insulating phase
this quantity vanishes as temperature is lowered, revealing
that the system is locked into S = 0 singlet states due
to the superexchange interaction. This is in sharp contrast
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FIG. 14. (Color online) Local spin susceptibility χ0 versus δ for several values of U . The data shown are for temperatures T/t =
1/10,1/25, and 1/50 (blue dotted, green dashed, red solid line respectively). In the underdoped phase χ0 is approximately linear with doping,
as highlighted by the solid cyan line, substantiating the idea that the doped carriers propagate among short-range singlets formed by the
superexchange interaction.

with single-site DMFT where the corresponding local spin
susceptibility diverges in the Mott state. As the doping is
increased, χ0 grows approximate linearly with doping. This
characterizes the UD phase and reinforces the view of this
region as a phase with hole-doped carriers propagating in
a background of singlet states. On the other hand, starting
at large doping, a decrease of δ toward the transition has
again the effect of slightly increasing χ0. The mechanism
however is different: Spin and charge excitations are Kondo
screened by the conduction electrons of the bath. In a two-
dimensional Fermi liquid with spherical Fermi surface, the
spin susceptibility depends only on the density of states and is
independent of doping in the non-interacting limit. Here, as the
transition is approached with decreasing doping, χ0 increases
slightly, then approximately saturates or slightly decreases,
revealing the increased importance of the unquenched spin
fluctuations in the plaquette as the transition is approached.
Notice also the opposite temperature behavior of χ0 within
the two phases, again supporting the two different low lying
elementary excitations in these two regions. In the UD phase
in particular, the spin susceptibility decreases rapidly with
temperature, in analogy with the spin-gap phenomenon found
in high-temperature superconductors.91,92

VIII. DISCUSSION

Understanding the origin of the unusual behavior of copper
oxide superconductors is a fascinating challenge for theorists

and experimentalists alike. Recent experiments are focusing on
the normal state phase of these systems and are providing new
clues on the critical behavior observed between the metallic
state at high doping and the Mott insulator at zero doping.7

In an attempt to obtain a unified picture of these systems, we
have mapped out the normal state phase diagram of the 2D
Hubbard model, which is arguably the simplest model able to
capture the essential physics of doped Mott insulator.9 Cellular
DMFT on a 2 × 2 plaquette is our theoretical tool to elucidate
the phase diagram, allowing us to consider both temporal and
short-range spatial fluctuations. Our results provide a unified
low-temperature landscape where, at the lowest temperatures,
the system evolves, as a function of the carrier concentration,
from a Mott insulator at zero doping, through a coherent
electron liquid in the UD region, and, with further doping, to a
conventional metallic state in the OD region. Our key finding
is the first-order transition that takes place at low temperature
between these two metallic phases at finite doping, which is a
source of large scattering rate at the temperatures relevant for
experiment.

In this section we further discuss the emerging phase
diagram with a focus on the typical signatures and precursors
of the first-order transition. By tracking these indicators down
to the Mott critical endpoint UMIT we reveal that Mott physics
is at the origin of this transition. Subsequently we conjecture
that the large scattering arising from this transition may provide
an alternative to the quantum critical behavior surmised in the
copper oxide superconductors.93,94
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FIG. 15. (Color online) Phase diagram temperature T versus
doping δ for U = 6.2t , representative of the regime U > UMIT.
The star symbols denotes the second-order finite temperature critical
point, with coordinates (δ,T ) ≈ (0.05,1/65). Blue lines with circles
identify the spinodals δc1 (full line) and δc2 (dashed line) where
the UD and OD phases respectively disappear. Dotted blue line
with circles denotes the high-temperature crossover of the transition
measured by a maximum in the compressibility (dn/dμ)T . The
red lines with squares indicate the vanishing of ReG(π,0)(ω → 0)
(solid line), of μ

(π,0)
eff (dashed line), and the crossing of the isotherms

n(μ) (dot-dashed line), and they are early warning indicators of the
spinodal δc2(T ). The green lines with triangles are precursors of the
spinodal δc1(T ). Solid line marks the maximum of the scattering rate
�(π,0) = −Im�(π,0)(ω → 0). The strong momentum differentiation
found in ImGK (ω → 0) disappears at the dot-dashed line. When
that differentiation occurs as a crossover, we defined the boundary
by −ImG(π,π )(ω → 0) = 0.05. The dot-dashed line corresponds to
the doping below which the probability of the half filled singlet
state becomes larger than 1/2. Below the critical point the metallic
state separates into two different metallic states, the UD and the OD
phase, with a hysteretic change in the occupation (the jumps in the
occupation define hatched region). The lines above the critical point
are crossover lines. The Mott insulator (MI) exists only on the δ = 0
line.

A. Mott physics beyond half-filling

Figure 15 shows the temperature-doping phase diagram
for U = 6.2t representative of the regime U > UMIT and
summarizes our results for the doping induced transitions
starting from the Mott insulator. In the T − δ plane there
are five regions of interest: Mott insulator, underdoped phase,
hysteretic region, overdoped phase, and the non-Fermi liquid
region arising from the finite-temperature crossover between
the UD and OD phases.

Mott insulator. At zero doping the system is a Mott
insulator, as revealed by a plateau in the occupation at the
(odd) number n = 1 as a function of μ (Sec. III). Here the
spins are bound into short-range singlets due to superexchange
mechanism (Sec. VII).

Underdoped phase. Doping of the MI state proceeds gradu-
ally in certain cluster orbitals, with carriers going into the (0,0),
(0,π ), and the degenerate (π,0) orbital, but not in the (π,π )
one, that remains insulating. This strong orbital differentiation
is robust with respect to an increase of the size of the cluster
immersed in the self-consistent medium.69 Notice however that
in CTQMC calculations this gradual doping in cluster orbitals
is associated with a large orbital differentiation of the cluster
self-energy, whereas exact diagonalization methods show the
latter phenomenon without sign of the former, at least for a
2 × 2 plaquette.45,55 The basic excitations of this phase show
coherent behavior, as indicated by the linear low frequency
behavior of Im�(π,0) and Im�(0,0). However the system falls
outside Fermi liquid theory because the (π,π ) orbital remains
gapped in this phase suggesting a “small” Fermi surface
compatible with the presence of arcs or pockets (Sec. VI).
Furthermore, the objects that delocalize through the lattice
are holes propagating into a background of short-range singlet
states, as suggested by the analysis of the plaquette eigenstates
(Sec. VII). The metallic character of this phase is revealed by
the finite spectral weight at the Fermi level in the (π,0) and
(0,0) orbitals, and by the finite charge compressibility deduced
from the dn/dμ|T behavior. Because the basic excitations of
this phase are not the usual Landau quasiparticles, it will be
interesting to explore the way these excitations carry heat and
charge.

Overdoped phase. Upon further doping, there is a first-order
transition to a phase that appears to be a conventional Fermi
liquid phase.

Coexistence region. Below the characteristic temperature
Tcr, there is an hysteretic region in the T − μ plane where
the OD and UD phases are both present. Therefore within this
region a first-order transition takes place where the free energy
of the UD and OD phase crosses. One of the two phases is
metastable, but a computation of the free energy to tell which
one is metastable would be prohibitive. In the T − δ plane
there is forbidden region delimited by the spinodals, which
corresponds to the discontinuous jump of the occupation n(μ).
If we were able to exclude the metastable phases, this forbidden
region would be wider and delimited by the so-called binodals.

Crossover region. Above Tcr, between the UD and the
OD phase there is an incoherent phase signalled by a large
scattering rate in the (π,0) orbital. This region has a funnel-like
shape in the T − δ parameter space. It is noteworthy that
the lower is Tcr, the higher is its extension in temperature.
Future work should better clarify the thermodynamic critical
behavior of this region as well as its signatures on transport
properties. We note nevertheless that there is a maximum in
entropy as a function of doping close to the boundary of the
OD phase (Sec. V). This occurs because the two phases have
different electronic excitations. At the first-order transition, or
just above, the electronic excitations of the system are thus
reorganized leading to a large entropy.

Let us now review the phase boundaries. As it appears
from Fig. 15, the phase diagram is dominated by the critical
point at the characteristic temperature Tcr (star symbol). Below
this critical point the metallic state separates into two distinct
metallic states: The UD state to the left of the critical point
and the OD state to the right. The spinodal lines δc1 and δc2

emanate from the critical point (solid and dashed blue curves
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with circles) and are defined as the loci in the phase diagram
where the occupation n = 1 − δ undergoes a sudden drop and
an upward jump respectively. Hence, the region between δc1

and δc2 is forbidden and translates into a coexistence of phases
with different densities in the T − μ plane with hysteretic
behavior clearly apparent in the n(μ) curves (Sec. IV). Above
the critical point at Tcr there is a characteristic crossover line,
denoted by the dotted blue line with circles, and defined by the
peak in the charge compressibility dn/dμ|T .

To detect directly the first-order transition by looking for
hysteresis in some observables, like the occupation, requires
access to low temperatures and a careful scan of phase space.
Because Tcr rapidly moves to low T as U increases it is very
helpful to find some precursory signals that allow to infer such
a transition.

The first indicators that the system is approaching Tcr is the
above-mentioned crossover line defined by the maximum in
the compressibility and the associated critical slowing down
in our CTQMC calculations close to that line (Sec. IV). Inter-
estingly, we also found precursors of the spinodal lines δc1 and
δc2, where the UD and OD phases cease, respectively, to exist.
Signs that the model is approaching the spinodal δc2 include
the vanishing of ReG(π,0)(ω → 0) and of the renormalized
chemical potential μ

(π,0)
eff and the crossing of the isotherms

n(μ) (solid, dashed, and dot-dashed red curves with squares in
Fig. 15). These indicators originate at low temperatures close
to the δc2 line and persist for temperatures higher than Tcr.
The first two phenomena reflect a low frequency particle-hole
symmetry of the orbital (π,0) at this critical line.

We now compile the characteristic precursors of the
spinodal δc1, shown as green curves with triangles in Fig. 15.
The indicators includes the maximum of the scattering rate
of the (π,0) orbital � = −Im�(π,0)(ω → 0) (solid line), the
strong orbital differentiation in the density of states at the Fermi
level, measured by −ImGK (ω → 0) (dot-dashed curve), and
the line where the probability of the spin-singlet plaquette
state that dominates at half-filling exceeds 1/2. Below Tcr

these phenomena take place close to the spinodal line δc1,
therefore directly signaling the transition. Above Tcr, they may
serve as indicators that the transition is approaching. We note
that these precursory signals can be detected at rather large
temperatures. In addition, we have verified that as Tcr decreases
with increasing U , these indicators can actually be detected at
higher and higher temperatures, a definite advantage when it
comes to tracking the position of Tcr when it becomes very
low. This behavior is quite surprising and calls for a better
understanding of the high T crossover above the transition. It
seems that when Tcr is very low, it effectively acts as a quantum
critical point. Quantum criticality influences the physics at
rather high temperature.95–99

We now show that all the above indicators are manifesta-
tions of Mott physics. If we follow them as a function of the
correlation strength U (at a given temperature T/t = 1/50),
we obtain the results shown in the δ − U plot of Fig. 16.
The critical line Tcr (blue curve with circles) originates at
the Mott endpoint UMIT with coordinates (U/t ≈ 5.95,δ = 0)
and moves to progressively larger doping as U is increased,
as discussed in detail in Sec. IV. The line tracking the U

evolution of the maximum in scattering rate of the (π,0)

4 6 8 10 12
U

0

0.05

0.1

0.15

δ

ReG
(π,0)(ω−>0)=0

max μ Γ(π,0)
max μ (dn/dμ)

T

U
MIT

OD

UD

FIG. 16. (Color online) Characteristic dopings versus U that
signal the UD to OD transition, measured at the temperature
T/t = 1/50. The blue line with circles denotes the maximum of the
compressibility (dn/dμ)T . The red full line with squares indicates
the vanishing of ReG(π,0)(ω → 0). Green line with triangles denotes
the maximum of the scattering rate �(π,0) = –Im�(π,0)(ω → 0). Data
points are displayed for the constant temperature T/t = 1/50 and
thus they measure the features of the three-dimensional phase diagram
at that temperature. The overall maximum (as a function of U , T and
δ) of the compressibility follows the critical line Tcr that originates
at UMIT, with coordinates (U,δ,T ) ≈ (5.95,0,1/12) indicated by the
vertical arrow. The overall maximum as a function of U , T , and δ

of the scattering rate �(π,0) follows the δc1(U,T ) surface and peaks
at UMIT. The zero of the extrapolated value of real part of the (π,0)
cluster Green’s function at ω = 0 bifurcates at the line Uc2(T ).

orbital (green curve with triangles) originates at the spinodal
Uc1 at zero doping and departs from zero doping with
increasing U . Because of particle-hole symmetry, the indicator
ReG(π,0)(ω → 0) = 0 (red line with squares) is present at zero
doping for all values of U but, in addition, at the spinodal Uc2

the curve bifurcates and a new branch splits away from zero
doping as U increases.

The fact that all signatures of the finite doping first-order
transition can be traced back to the Mott critical point reveals
that the first-order transition between the UD and the OD
phase is associated with Mott physics. This in turn implies
that the signature of the Mott transition in the two-dimensional
Hubbard model, normally expected to occur in close proximity
to half-filling, extends way beyond half-filling.

This surprising conclusion70 emerges naturally from the
detailed mapping of the 3D normal state phase diagram. It is
indeed quite difficult to derive such a picture from the analysis
of the doping-driven transition at large U only. Studies of
this type may detect a critical doping and the strong orbital
differentiation approaching the Mott insulator. It would be
hard though, to find that the detected critical doping is indeed
a high temperature signature of a finite T first-order transition,
because of the low energy scales involved (i.e., the critical line
Tcr moves rapidly to progressively lower temperature as U

increases). It would also be hard to make an unambiguous link
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between that transition at finite doping and the Mott endpoint
at zero doping.

The map of the whole normal-state phase diagram, along
with our discovery of a first-order transition originating at
the half-filled Mott critical point and moving progressively
away from half-filling as U increases, should help provide
a unified picture of a host of previously known results and
call for their reinterpretation as precursory signals of the
transition we have revealed. In this respect, and accounting
for the differences in methods, the pseudogap-Fermi liquid
transition reported for U larger that the Mott endpoint in
Ref. 45 as well as the crossover observed at large doping in
Refs. 44, 67 and 68 are likely to be the same as those observed
here. Nevertheless, our analysis suggests that the quantum
critical point hypothesized in Refs. 93 and 94 is instead a
very low but finite T critical point that originates from the
influence of Mott physics away from half filling. We cannot
strictly rule out that the critical line that ends our first-order
surface becomes a quantum critical line or point at some U

(see theoretical investigations by Imada in Refs. 74 and 75),
however this hypothesis is disfavored in our calculations by
the fact that the same precursory signs of the transition occur
for all the values of U > UMIT considered, without apparent
qualitative change (Fig. 16). The same argument holds to
disfavor the hypothesis of a tricritical point at some U in
the phase diagram. Several earlier studies have also shown
that the strong orbital differentiation phenomenon is a robust
feature of cluster DMFT solutions of the two-dimensional
Hubbard model.69 But it was unclear what is the origin of
the strong momentum differentiation and of its disappearance
with doping. This phenomenon finds a natural explanation in
our phase diagram since it marks the end of the UD phase.

Even if more investigations should be done to clarify both
the crossover behavior above Tcr and the zero temperature
limit of our phase diagram, our study reveals that a first-order
transition inhabits and controls much of the physics of the
normal-state phase diagram of the two-dimensional Hubbard
model.

B. Proposal for critical behavior

We now turn to the relevance of our results for the physics of
the copper oxide superconductors.12,100–103 The difficulties to
achieve a unified picture are both experimental and theoretical.
From the theory side, they arise mainly because the phase
diagram of the cuprates defies three paradigms of condensed
matter physics: Band theory fails to explain the Mott insulator
at zero doping, Bardeen-Cooper-Schrieffer description does
not describe the unusual superconductivity and the Landau
Fermi liquid theory does not capture the metal above Tc and the
pseudogap phase close to the Mott insulator. Therefore, under-
standing the evolution of these systems as a function of doping
remains a challenging issue. Because the parent compounds
are Mott insulators, this calls for an understanding of the
doping-driven MIT arising from doping the Mott insulator.11

Models of this phenomenon rely on simple Hamiltonians
such as the Hubbard model. Here the aim is to ascertain
to what extent this minimal model is able to capture the
essence of the complex physical behavior of the copper oxide
superconductors. We mention that in this context the optical

lattices of cold atoms have opened up new perspectives to test
these assumptions104–106 and determine the phase diagram of
basic Hamiltonians of condensed matter physics.107–109

From a methodological viewpoint, dynamical mean-field
theory approaches allow to follow different phases as a
function of model parameters. In this paper we concentrated on
the normal state, by studying the cellular DMFT paramagnetic
solution of the two-dimensional Hubbard model. Thus the
main experimental relevance of our work consists in elucidat-
ing how the proximity to the Mott insulator affects the normal
state.

Our key finding, namely the first-order transition between
two metals, suggests the conjecture that the quantum critical
behavior surmised in high-temperature superconductors93,94

originates from a constant U cut of the finite-doping critical
line ending the first-order surface between two types of
metals. That transition occurs only when U is larger than
the critical value Uc1 for the Mott transition and moves
to progressively higher doping as U increases, reaching
δ ≈ 0.12 at U = 12t , which corresponds to the doping that
maximizes the superconducting transition temperature.53,87

This suggests that our first-order transition lies deep below the
superconducting dome (cf., Refs. 53,68, and 87). In addition,
at large U the critical point Tcr is at extremely low temperature
and the smaller Tcr the farther its influence, in the form of
large scattering rate, extends at finite temperature.95–99 Our
contribution is to pin down the large scattering rate to the
influence of the Mott phenomenon far away from half filling:
The first-order transition is the source of anomalous scattering,
which displays a funnel shape with increasing temperature.
Such funnel shape scattering separates underdoped from
overdoped phases above the maximum of the superconducting
dome in high temperature superconductors. Therefore the
UD and OD phases, that we defined with respect to our
metal-metal first-order transition, should also correspond to
the underdoped and overdoped regions normally defined in
high temperature superconductors. Given the differences in
methods, the crossover that we found between UD and OD
phases is also the one detected for U = 8t in Refs. 44 and 68].

Further work is planned to make the correspondence clearer,
but at present at the qualitative level several of our results
are similar to those found in experiment. First, anomalous
scattering takes place near a critical doping. Contrary to other
approaches,110 the source of this scattering is not a quantum
critical point between two ordered phases, nor the proximity
to an ordered phase, but a finite temperature crossover at
finite doping coming from Mott physics at work far from
half-filling. Second, above the critical point, the thermal
expansion coefficient (∂n/∂T )μ vanishes and equivalently, the
entropy has an extremum (∂S/∂μ)T = 0 (Ref. 68). Using the
Kelvin formula,111 this suggests that the thermopower changes
sign at finite doping,78 consistent experiment.112 Finally, as
observed in the pseudogap phase,91,92 there is a strong decrease
with temperature of the spin susceptibility in our underdoped
phase.

IX. CONCLUSION

The complete normal-state phase diagram of the two-
dimensional Hubbard model as a function of temperature,
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doping and interaction strength reveals a surface of first-order
transition that ends on a critical line and that can separate
two different types of metals. That transition at finite doping
between the underdoped and over-doped phase is unexpectedly
connected to Mott physics, because it originates at the half-
filled Mott endpoint and moves progressively away from
half-filling as the interaction strength increases. The critical
line rapidly moves to low temperature as interaction strength
is increased beyond the critical value for the Mott transition,
and it leaves finite-temperature signatures similar to those that
have suggested the existence of a quantum critical point near
optimal doping in high-temperature superconductors. Hence
we propose that Mott physics leads to a very low temperature
critical point separating two metals and that this can be
the source of anomalous normal state behavior near optimal
doping in high-temperature superconductors. Even though this
critical point cannot be accessed because of intervening long-
range order, it controls the physics at sufficiently high tem-
perature in the same way that a zero-temperature Fermi-liquid
ground state controls the normal state Fermi liquid despite the
fact that the true ground state may have long-range order.

Our proposal is clearly in its infancy and further work,
already in progress, should reveal the precise nature of the
criticality along with the relationship between the pseudogap
phase and the UD region of our phase diagram. In addition,
the study of some ordered states, like the antiferromagnetic
and superconducting ones, should provide useful insight to
complete the cellular DMFT picture of the Mott transition.
Nevertheless, our discovery sheds light on the phase diagram
of the 2D Hubbard model and highlights that Mott physics can
play a pivotal role even far away from half-filling.
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