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We investigate the transport properties of a correlated metal within dynamical mean-field theory.

Canonical Fermi liquid behavior emerges only below a very low temperature scale TFL. Surprisingly the

quasiparticle scattering rate follows a quadratic temperature dependence up to much higher temperatures

and crosses over to saturated behavior around a temperature scale Tsat. We identify these quasiparticles as

constituents of the hidden Fermi liquid. The non-Fermi-liquid transport above TFL, in particular the linear-

in-T resistivity, is shown to be a result of a strongly temperature dependent band dispersion. We derive

simple expressions for the resistivity, Hall angle, thermoelectric power and Nernst coefficient in terms of

a temperature dependent renormalized band structure and the quasiparticle scattering rate. We discuss

possible tests of the dynamical mean-field theory picture of transport using ac measurements.
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Fermi liquids [1] are good conductors. Quasiparticles
(QPs) with a mean free path much longer than their
wavelength are responsible for the electric transport, and
the resistivity vanishes quadratically at low temperatures.
The Landau theory is very robust and when reformulated
in terms of a transport kinetic equation, it can be used to
describe situations where Landau QPs are strictly speaking
not well defined, namely when the QP scattering rate is
comparable to their energy, such as the electron-phonon
coupled system above the Debye temperature [2].

The metallic state of many strongly correlated materials
is not described by the Landau theory in a wide range of
temperatures. Quadratic temperature dependence of the
resistivity occurs in a very narrow or vanishing range of
temperatures. The interpretation of the resistivity in terms
of the standard model of transport which is based on QPs is
problematic since it leads to mean free paths shorter than
the (QP) de Broglie wavelength as stressed by Emery and
Kivelson [3]. The transport properties of these ‘‘bad met-
als’’ thus require a novel framework for their theoretical
interpretation.

Dynamical mean-field theory (DMFT) [4] provides a
nonperturbative framework for the description of strongly
correlated materials. It links observable quantities to a
simpler, but still interacting, reference system (a quantum
impurity in a self-consistent medium) rather than to a free
electron system; hence, it gives access to physical regimes
outside the scope of the Landau theory.

In a broad temperature range, the single-site DMFT
description of the one-band Hubbard model at large U
and finite doping results in transport and optical properties
with anomalous temperature dependence [5–12], reminis-
cent of those observed in bad metals. Corresponding
studies of half filled metallic systems [13–16] also reveal
bad metallic behavior in a narrower temperature region
since at high temperatures the resistivity is insulatinglike.

Landau QPs only emerge below an extremely low tem-
perature TFL, which is much lower than the renormalized
kinetic energy or Brinkman-Rice scale TBR � �W with �
the doping level and W the bare bandwidth. TBR is the
natural scale for the variation of physical quantities with
doping at zero temperature [7,17]. A recent comprehensive
DMFT study of theHubbardmodel with a semicircular bare
density of states found that the transport properties above
TFL are described in terms of resilient QPs with a strong
particle-hole asymmetry [11]. This asymmetry arises from
the asymmetric pole structure in the self-energy character-
izing the proximity to the Mott insulator [18].
In this Letter we investigate the problem of bad metal

transport. By expressing the DMFT transport coefficients
in terms of QP quantities we find several surprising results:
(a) the QP scattering rate has a quadratic behavior for
temperatures much larger than TFL and crosses over to a
saturated behavior around Tsat. (b) The temperature depen-
dence of the transport coefficients is anomalous (in the
sense that it does not reflect the T dependence of the QP
scattering rate) and arises from the temperature dependent
changes of the QP dispersion near the Fermi level. (c) The
temperature dependence of the QP dispersion affects dif-
ferently the diagonal and off-diagonal charge and thermal
transport coefficients but the Mott relation [19,20] is valid
when TFL < T < Tsat=2.
We study the one-band Hubbard Hamiltonian on

the two-dimensional square lattice with nearest neighbor
hopping

H ¼ �t
X
hiji;�

cyi�cj� þU
X
i

cyi"ci"c
y
i#ci#: (1)

We set the full bare bandwidth W ¼ 8t to W ¼ 1 as the
unit of energy and temperature, and present results for
U=W ¼ 1:75, for which the system is a Mott insulator at
half filling. The doping level of the metallic state is fixed at
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� ¼ 15% (n ¼ 0:85). We use the continuous time quantum
Monte Carlo (CTQMC) method [21] and the imple-
mentation of Ref. [22] to solve the auxiliary impurity
problem. We use Padé approximants to analytically con-
tinue the self-energy.

The one-electron spectral function is defined as

Akð!Þ ¼� 1

�

Im�ð!Þ
ð!þ�� �k�Re�ð!ÞÞ2þ Im�ð!Þ2 ; (2)

in terms of the bare band dispersion �k¼�ð1=4ÞðcosðkxÞþ
cosðkyÞÞ and the self-energy �ð!Þ. Akð!Þ at different

temperatures is plotted in Figs. 1(a)–1(d).
Several characteristics of the evolution of Akð!Þ with

temperature are important. The solutions of the following
equation

!þ�ðTÞ � �k � Re�ð!; TÞ ¼ 0 (3)

faithfully reproduce the location of the peaks in Akð!Þ and
how they evolve with temperature [see Fig. 1(f)]. We do
not describe in the following the upper Hubbard band at
positive energies of order U.

There are two distinct temperature regimes separated
by a crossover scale Tsat ’ 2TBR=3 ¼ 0:1, which also sets
the saturation scale of the QP scattering rate as will be
explained later. Above Tsat, say at T ¼ 0:125, Akð!Þ has
one peak, i.e., Eq. (3) has only one root for each k
and displays a continuous dispersion over the whole
Brillioun zone. Below Tsat, Eq. (3) can have multiple roots.
The high temperature band breaks into two parts, which
together with the upper Hubbard band form the character-
istic DMFT three-peak structure of the local density of
states [LDOS, see Fig. 1(e)]. The breakup of these bands
also leads to the separation of the optical spectrum into a
Drude peak and a midinfrared feature, characteristic of
many correlated systems, which provided the earliest
experimental tests of the DMFT picture of correlated
materials [5,6,13,14].

There is always a dispersive QP feature in an �kBT
energy window at the Fermi energy. !�

k denotes the root
of Eq. (3) closest to the Fermi level for a given k.
It evolves continuously with temperature from zero up
to very high temperatures where there is no sharp peak
in the LDOS [see Fig. 1(e)]. The dispersive excitations
evolve continuously from strongly renormalized QPs
located near the Luttinger Fermi surfacewith Fermi cross-
ings around theX point and on the��M line for T � Tsat

[see Figs. 1(a) and 1(b)] to holes in the lowerHubbard band
(located near the M point) [see Fig. 1(d)] for T � Tsat,
as the spin degrees of freedom gradually unbind from
the charge, with increasing temperature. The QP velocity
is nearly temperature independent only below TFL and
above Tsat. The mass enhancement (1=Z) decreases with
increasing temperature, from a large value �5 below TFL

[see Fig. 1(a)] to a value �1:5 ’ ð1� n=2Þ�1 at high
temperatures [see Fig. 1(d)].
We now turn to the transport properties and focus on the

electric current induced by electric fields and thermal
gradients

Je ¼ ��0 �E� ��1 � rT: (4)

��0 is the charge conductivity matrix and ��1 is the thermal
conductivity matrix. Several quantities of interest are the
resistivity (�), Hall angle (�H), Seebeck coefficient (S),
and Nernst coefficient (�) [20]. They are representative
measures of the magneto- and thermoelectric transport
properties and can be expressed in terms of elements of
conductivity matrices

� ¼ 1

�0
xx

; tan�H ¼ ��0
yx

�0
xx

;

S ¼ ��1
xx

�0
xx

; � ¼ � 1

B

�
�1

yx

�0
xx

� �1
xx�

0
yx

ð�0
xxÞ2

�
: (5)

Within the DMFT treatment of the one-band Hubbard
model, current vertex corrections vanish and the transport
properties can be interpreted directly in terms of the one-
electron spectral function [5,8,9]
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FIG. 1 (color online). Spectral function Akð!Þ along �� X �
M� � in Brillioun zone at (a) T ¼ 0:0075, (b) T ¼ 0:025,
(c) T ¼ 0:1, and (d) T ¼ 0:125. (e) Local density of states.
(f) Roots of Eq. (3) at different temperatures.
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�	
xx ¼ 2�

X
k

�xx
k

Z
d!

�
�@fð!Þ

@!

��
!

T

�
	
A2
kð!Þ;

�	
yx

B
¼ 4�2

3

X
k

�yx
k

Z
d!

�
�@fð!Þ

@!

��
!

T

�
	
A3
kð!Þ;

(6)

with 	 ¼ 0 or 1 for charge or thermal conductivity. We
consider the limit of a weak magnetic field, hence the off-
diagonal conductivities are proportional to B. �xx

k ¼ �x2k
and �yx

k ¼ ð�ykÞ2�xxk � �yk�
x
k�

yx
k are transport functions in

terms of the bare band dispersion �k and its derivatives.
The derivatives are denoted by the corresponding super-
scripts, �	k ¼ @�k=@k	.

To recast Eqs. (6) in terms of QPs, we linearize Eq. (3) at
! ¼ !�

k and define Zk ¼ ½1� ð@Re�ð!Þ=@!Þ��1j!¼!�
k
.

Then the low energy part of the one-electron Green’s
function can be approximated as

Gkð!Þ ’ Zk

ð!�!�
kÞ þ i��

k

: (7)

Thus Zk is the QP renormalization factor (or QP weight)
and ��

k ¼ �ZkIm�ð!�
kÞ is the QP scattering rate.

Then the integrals in Eqs. (6) can be performed analyti-
cally and lead to

�	
xx ’

X
k

�
� @fð!Þ

@!

�
!�

k

��xx
k

�
!�

k

T

�
	

�k;

�	
yx

B
’ 1

2

X
k

�
�@fð!Þ

@!

�
!�

k

��yx
k

�
!�

k

T

�
	ð
�kÞ2:

(8)


�k ¼ ð��
kÞ�1 is the QP lifetime. The transport functions are

renormalized by Zk. �
�xx
k ¼ð��xk Þ2 and ��yx

k ¼ð��yk Þ2��xxk �
��yk ��xk ��yxk , with ��	ð�Þk ¼ Zk�

	ð�Þ
k (	, � ¼ x, y).

This reformulation leads to a transparent interpretation
in terms of QPs with temperature dependent dispersion!�

k.
Eqs. (8) have a form similar to the solution of the kinetic
equations from Boltzmann theory [23]. The essential dif-
ference from the Prange-Kadanoff treatment of the
electron-ph onon problem [2] is the strong temperature
dependence of the QP dispersion brought in by Zk.

First we validate the simplified description of transport,
Eqs. (8) (‘‘QP approx.’’), by benchmarking it against the
results of the exact DMFT expressions, Eqs. (6) (‘‘exact
exp.’’), for the resistivity, Hall angle, Seebeck coefficient,
andNernst coefficient. The quantitative agreement between
Eqs. (8) and (6) is evident, as shown in Figs. 2(a)–2(d).
The QP approximation faithfully reproduces the results of
all transport quantities over the whole temperature range,
extending to temperatures well above Tsat.
Figure 3(a) shows the QP scattering rate on the Fermi

surface, i.e., ��
kF

with !�
kF

¼ 0 (for later use we also write


�kF
¼ ð��

kF
Þ�1 as the QP lifetime and ZkF

as the renor-

malization factor at the Fermi surface). Tsat demarcates the
nonmonotonic temperature dependence of ��

kF
. Below Tsat,

��
kF

increases and reaches a maximum at Tsat. Above Tsat,

��
kF

decreases very slowly and eventually approaches a

value moderately smaller than the maximum. This con-
firms that Tsat characterizes the crossover between two
distinct scattering behaviors. The inset of Fig. 3(a) shows
estimated values of ðkFl�Þ�1 with kF an estimation of
the average Fermi momentum by assuming a circular
Fermi surface containing ð1� �Þ=2 electrons per spin
and with l� ¼ v�

kF
� 
�kF

the QP mean free path, where

v�
kF

¼
ffiffiffiffiffiffiffiffiffiffiffi
hv�2

k i
q

with h� � �i averaging over the Fermi level.

At low temperatures, ðkFl�Þ�1 increases with temperature,
as expected in a good metal, and crosses over to a much
slower increase, or saturated behavior, around Tsat=2.
Above Tsat=2, ðkFl�Þ�1 ’ 0:5, and does not exceed the
Mott-Ioffe-Regel bound, which states that ðkFl�Þ�1 < 1
in a metal. The QPs behave as expected in Boltzmann
transport theory in the full temperature range, reaching
the nondegenerate limit at T � Tsat. Notice that above
TFL, Im�ð0Þ is not quadratic in temperature; only ��

kF
¼

�ZkF
Im�ð0Þ is quadratic.

The anomalies in the transport properties are the
result of the strong temperature dependence of the renor-
malized dispersion. This is best understood by means
of a general Sommerfeld expansion of Eqs. (8), which
is explained in the Supplemental Material [24] and
works well below Tsat=2. For this purpose we define
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FIG. 2 (color online). Transport properties. (a) Resistivity. (b) Hall angle. (c) Seebeck coefficient. (d) Nernst coefficient. Points
labeled ‘‘exact exp.’’ are obtained using Eqs. (6). Points labeled ‘‘QP approx.’’ are obtained using Eqs. (8). Points labeled ‘‘expansion’’
are obtained using the general Sommerfeld expansion detailed in Supplemental Material [24]. The units are expressed in terms of
universal constants, @, kB, e, the in-plane lattice constant a, and the out-of-plane lattice constant c.
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��xx=yxð�Þ ¼ P
k�

�xx=yx
k �ð��!�

kÞ and the energy depen-

dent QP lifetime 
�ð�Þ ¼ 
�k when � ¼ !�
k, with scattering

rate ��ð�Þ ¼ ð
�ð�ÞÞ�1. For j�j & T, ��xx=yxð�Þ is
expanded to linear order in �. To keep the asymmetry in
��ð�Þ, which is important for the thermoelectric transport,
we expand ��ð�Þ to cubic order in �, and treat the linear and
cubic order as corrections to the zeroth and quadratic
terms, which are dominant in the Fermi liquid regime at
low temperatures. The insets in Fig. 2 compare the esti-
mation using this expansion (purple dots) and the results of
the full expressions (black dots). The agreement is evident
and the expansion quantitatively captures the variation
below Tsat=2.

The inset of Fig. 2(a) shows the linearity of the resistiv-
ity, a typical non-Fermi-liquid behavior [25], up to Tsat=4 ’
0:025, as indicated by the linear fitting (blue dashed line).
Surprisingly the QP scattering rate ��

kF
has a quadratic

temperature dependence also up to Tsat=4 [see Fig. 3(b)].
This is due to the strong temperature dependence of ZkF

[see Fig. 3(c)]. In fact, the leading order in the general
Sommerfeld expansion gives

� ’ ðZkF
�xxð ~�Þ
�kF

Þ�1; (9)

where �xxð ~�Þ¼P
k�

xx
k �ð ~���kÞ with ~� ¼ �� Re�ð0Þ

and we have used��xxð0Þ ¼ ZkF
�xxð ~�Þ. ZkF

’ 0:1þ 12T

for TFL < T < Tsat=4 leads to the quasilinear resistivity and
also affects all other transport coeffecients in Eqs. (8). The
temperature dependence of ZkF

becomes negligible only

below the Fermi liquid temperature TFL ’ Tsat=15.�
xxð ~�Þ

is very weakly temperature dependent as shown in the inset
of Fig. 3(c). Above Tsat, the resistivity is quasilinear in
temperature with a slope smaller than that below Tsat=4,
while the QP scattering rate is saturated. The general
Sommerfeld expansion cannot be used at high tempera-
tures, but the discrepancy between the scattering rate
and resistivity can be traced to the variation of ~� with
temperature, leading to the shift of the QP band relative to
the Fermi window �@fð!Þ=@!.

Similarly, the leading order in the Hall angle [see
Fig. 2(b)] is given by tan�H=B ’ ZkF

�yxð ~�Þ
�kF
=2�xxð ~�Þ

and indicates that the sign change at T ’ Tsat=4 is due to the
sign change in �yxð ~�Þ, a consequence of the evolution
of Fermi surface from a holelike one to an electronlike
one. For the Seebeck coefficient [see Fig. 2(c)], the expan-
sion leads to

S ’
�
��2

3
T

��
d ln��xxð0Þ

d�
þ d ln
�ð0Þ

d�

�
: (10)

The asymmetry in the scattering rate competes with the
asymmetry in theQPband structure; hence, instead of a sign
change, S shows a nonmonotonic temperature dependence
below Tsat=2.
The Nernst coefficient � [see Fig. 2(d)] rises steeply

below Tsat=4, and provides a good probe of the temperature
dependence of 
�kF

. The leading orders in the expansion

give

�’
�
��2

3
T

��

�kF

d

d�

�
��yxð0Þ
��xxð0Þ

�
þ��yxð0Þ
��xxð0Þ

d
�ð0Þ
d�

�
: (11)

In the square lattice near hall filling, the asymmetry in the
band structure dominates and leads to � / 
�kF

T / 1=T.

This rise is seen in many materials [20] before � drops
linearly in T at very low temperature [26].
Further studies should be carried out to ascertain to

which extent the DMFT description of transport applies
to real materials, but the strong similarities between the
experimental features revealed in the phenomenological
picture in Ref. [25] and our results are encouraging.
Alternating current (ac) transport measurements can be
used to extract the temperature dependence of 
�kF

. At

low frequency, the optical conductivity is parametrized
as [27,28] �ð!Þ ¼ ð!�2

opt=4�Þ½�i!þ ð1=
�optÞ��1, with

!�2
opt ’ 8���xxð0Þ ¼ 8�ZkF

�xxð ~�Þ and 
�opt ’ 
�kF
=2.

Similarly in the ac Hall effect [29], tan�Hð!Þ=B ¼
ð!�2

H =4�Þ½�i!þ ð1=
�HÞ��1 follows, with

!�2
H ’ 4�

��yxð0Þ
��xxð0Þ ¼ 4�

ZkF
�yxð ~�Þ

�xxð ~�Þ
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FIG. 3 (color online). (a) Quasiparticle scattering rate ��
kF
. The inset shows the estimation of ðkFl�Þ�1. (b) ��

kF
as a function of T2 for

T & Tsat=2. (c) Quasiparticle renormalization factor ZkF
for T & Tsat=2.
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and 
�H ’ 
�kF
=2. Frequency dependent thermoelectric

measurements would give additional information on the
asymmetry of the QP dispersion and scattering rate.

The extension from model Hamiltonians to the LDAþ
DMFT framework is straightforward. It can be used to
separate the temperature dependence of transport coeffi-
cients arising from the temperature dependence of the QP
band and that of the scattering rate, in materials such as
the ruthenates [30], the vanadates [31], and the nickelates
[14,32,33] for which the LDAþ DMFT description is
known to provide an accurate zeroth order picture of
numerous properties [14]. Recent experiments on cuprates
[34] have revealed evidence for the temperature depen-
dence of!�2

opt and a T
2-scattering rate over a broad range of

temperatures. These materials require cluster DMFT stud-
ies to describe their momentum space differentiation. Still,
it is tempting to interpret the transport properties in terms
of QPs to provide an effective description of the transport.
Indeed the QP scattering rate computed in the t-J model in
Ref. [35], exhibits the saturation behavior described in this
work and it would be interesting to reanalyze the results in
terms of the QPs of the hidden Fermi liquid. Our findings
are related to two earlier theoretical proposals. Anderson
introduced the idea of a hidden Fermi liquid [36,37],
requiring ZkF

to strictly vanish at T ¼ 0 in the normal

state. Alternatively, our results could be cast into the
framework of the extremely correlated Fermi liquid [38]
by the temperature dependence of the caparison function.
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